Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 04 Dec 2015 14:05:26 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/04/t1449238394rmusz7e2zzd9rai.htm/, Retrieved Fri, 01 Nov 2024 00:10:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=285150, Retrieved Fri, 01 Nov 2024 00:10:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact83
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2015-12-04 14:05:26] [d108c84c57c191267df4a6d3f43a776a] [Current]
- RM      [Exponential Smoothing] [] [2015-12-04 14:13:35] [0067001be1237c3bcd1f41c2117a7af9]
Feedback Forum

Post a new message
Dataseries X:
-51.08
-13.46
97.77
30.77
-19.56
34.13
42.98
37.12
57.96
70.87
-42.88
-50.71
35.63
-6.753
-48.52
-18.52
-45.85
-39.16
24.69
51.83
44.67
-49.42
-25.17
-47
-34.66
-48.04
26.19
11.19
42.86
6.554
67.4
141.5
-81.62
61.29
-156.5
-80.29
-40.95
-64.33
-62.1
127.9
179.6
24.26
99.11
136.3
-10.91
102
50.25
22.42
-136.2
-13.62
-36.39
61.61
119.3
40.97
-9.18
-24.04
-3.202
-53.29
-24.04
-187.9
-119.5
-165.9
-75.68
37.32
326.2
215.9
10.77
-89.09
-26.26
-34.34
-21.09
61.08
63.42
61.03
81.26
8.263
-117.1
-79.37
-82.52
-98.38
-57.55
-43.63
-33.38
15.79
27.13
-22.26
2.972
-68.03
-91.35
-19.66
-12.81
91.33
152.2
129.1
137.3
17.5
54.84
30.45
-39.32
-34.32
-110.6
-108
-84.11
-133
-71.13
-73.21
-46.96
-6.794
-5.454
11.16
-40.61
-87.61
-103.9
-103.2
-94.4
-85.25
-53.42
-64.5
-22.25
14.92
3.256
-13.13
-39.9
-73.9
-95.22
6.469
-91.69
-11.54
34.29
-60.79
56.46
110.6
76.97
97.58
52.81
-11.19
-64.51
-23.82
11.02
-16.83
15
15.92
128.2
130.3
126.7
147.3
81.52
16.52
-19.8
44.89
118.7




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285150&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285150&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285150&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.7723855804637
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.7723855804637 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285150&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.7723855804637[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285150&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285150&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.7723855804637
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
2-13.46-51.0837.62
397.77-22.0228544629556119.792854462956
430.7770.5034189668179-39.7334189668179
5-19.5639.8138990943249-59.3738990943249
634.13-6.0456444220383940.1756444220384
742.9824.985444015380917.9945559846191
837.1238.8841795847475-1.76417958474747
957.9637.521552712140120.4384472878599
1070.8753.307914684350517.5620853156495
11-42.8866.8726161450315-109.752616145031
12-50.71-17.8987219835583-32.8112780164417
1335.63-43.241680000043578.8716800000435
14-6.75317.6776683389373-24.4306683389373
15-48.52-1.19222760714892-47.3277723928511
16-18.52-37.747516558855119.2275165588551
17-45.85-22.8964600206684-22.9535399793316
18-39.16-40.62544332130121.46544332130118
1924.69-39.493556030941364.1835560309413
2051.8310.080897150241741.7491028497583
2144.6742.3273021886912.34269781130903
22-49.4244.1367681975299-93.5567681975299
23-25.17-28.1251305130272.95513051302704
24-47-25.8426303163767-21.1573696836233
25-34.66-42.18427758054727.52427758054716
26-48.04-36.3726340739262-11.6673659260738
2726.19-45.384339277219171.5743392772191
2811.199.898648311721561.29135168827844
2942.8610.896069735055331.9639302649447
306.55435.5845485666458-29.0305485666458
3167.413.161771460817554.2382285391825
32141.555.054597094376886.4454029056232
33-81.62121.823779796055-203.443779796055
3461.29-35.313262153450196.6032621534501
35-156.539.3017045596294-195.801704559629
36-80.29-111.93270867244231.6427086724418
37-40.95-87.492336767034146.5423367670341
38-64.33-51.5437069670915-12.7862930329085
39-62.1-61.4196553332935-0.680344666706517
40127.9-61.945143743603189.845143743603
41179.684.688507805014494.9114921949856
4224.26157.996775796714-133.736775796714
4399.1154.700418593625444.4095814063746
44136.389.00173890633847.298261093662
45-10.91125.53423375609-136.44423375609
4610220.146675065467681.8533249345324
4750.2583.3690029579103-33.1190029579103
4822.4257.7883626338857-35.3683626338857
49-136.230.4703493308613-166.670349330861
50-13.62-98.263425183143684.6434251831436
51-36.39-32.8860640906255-3.50393590937451
5261.61-35.592453661895397.2024536618953
53119.339.485319932243679.8146800677564
5440.97101.133027925902-60.1630279259021
55-9.1854.6639726789004-63.8439726789004
56-24.045.35180878219932-29.3918087821993
57-3.202-17.350000504917814.1480005049178
58-53.29-6.42228892252614-46.8677110774739
59-24.04-42.622233148105818.5822331481058
60-187.9-28.2695842116943-159.630415788306
61-119.5-151.56581557000732.0658155700065
62-165.9-126.798641997925-39.1013580020749
63-75.68-156.99996709527781.3199670952766
6437.32-94.1895971071024131.509597107102
65326.27.38651939101419318.813480608986
66215.9253.633454670838-37.7334546708382
6710.77224.488678382002-213.718678382002
68-89.0959.4154529239846-148.505452923985
69-26.26-55.288017534731929.0280175347319
70-34.34-32.8671953614575-1.47280463854246
71-21.09-34.004768427107812.9147684271078
7261.08-24.029587518981985.1095875189819
7363.4241.70783063989321.712169360107
7461.0358.47799717422542.55200282577459
7581.2660.449127358156320.8108726418437
768.26376.5231453035829-68.2601453035829
77-117.123.7999933507385-140.899993350739
78-79.37-85.02912980080315.6591298008031
79-82.52-80.6580995446904-1.86190045530962
80-98.38-82.0962046086303-16.2837953913697
81-57.55-94.673573364145537.1235733641455
82-43.63-65.999860602393222.3698606023932
83-33.38-48.721702836121715.3417028361217
8415.79-36.871992785742352.6619927857422
8527.133.8033710804484523.3266289195515
86-22.2621.8205228987376-44.0805228987376
872.972-12.226637367547315.1986373675473
88-68.03-0.487429022156989-67.542570977843
89-91.35-52.6563369128889-38.6936630871111
90-19.66-82.54276433669462.882764336694
91-12.81-33.973023903334621.1630239033346
9291.33-17.6270094013903108.95700940139
93152.266.529813550691385.6701864493087
94129.1132.700230239774-3.60023023977399
95137.3129.9194643162237.38053568377683
9617.5135.62008365447-118.12008365447
9754.8444.385834276591410.4541657234086
9830.4552.4604811371301-22.0104811371301
99-39.3235.4599028877425-74.7799028877425
100-34.32-22.2990158112256-12.0209841887744
101-110.6-31.5838506616171-79.0161493383829
102-108-92.6147850343504-15.3852149656496
103-84.11-104.49810322615220.3881032261525
104-133-88.7506262812668-44.2493737187332
105-71.13-122.92820448616651.7982044861657
106-73.21-82.92001824714129.71001824714119
107-46.96-75.420140167009928.4601401670099
108-6.794-53.437938284035746.6439382840357
109-5.454-17.410832937407811.9568329374078
11011.16-8.1755475885405919.3355475885406
111-40.616.75895055921783-47.3689505592178
112-87.61-29.8281438144199-57.7818561855801
113-103.9-74.4580163445892-29.4419836554108
114-103.2-97.1985799802764-6.00142001972355
115-94.4-101.8339902658177.43399026581709
116-85.25-96.092083379192510.8420833791925
117-53.42-87.717814514919134.2978145149191
118-64.5-61.226677142177-3.273322857823
119-22.25-63.754944517761741.5049445177617
12014.92-31.697123854296746.6171238542967
1213.2564.30927041345245-1.05327041345245
122-13.133.49573953377274-16.6257395337727
123-39.9-9.3457419466586-30.5542580533414
124-73.9-32.9454102888264-40.9545897111736
125-95.22-64.5781448355439-30.6418551644561
1266.469-88.245471923226994.7144719232269
127-91.69-15.0893795484925-76.6006204515075
128-11.54-74.254594239809762.7145942398097
12934.29-25.814745964348960.1047459643489
130-60.7920.609293135948-81.399293135948
13156.46-42.262347142196198.7223471421961
132110.633.989370259967976.6106297400321
13376.9793.1623159814122-16.1923159814122
13497.5880.655604603057516.9243953969425
13552.8193.7277635657221-40.9177635657221
136-11.1962.1234730027354-73.3134730027354
137-64.515.49720360170783-70.0072036017078
138-23.82-48.575350988837724.7553509888377
13911.02-29.454674845741740.4746748457417
140-16.831.80738037906602-18.637380379066
14115-12.587863483341727.5878634833417
14215.928.72060446699257.1993955330075
143128.214.2813137647423113.918686235258
144130.3102.27046435822428.0295356417761
145126.7123.9200735150252.77992648497489
146147.3126.06724864676921.2327513532312
14781.52142.467119625576-60.9471196255757
14816.5295.3924432559849-78.8724432559849
149-19.834.4725053891208-54.2725053891208
15044.89-7.4467951890745652.3367951890746
151118.732.977390742648685.7226092573514

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & -13.46 & -51.08 & 37.62 \tabularnewline
3 & 97.77 & -22.0228544629556 & 119.792854462956 \tabularnewline
4 & 30.77 & 70.5034189668179 & -39.7334189668179 \tabularnewline
5 & -19.56 & 39.8138990943249 & -59.3738990943249 \tabularnewline
6 & 34.13 & -6.04564442203839 & 40.1756444220384 \tabularnewline
7 & 42.98 & 24.9854440153809 & 17.9945559846191 \tabularnewline
8 & 37.12 & 38.8841795847475 & -1.76417958474747 \tabularnewline
9 & 57.96 & 37.5215527121401 & 20.4384472878599 \tabularnewline
10 & 70.87 & 53.3079146843505 & 17.5620853156495 \tabularnewline
11 & -42.88 & 66.8726161450315 & -109.752616145031 \tabularnewline
12 & -50.71 & -17.8987219835583 & -32.8112780164417 \tabularnewline
13 & 35.63 & -43.2416800000435 & 78.8716800000435 \tabularnewline
14 & -6.753 & 17.6776683389373 & -24.4306683389373 \tabularnewline
15 & -48.52 & -1.19222760714892 & -47.3277723928511 \tabularnewline
16 & -18.52 & -37.7475165588551 & 19.2275165588551 \tabularnewline
17 & -45.85 & -22.8964600206684 & -22.9535399793316 \tabularnewline
18 & -39.16 & -40.6254433213012 & 1.46544332130118 \tabularnewline
19 & 24.69 & -39.4935560309413 & 64.1835560309413 \tabularnewline
20 & 51.83 & 10.0808971502417 & 41.7491028497583 \tabularnewline
21 & 44.67 & 42.327302188691 & 2.34269781130903 \tabularnewline
22 & -49.42 & 44.1367681975299 & -93.5567681975299 \tabularnewline
23 & -25.17 & -28.125130513027 & 2.95513051302704 \tabularnewline
24 & -47 & -25.8426303163767 & -21.1573696836233 \tabularnewline
25 & -34.66 & -42.1842775805472 & 7.52427758054716 \tabularnewline
26 & -48.04 & -36.3726340739262 & -11.6673659260738 \tabularnewline
27 & 26.19 & -45.3843392772191 & 71.5743392772191 \tabularnewline
28 & 11.19 & 9.89864831172156 & 1.29135168827844 \tabularnewline
29 & 42.86 & 10.8960697350553 & 31.9639302649447 \tabularnewline
30 & 6.554 & 35.5845485666458 & -29.0305485666458 \tabularnewline
31 & 67.4 & 13.1617714608175 & 54.2382285391825 \tabularnewline
32 & 141.5 & 55.0545970943768 & 86.4454029056232 \tabularnewline
33 & -81.62 & 121.823779796055 & -203.443779796055 \tabularnewline
34 & 61.29 & -35.3132621534501 & 96.6032621534501 \tabularnewline
35 & -156.5 & 39.3017045596294 & -195.801704559629 \tabularnewline
36 & -80.29 & -111.932708672442 & 31.6427086724418 \tabularnewline
37 & -40.95 & -87.4923367670341 & 46.5423367670341 \tabularnewline
38 & -64.33 & -51.5437069670915 & -12.7862930329085 \tabularnewline
39 & -62.1 & -61.4196553332935 & -0.680344666706517 \tabularnewline
40 & 127.9 & -61.945143743603 & 189.845143743603 \tabularnewline
41 & 179.6 & 84.6885078050144 & 94.9114921949856 \tabularnewline
42 & 24.26 & 157.996775796714 & -133.736775796714 \tabularnewline
43 & 99.11 & 54.7004185936254 & 44.4095814063746 \tabularnewline
44 & 136.3 & 89.001738906338 & 47.298261093662 \tabularnewline
45 & -10.91 & 125.53423375609 & -136.44423375609 \tabularnewline
46 & 102 & 20.1466750654676 & 81.8533249345324 \tabularnewline
47 & 50.25 & 83.3690029579103 & -33.1190029579103 \tabularnewline
48 & 22.42 & 57.7883626338857 & -35.3683626338857 \tabularnewline
49 & -136.2 & 30.4703493308613 & -166.670349330861 \tabularnewline
50 & -13.62 & -98.2634251831436 & 84.6434251831436 \tabularnewline
51 & -36.39 & -32.8860640906255 & -3.50393590937451 \tabularnewline
52 & 61.61 & -35.5924536618953 & 97.2024536618953 \tabularnewline
53 & 119.3 & 39.4853199322436 & 79.8146800677564 \tabularnewline
54 & 40.97 & 101.133027925902 & -60.1630279259021 \tabularnewline
55 & -9.18 & 54.6639726789004 & -63.8439726789004 \tabularnewline
56 & -24.04 & 5.35180878219932 & -29.3918087821993 \tabularnewline
57 & -3.202 & -17.3500005049178 & 14.1480005049178 \tabularnewline
58 & -53.29 & -6.42228892252614 & -46.8677110774739 \tabularnewline
59 & -24.04 & -42.6222331481058 & 18.5822331481058 \tabularnewline
60 & -187.9 & -28.2695842116943 & -159.630415788306 \tabularnewline
61 & -119.5 & -151.565815570007 & 32.0658155700065 \tabularnewline
62 & -165.9 & -126.798641997925 & -39.1013580020749 \tabularnewline
63 & -75.68 & -156.999967095277 & 81.3199670952766 \tabularnewline
64 & 37.32 & -94.1895971071024 & 131.509597107102 \tabularnewline
65 & 326.2 & 7.38651939101419 & 318.813480608986 \tabularnewline
66 & 215.9 & 253.633454670838 & -37.7334546708382 \tabularnewline
67 & 10.77 & 224.488678382002 & -213.718678382002 \tabularnewline
68 & -89.09 & 59.4154529239846 & -148.505452923985 \tabularnewline
69 & -26.26 & -55.2880175347319 & 29.0280175347319 \tabularnewline
70 & -34.34 & -32.8671953614575 & -1.47280463854246 \tabularnewline
71 & -21.09 & -34.0047684271078 & 12.9147684271078 \tabularnewline
72 & 61.08 & -24.0295875189819 & 85.1095875189819 \tabularnewline
73 & 63.42 & 41.707830639893 & 21.712169360107 \tabularnewline
74 & 61.03 & 58.4779971742254 & 2.55200282577459 \tabularnewline
75 & 81.26 & 60.4491273581563 & 20.8108726418437 \tabularnewline
76 & 8.263 & 76.5231453035829 & -68.2601453035829 \tabularnewline
77 & -117.1 & 23.7999933507385 & -140.899993350739 \tabularnewline
78 & -79.37 & -85.0291298008031 & 5.6591298008031 \tabularnewline
79 & -82.52 & -80.6580995446904 & -1.86190045530962 \tabularnewline
80 & -98.38 & -82.0962046086303 & -16.2837953913697 \tabularnewline
81 & -57.55 & -94.6735733641455 & 37.1235733641455 \tabularnewline
82 & -43.63 & -65.9998606023932 & 22.3698606023932 \tabularnewline
83 & -33.38 & -48.7217028361217 & 15.3417028361217 \tabularnewline
84 & 15.79 & -36.8719927857423 & 52.6619927857422 \tabularnewline
85 & 27.13 & 3.80337108044845 & 23.3266289195515 \tabularnewline
86 & -22.26 & 21.8205228987376 & -44.0805228987376 \tabularnewline
87 & 2.972 & -12.2266373675473 & 15.1986373675473 \tabularnewline
88 & -68.03 & -0.487429022156989 & -67.542570977843 \tabularnewline
89 & -91.35 & -52.6563369128889 & -38.6936630871111 \tabularnewline
90 & -19.66 & -82.542764336694 & 62.882764336694 \tabularnewline
91 & -12.81 & -33.9730239033346 & 21.1630239033346 \tabularnewline
92 & 91.33 & -17.6270094013903 & 108.95700940139 \tabularnewline
93 & 152.2 & 66.5298135506913 & 85.6701864493087 \tabularnewline
94 & 129.1 & 132.700230239774 & -3.60023023977399 \tabularnewline
95 & 137.3 & 129.919464316223 & 7.38053568377683 \tabularnewline
96 & 17.5 & 135.62008365447 & -118.12008365447 \tabularnewline
97 & 54.84 & 44.3858342765914 & 10.4541657234086 \tabularnewline
98 & 30.45 & 52.4604811371301 & -22.0104811371301 \tabularnewline
99 & -39.32 & 35.4599028877425 & -74.7799028877425 \tabularnewline
100 & -34.32 & -22.2990158112256 & -12.0209841887744 \tabularnewline
101 & -110.6 & -31.5838506616171 & -79.0161493383829 \tabularnewline
102 & -108 & -92.6147850343504 & -15.3852149656496 \tabularnewline
103 & -84.11 & -104.498103226152 & 20.3881032261525 \tabularnewline
104 & -133 & -88.7506262812668 & -44.2493737187332 \tabularnewline
105 & -71.13 & -122.928204486166 & 51.7982044861657 \tabularnewline
106 & -73.21 & -82.9200182471412 & 9.71001824714119 \tabularnewline
107 & -46.96 & -75.4201401670099 & 28.4601401670099 \tabularnewline
108 & -6.794 & -53.4379382840357 & 46.6439382840357 \tabularnewline
109 & -5.454 & -17.4108329374078 & 11.9568329374078 \tabularnewline
110 & 11.16 & -8.17554758854059 & 19.3355475885406 \tabularnewline
111 & -40.61 & 6.75895055921783 & -47.3689505592178 \tabularnewline
112 & -87.61 & -29.8281438144199 & -57.7818561855801 \tabularnewline
113 & -103.9 & -74.4580163445892 & -29.4419836554108 \tabularnewline
114 & -103.2 & -97.1985799802764 & -6.00142001972355 \tabularnewline
115 & -94.4 & -101.833990265817 & 7.43399026581709 \tabularnewline
116 & -85.25 & -96.0920833791925 & 10.8420833791925 \tabularnewline
117 & -53.42 & -87.7178145149191 & 34.2978145149191 \tabularnewline
118 & -64.5 & -61.226677142177 & -3.273322857823 \tabularnewline
119 & -22.25 & -63.7549445177617 & 41.5049445177617 \tabularnewline
120 & 14.92 & -31.6971238542967 & 46.6171238542967 \tabularnewline
121 & 3.256 & 4.30927041345245 & -1.05327041345245 \tabularnewline
122 & -13.13 & 3.49573953377274 & -16.6257395337727 \tabularnewline
123 & -39.9 & -9.3457419466586 & -30.5542580533414 \tabularnewline
124 & -73.9 & -32.9454102888264 & -40.9545897111736 \tabularnewline
125 & -95.22 & -64.5781448355439 & -30.6418551644561 \tabularnewline
126 & 6.469 & -88.2454719232269 & 94.7144719232269 \tabularnewline
127 & -91.69 & -15.0893795484925 & -76.6006204515075 \tabularnewline
128 & -11.54 & -74.2545942398097 & 62.7145942398097 \tabularnewline
129 & 34.29 & -25.8147459643489 & 60.1047459643489 \tabularnewline
130 & -60.79 & 20.609293135948 & -81.399293135948 \tabularnewline
131 & 56.46 & -42.2623471421961 & 98.7223471421961 \tabularnewline
132 & 110.6 & 33.9893702599679 & 76.6106297400321 \tabularnewline
133 & 76.97 & 93.1623159814122 & -16.1923159814122 \tabularnewline
134 & 97.58 & 80.6556046030575 & 16.9243953969425 \tabularnewline
135 & 52.81 & 93.7277635657221 & -40.9177635657221 \tabularnewline
136 & -11.19 & 62.1234730027354 & -73.3134730027354 \tabularnewline
137 & -64.51 & 5.49720360170783 & -70.0072036017078 \tabularnewline
138 & -23.82 & -48.5753509888377 & 24.7553509888377 \tabularnewline
139 & 11.02 & -29.4546748457417 & 40.4746748457417 \tabularnewline
140 & -16.83 & 1.80738037906602 & -18.637380379066 \tabularnewline
141 & 15 & -12.5878634833417 & 27.5878634833417 \tabularnewline
142 & 15.92 & 8.7206044669925 & 7.1993955330075 \tabularnewline
143 & 128.2 & 14.2813137647423 & 113.918686235258 \tabularnewline
144 & 130.3 & 102.270464358224 & 28.0295356417761 \tabularnewline
145 & 126.7 & 123.920073515025 & 2.77992648497489 \tabularnewline
146 & 147.3 & 126.067248646769 & 21.2327513532312 \tabularnewline
147 & 81.52 & 142.467119625576 & -60.9471196255757 \tabularnewline
148 & 16.52 & 95.3924432559849 & -78.8724432559849 \tabularnewline
149 & -19.8 & 34.4725053891208 & -54.2725053891208 \tabularnewline
150 & 44.89 & -7.44679518907456 & 52.3367951890746 \tabularnewline
151 & 118.7 & 32.9773907426486 & 85.7226092573514 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285150&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]-13.46[/C][C]-51.08[/C][C]37.62[/C][/ROW]
[ROW][C]3[/C][C]97.77[/C][C]-22.0228544629556[/C][C]119.792854462956[/C][/ROW]
[ROW][C]4[/C][C]30.77[/C][C]70.5034189668179[/C][C]-39.7334189668179[/C][/ROW]
[ROW][C]5[/C][C]-19.56[/C][C]39.8138990943249[/C][C]-59.3738990943249[/C][/ROW]
[ROW][C]6[/C][C]34.13[/C][C]-6.04564442203839[/C][C]40.1756444220384[/C][/ROW]
[ROW][C]7[/C][C]42.98[/C][C]24.9854440153809[/C][C]17.9945559846191[/C][/ROW]
[ROW][C]8[/C][C]37.12[/C][C]38.8841795847475[/C][C]-1.76417958474747[/C][/ROW]
[ROW][C]9[/C][C]57.96[/C][C]37.5215527121401[/C][C]20.4384472878599[/C][/ROW]
[ROW][C]10[/C][C]70.87[/C][C]53.3079146843505[/C][C]17.5620853156495[/C][/ROW]
[ROW][C]11[/C][C]-42.88[/C][C]66.8726161450315[/C][C]-109.752616145031[/C][/ROW]
[ROW][C]12[/C][C]-50.71[/C][C]-17.8987219835583[/C][C]-32.8112780164417[/C][/ROW]
[ROW][C]13[/C][C]35.63[/C][C]-43.2416800000435[/C][C]78.8716800000435[/C][/ROW]
[ROW][C]14[/C][C]-6.753[/C][C]17.6776683389373[/C][C]-24.4306683389373[/C][/ROW]
[ROW][C]15[/C][C]-48.52[/C][C]-1.19222760714892[/C][C]-47.3277723928511[/C][/ROW]
[ROW][C]16[/C][C]-18.52[/C][C]-37.7475165588551[/C][C]19.2275165588551[/C][/ROW]
[ROW][C]17[/C][C]-45.85[/C][C]-22.8964600206684[/C][C]-22.9535399793316[/C][/ROW]
[ROW][C]18[/C][C]-39.16[/C][C]-40.6254433213012[/C][C]1.46544332130118[/C][/ROW]
[ROW][C]19[/C][C]24.69[/C][C]-39.4935560309413[/C][C]64.1835560309413[/C][/ROW]
[ROW][C]20[/C][C]51.83[/C][C]10.0808971502417[/C][C]41.7491028497583[/C][/ROW]
[ROW][C]21[/C][C]44.67[/C][C]42.327302188691[/C][C]2.34269781130903[/C][/ROW]
[ROW][C]22[/C][C]-49.42[/C][C]44.1367681975299[/C][C]-93.5567681975299[/C][/ROW]
[ROW][C]23[/C][C]-25.17[/C][C]-28.125130513027[/C][C]2.95513051302704[/C][/ROW]
[ROW][C]24[/C][C]-47[/C][C]-25.8426303163767[/C][C]-21.1573696836233[/C][/ROW]
[ROW][C]25[/C][C]-34.66[/C][C]-42.1842775805472[/C][C]7.52427758054716[/C][/ROW]
[ROW][C]26[/C][C]-48.04[/C][C]-36.3726340739262[/C][C]-11.6673659260738[/C][/ROW]
[ROW][C]27[/C][C]26.19[/C][C]-45.3843392772191[/C][C]71.5743392772191[/C][/ROW]
[ROW][C]28[/C][C]11.19[/C][C]9.89864831172156[/C][C]1.29135168827844[/C][/ROW]
[ROW][C]29[/C][C]42.86[/C][C]10.8960697350553[/C][C]31.9639302649447[/C][/ROW]
[ROW][C]30[/C][C]6.554[/C][C]35.5845485666458[/C][C]-29.0305485666458[/C][/ROW]
[ROW][C]31[/C][C]67.4[/C][C]13.1617714608175[/C][C]54.2382285391825[/C][/ROW]
[ROW][C]32[/C][C]141.5[/C][C]55.0545970943768[/C][C]86.4454029056232[/C][/ROW]
[ROW][C]33[/C][C]-81.62[/C][C]121.823779796055[/C][C]-203.443779796055[/C][/ROW]
[ROW][C]34[/C][C]61.29[/C][C]-35.3132621534501[/C][C]96.6032621534501[/C][/ROW]
[ROW][C]35[/C][C]-156.5[/C][C]39.3017045596294[/C][C]-195.801704559629[/C][/ROW]
[ROW][C]36[/C][C]-80.29[/C][C]-111.932708672442[/C][C]31.6427086724418[/C][/ROW]
[ROW][C]37[/C][C]-40.95[/C][C]-87.4923367670341[/C][C]46.5423367670341[/C][/ROW]
[ROW][C]38[/C][C]-64.33[/C][C]-51.5437069670915[/C][C]-12.7862930329085[/C][/ROW]
[ROW][C]39[/C][C]-62.1[/C][C]-61.4196553332935[/C][C]-0.680344666706517[/C][/ROW]
[ROW][C]40[/C][C]127.9[/C][C]-61.945143743603[/C][C]189.845143743603[/C][/ROW]
[ROW][C]41[/C][C]179.6[/C][C]84.6885078050144[/C][C]94.9114921949856[/C][/ROW]
[ROW][C]42[/C][C]24.26[/C][C]157.996775796714[/C][C]-133.736775796714[/C][/ROW]
[ROW][C]43[/C][C]99.11[/C][C]54.7004185936254[/C][C]44.4095814063746[/C][/ROW]
[ROW][C]44[/C][C]136.3[/C][C]89.001738906338[/C][C]47.298261093662[/C][/ROW]
[ROW][C]45[/C][C]-10.91[/C][C]125.53423375609[/C][C]-136.44423375609[/C][/ROW]
[ROW][C]46[/C][C]102[/C][C]20.1466750654676[/C][C]81.8533249345324[/C][/ROW]
[ROW][C]47[/C][C]50.25[/C][C]83.3690029579103[/C][C]-33.1190029579103[/C][/ROW]
[ROW][C]48[/C][C]22.42[/C][C]57.7883626338857[/C][C]-35.3683626338857[/C][/ROW]
[ROW][C]49[/C][C]-136.2[/C][C]30.4703493308613[/C][C]-166.670349330861[/C][/ROW]
[ROW][C]50[/C][C]-13.62[/C][C]-98.2634251831436[/C][C]84.6434251831436[/C][/ROW]
[ROW][C]51[/C][C]-36.39[/C][C]-32.8860640906255[/C][C]-3.50393590937451[/C][/ROW]
[ROW][C]52[/C][C]61.61[/C][C]-35.5924536618953[/C][C]97.2024536618953[/C][/ROW]
[ROW][C]53[/C][C]119.3[/C][C]39.4853199322436[/C][C]79.8146800677564[/C][/ROW]
[ROW][C]54[/C][C]40.97[/C][C]101.133027925902[/C][C]-60.1630279259021[/C][/ROW]
[ROW][C]55[/C][C]-9.18[/C][C]54.6639726789004[/C][C]-63.8439726789004[/C][/ROW]
[ROW][C]56[/C][C]-24.04[/C][C]5.35180878219932[/C][C]-29.3918087821993[/C][/ROW]
[ROW][C]57[/C][C]-3.202[/C][C]-17.3500005049178[/C][C]14.1480005049178[/C][/ROW]
[ROW][C]58[/C][C]-53.29[/C][C]-6.42228892252614[/C][C]-46.8677110774739[/C][/ROW]
[ROW][C]59[/C][C]-24.04[/C][C]-42.6222331481058[/C][C]18.5822331481058[/C][/ROW]
[ROW][C]60[/C][C]-187.9[/C][C]-28.2695842116943[/C][C]-159.630415788306[/C][/ROW]
[ROW][C]61[/C][C]-119.5[/C][C]-151.565815570007[/C][C]32.0658155700065[/C][/ROW]
[ROW][C]62[/C][C]-165.9[/C][C]-126.798641997925[/C][C]-39.1013580020749[/C][/ROW]
[ROW][C]63[/C][C]-75.68[/C][C]-156.999967095277[/C][C]81.3199670952766[/C][/ROW]
[ROW][C]64[/C][C]37.32[/C][C]-94.1895971071024[/C][C]131.509597107102[/C][/ROW]
[ROW][C]65[/C][C]326.2[/C][C]7.38651939101419[/C][C]318.813480608986[/C][/ROW]
[ROW][C]66[/C][C]215.9[/C][C]253.633454670838[/C][C]-37.7334546708382[/C][/ROW]
[ROW][C]67[/C][C]10.77[/C][C]224.488678382002[/C][C]-213.718678382002[/C][/ROW]
[ROW][C]68[/C][C]-89.09[/C][C]59.4154529239846[/C][C]-148.505452923985[/C][/ROW]
[ROW][C]69[/C][C]-26.26[/C][C]-55.2880175347319[/C][C]29.0280175347319[/C][/ROW]
[ROW][C]70[/C][C]-34.34[/C][C]-32.8671953614575[/C][C]-1.47280463854246[/C][/ROW]
[ROW][C]71[/C][C]-21.09[/C][C]-34.0047684271078[/C][C]12.9147684271078[/C][/ROW]
[ROW][C]72[/C][C]61.08[/C][C]-24.0295875189819[/C][C]85.1095875189819[/C][/ROW]
[ROW][C]73[/C][C]63.42[/C][C]41.707830639893[/C][C]21.712169360107[/C][/ROW]
[ROW][C]74[/C][C]61.03[/C][C]58.4779971742254[/C][C]2.55200282577459[/C][/ROW]
[ROW][C]75[/C][C]81.26[/C][C]60.4491273581563[/C][C]20.8108726418437[/C][/ROW]
[ROW][C]76[/C][C]8.263[/C][C]76.5231453035829[/C][C]-68.2601453035829[/C][/ROW]
[ROW][C]77[/C][C]-117.1[/C][C]23.7999933507385[/C][C]-140.899993350739[/C][/ROW]
[ROW][C]78[/C][C]-79.37[/C][C]-85.0291298008031[/C][C]5.6591298008031[/C][/ROW]
[ROW][C]79[/C][C]-82.52[/C][C]-80.6580995446904[/C][C]-1.86190045530962[/C][/ROW]
[ROW][C]80[/C][C]-98.38[/C][C]-82.0962046086303[/C][C]-16.2837953913697[/C][/ROW]
[ROW][C]81[/C][C]-57.55[/C][C]-94.6735733641455[/C][C]37.1235733641455[/C][/ROW]
[ROW][C]82[/C][C]-43.63[/C][C]-65.9998606023932[/C][C]22.3698606023932[/C][/ROW]
[ROW][C]83[/C][C]-33.38[/C][C]-48.7217028361217[/C][C]15.3417028361217[/C][/ROW]
[ROW][C]84[/C][C]15.79[/C][C]-36.8719927857423[/C][C]52.6619927857422[/C][/ROW]
[ROW][C]85[/C][C]27.13[/C][C]3.80337108044845[/C][C]23.3266289195515[/C][/ROW]
[ROW][C]86[/C][C]-22.26[/C][C]21.8205228987376[/C][C]-44.0805228987376[/C][/ROW]
[ROW][C]87[/C][C]2.972[/C][C]-12.2266373675473[/C][C]15.1986373675473[/C][/ROW]
[ROW][C]88[/C][C]-68.03[/C][C]-0.487429022156989[/C][C]-67.542570977843[/C][/ROW]
[ROW][C]89[/C][C]-91.35[/C][C]-52.6563369128889[/C][C]-38.6936630871111[/C][/ROW]
[ROW][C]90[/C][C]-19.66[/C][C]-82.542764336694[/C][C]62.882764336694[/C][/ROW]
[ROW][C]91[/C][C]-12.81[/C][C]-33.9730239033346[/C][C]21.1630239033346[/C][/ROW]
[ROW][C]92[/C][C]91.33[/C][C]-17.6270094013903[/C][C]108.95700940139[/C][/ROW]
[ROW][C]93[/C][C]152.2[/C][C]66.5298135506913[/C][C]85.6701864493087[/C][/ROW]
[ROW][C]94[/C][C]129.1[/C][C]132.700230239774[/C][C]-3.60023023977399[/C][/ROW]
[ROW][C]95[/C][C]137.3[/C][C]129.919464316223[/C][C]7.38053568377683[/C][/ROW]
[ROW][C]96[/C][C]17.5[/C][C]135.62008365447[/C][C]-118.12008365447[/C][/ROW]
[ROW][C]97[/C][C]54.84[/C][C]44.3858342765914[/C][C]10.4541657234086[/C][/ROW]
[ROW][C]98[/C][C]30.45[/C][C]52.4604811371301[/C][C]-22.0104811371301[/C][/ROW]
[ROW][C]99[/C][C]-39.32[/C][C]35.4599028877425[/C][C]-74.7799028877425[/C][/ROW]
[ROW][C]100[/C][C]-34.32[/C][C]-22.2990158112256[/C][C]-12.0209841887744[/C][/ROW]
[ROW][C]101[/C][C]-110.6[/C][C]-31.5838506616171[/C][C]-79.0161493383829[/C][/ROW]
[ROW][C]102[/C][C]-108[/C][C]-92.6147850343504[/C][C]-15.3852149656496[/C][/ROW]
[ROW][C]103[/C][C]-84.11[/C][C]-104.498103226152[/C][C]20.3881032261525[/C][/ROW]
[ROW][C]104[/C][C]-133[/C][C]-88.7506262812668[/C][C]-44.2493737187332[/C][/ROW]
[ROW][C]105[/C][C]-71.13[/C][C]-122.928204486166[/C][C]51.7982044861657[/C][/ROW]
[ROW][C]106[/C][C]-73.21[/C][C]-82.9200182471412[/C][C]9.71001824714119[/C][/ROW]
[ROW][C]107[/C][C]-46.96[/C][C]-75.4201401670099[/C][C]28.4601401670099[/C][/ROW]
[ROW][C]108[/C][C]-6.794[/C][C]-53.4379382840357[/C][C]46.6439382840357[/C][/ROW]
[ROW][C]109[/C][C]-5.454[/C][C]-17.4108329374078[/C][C]11.9568329374078[/C][/ROW]
[ROW][C]110[/C][C]11.16[/C][C]-8.17554758854059[/C][C]19.3355475885406[/C][/ROW]
[ROW][C]111[/C][C]-40.61[/C][C]6.75895055921783[/C][C]-47.3689505592178[/C][/ROW]
[ROW][C]112[/C][C]-87.61[/C][C]-29.8281438144199[/C][C]-57.7818561855801[/C][/ROW]
[ROW][C]113[/C][C]-103.9[/C][C]-74.4580163445892[/C][C]-29.4419836554108[/C][/ROW]
[ROW][C]114[/C][C]-103.2[/C][C]-97.1985799802764[/C][C]-6.00142001972355[/C][/ROW]
[ROW][C]115[/C][C]-94.4[/C][C]-101.833990265817[/C][C]7.43399026581709[/C][/ROW]
[ROW][C]116[/C][C]-85.25[/C][C]-96.0920833791925[/C][C]10.8420833791925[/C][/ROW]
[ROW][C]117[/C][C]-53.42[/C][C]-87.7178145149191[/C][C]34.2978145149191[/C][/ROW]
[ROW][C]118[/C][C]-64.5[/C][C]-61.226677142177[/C][C]-3.273322857823[/C][/ROW]
[ROW][C]119[/C][C]-22.25[/C][C]-63.7549445177617[/C][C]41.5049445177617[/C][/ROW]
[ROW][C]120[/C][C]14.92[/C][C]-31.6971238542967[/C][C]46.6171238542967[/C][/ROW]
[ROW][C]121[/C][C]3.256[/C][C]4.30927041345245[/C][C]-1.05327041345245[/C][/ROW]
[ROW][C]122[/C][C]-13.13[/C][C]3.49573953377274[/C][C]-16.6257395337727[/C][/ROW]
[ROW][C]123[/C][C]-39.9[/C][C]-9.3457419466586[/C][C]-30.5542580533414[/C][/ROW]
[ROW][C]124[/C][C]-73.9[/C][C]-32.9454102888264[/C][C]-40.9545897111736[/C][/ROW]
[ROW][C]125[/C][C]-95.22[/C][C]-64.5781448355439[/C][C]-30.6418551644561[/C][/ROW]
[ROW][C]126[/C][C]6.469[/C][C]-88.2454719232269[/C][C]94.7144719232269[/C][/ROW]
[ROW][C]127[/C][C]-91.69[/C][C]-15.0893795484925[/C][C]-76.6006204515075[/C][/ROW]
[ROW][C]128[/C][C]-11.54[/C][C]-74.2545942398097[/C][C]62.7145942398097[/C][/ROW]
[ROW][C]129[/C][C]34.29[/C][C]-25.8147459643489[/C][C]60.1047459643489[/C][/ROW]
[ROW][C]130[/C][C]-60.79[/C][C]20.609293135948[/C][C]-81.399293135948[/C][/ROW]
[ROW][C]131[/C][C]56.46[/C][C]-42.2623471421961[/C][C]98.7223471421961[/C][/ROW]
[ROW][C]132[/C][C]110.6[/C][C]33.9893702599679[/C][C]76.6106297400321[/C][/ROW]
[ROW][C]133[/C][C]76.97[/C][C]93.1623159814122[/C][C]-16.1923159814122[/C][/ROW]
[ROW][C]134[/C][C]97.58[/C][C]80.6556046030575[/C][C]16.9243953969425[/C][/ROW]
[ROW][C]135[/C][C]52.81[/C][C]93.7277635657221[/C][C]-40.9177635657221[/C][/ROW]
[ROW][C]136[/C][C]-11.19[/C][C]62.1234730027354[/C][C]-73.3134730027354[/C][/ROW]
[ROW][C]137[/C][C]-64.51[/C][C]5.49720360170783[/C][C]-70.0072036017078[/C][/ROW]
[ROW][C]138[/C][C]-23.82[/C][C]-48.5753509888377[/C][C]24.7553509888377[/C][/ROW]
[ROW][C]139[/C][C]11.02[/C][C]-29.4546748457417[/C][C]40.4746748457417[/C][/ROW]
[ROW][C]140[/C][C]-16.83[/C][C]1.80738037906602[/C][C]-18.637380379066[/C][/ROW]
[ROW][C]141[/C][C]15[/C][C]-12.5878634833417[/C][C]27.5878634833417[/C][/ROW]
[ROW][C]142[/C][C]15.92[/C][C]8.7206044669925[/C][C]7.1993955330075[/C][/ROW]
[ROW][C]143[/C][C]128.2[/C][C]14.2813137647423[/C][C]113.918686235258[/C][/ROW]
[ROW][C]144[/C][C]130.3[/C][C]102.270464358224[/C][C]28.0295356417761[/C][/ROW]
[ROW][C]145[/C][C]126.7[/C][C]123.920073515025[/C][C]2.77992648497489[/C][/ROW]
[ROW][C]146[/C][C]147.3[/C][C]126.067248646769[/C][C]21.2327513532312[/C][/ROW]
[ROW][C]147[/C][C]81.52[/C][C]142.467119625576[/C][C]-60.9471196255757[/C][/ROW]
[ROW][C]148[/C][C]16.52[/C][C]95.3924432559849[/C][C]-78.8724432559849[/C][/ROW]
[ROW][C]149[/C][C]-19.8[/C][C]34.4725053891208[/C][C]-54.2725053891208[/C][/ROW]
[ROW][C]150[/C][C]44.89[/C][C]-7.44679518907456[/C][C]52.3367951890746[/C][/ROW]
[ROW][C]151[/C][C]118.7[/C][C]32.9773907426486[/C][C]85.7226092573514[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285150&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285150&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
2-13.46-51.0837.62
397.77-22.0228544629556119.792854462956
430.7770.5034189668179-39.7334189668179
5-19.5639.8138990943249-59.3738990943249
634.13-6.0456444220383940.1756444220384
742.9824.985444015380917.9945559846191
837.1238.8841795847475-1.76417958474747
957.9637.521552712140120.4384472878599
1070.8753.307914684350517.5620853156495
11-42.8866.8726161450315-109.752616145031
12-50.71-17.8987219835583-32.8112780164417
1335.63-43.241680000043578.8716800000435
14-6.75317.6776683389373-24.4306683389373
15-48.52-1.19222760714892-47.3277723928511
16-18.52-37.747516558855119.2275165588551
17-45.85-22.8964600206684-22.9535399793316
18-39.16-40.62544332130121.46544332130118
1924.69-39.493556030941364.1835560309413
2051.8310.080897150241741.7491028497583
2144.6742.3273021886912.34269781130903
22-49.4244.1367681975299-93.5567681975299
23-25.17-28.1251305130272.95513051302704
24-47-25.8426303163767-21.1573696836233
25-34.66-42.18427758054727.52427758054716
26-48.04-36.3726340739262-11.6673659260738
2726.19-45.384339277219171.5743392772191
2811.199.898648311721561.29135168827844
2942.8610.896069735055331.9639302649447
306.55435.5845485666458-29.0305485666458
3167.413.161771460817554.2382285391825
32141.555.054597094376886.4454029056232
33-81.62121.823779796055-203.443779796055
3461.29-35.313262153450196.6032621534501
35-156.539.3017045596294-195.801704559629
36-80.29-111.93270867244231.6427086724418
37-40.95-87.492336767034146.5423367670341
38-64.33-51.5437069670915-12.7862930329085
39-62.1-61.4196553332935-0.680344666706517
40127.9-61.945143743603189.845143743603
41179.684.688507805014494.9114921949856
4224.26157.996775796714-133.736775796714
4399.1154.700418593625444.4095814063746
44136.389.00173890633847.298261093662
45-10.91125.53423375609-136.44423375609
4610220.146675065467681.8533249345324
4750.2583.3690029579103-33.1190029579103
4822.4257.7883626338857-35.3683626338857
49-136.230.4703493308613-166.670349330861
50-13.62-98.263425183143684.6434251831436
51-36.39-32.8860640906255-3.50393590937451
5261.61-35.592453661895397.2024536618953
53119.339.485319932243679.8146800677564
5440.97101.133027925902-60.1630279259021
55-9.1854.6639726789004-63.8439726789004
56-24.045.35180878219932-29.3918087821993
57-3.202-17.350000504917814.1480005049178
58-53.29-6.42228892252614-46.8677110774739
59-24.04-42.622233148105818.5822331481058
60-187.9-28.2695842116943-159.630415788306
61-119.5-151.56581557000732.0658155700065
62-165.9-126.798641997925-39.1013580020749
63-75.68-156.99996709527781.3199670952766
6437.32-94.1895971071024131.509597107102
65326.27.38651939101419318.813480608986
66215.9253.633454670838-37.7334546708382
6710.77224.488678382002-213.718678382002
68-89.0959.4154529239846-148.505452923985
69-26.26-55.288017534731929.0280175347319
70-34.34-32.8671953614575-1.47280463854246
71-21.09-34.004768427107812.9147684271078
7261.08-24.029587518981985.1095875189819
7363.4241.70783063989321.712169360107
7461.0358.47799717422542.55200282577459
7581.2660.449127358156320.8108726418437
768.26376.5231453035829-68.2601453035829
77-117.123.7999933507385-140.899993350739
78-79.37-85.02912980080315.6591298008031
79-82.52-80.6580995446904-1.86190045530962
80-98.38-82.0962046086303-16.2837953913697
81-57.55-94.673573364145537.1235733641455
82-43.63-65.999860602393222.3698606023932
83-33.38-48.721702836121715.3417028361217
8415.79-36.871992785742352.6619927857422
8527.133.8033710804484523.3266289195515
86-22.2621.8205228987376-44.0805228987376
872.972-12.226637367547315.1986373675473
88-68.03-0.487429022156989-67.542570977843
89-91.35-52.6563369128889-38.6936630871111
90-19.66-82.54276433669462.882764336694
91-12.81-33.973023903334621.1630239033346
9291.33-17.6270094013903108.95700940139
93152.266.529813550691385.6701864493087
94129.1132.700230239774-3.60023023977399
95137.3129.9194643162237.38053568377683
9617.5135.62008365447-118.12008365447
9754.8444.385834276591410.4541657234086
9830.4552.4604811371301-22.0104811371301
99-39.3235.4599028877425-74.7799028877425
100-34.32-22.2990158112256-12.0209841887744
101-110.6-31.5838506616171-79.0161493383829
102-108-92.6147850343504-15.3852149656496
103-84.11-104.49810322615220.3881032261525
104-133-88.7506262812668-44.2493737187332
105-71.13-122.92820448616651.7982044861657
106-73.21-82.92001824714129.71001824714119
107-46.96-75.420140167009928.4601401670099
108-6.794-53.437938284035746.6439382840357
109-5.454-17.410832937407811.9568329374078
11011.16-8.1755475885405919.3355475885406
111-40.616.75895055921783-47.3689505592178
112-87.61-29.8281438144199-57.7818561855801
113-103.9-74.4580163445892-29.4419836554108
114-103.2-97.1985799802764-6.00142001972355
115-94.4-101.8339902658177.43399026581709
116-85.25-96.092083379192510.8420833791925
117-53.42-87.717814514919134.2978145149191
118-64.5-61.226677142177-3.273322857823
119-22.25-63.754944517761741.5049445177617
12014.92-31.697123854296746.6171238542967
1213.2564.30927041345245-1.05327041345245
122-13.133.49573953377274-16.6257395337727
123-39.9-9.3457419466586-30.5542580533414
124-73.9-32.9454102888264-40.9545897111736
125-95.22-64.5781448355439-30.6418551644561
1266.469-88.245471923226994.7144719232269
127-91.69-15.0893795484925-76.6006204515075
128-11.54-74.254594239809762.7145942398097
12934.29-25.814745964348960.1047459643489
130-60.7920.609293135948-81.399293135948
13156.46-42.262347142196198.7223471421961
132110.633.989370259967976.6106297400321
13376.9793.1623159814122-16.1923159814122
13497.5880.655604603057516.9243953969425
13552.8193.7277635657221-40.9177635657221
136-11.1962.1234730027354-73.3134730027354
137-64.515.49720360170783-70.0072036017078
138-23.82-48.575350988837724.7553509888377
13911.02-29.454674845741740.4746748457417
140-16.831.80738037906602-18.637380379066
14115-12.587863483341727.5878634833417
14215.928.72060446699257.1993955330075
143128.214.2813137647423113.918686235258
144130.3102.27046435822428.0295356417761
145126.7123.9200735150252.77992648497489
146147.3126.06724864676921.2327513532312
14781.52142.467119625576-60.9471196255757
14816.5295.3924432559849-78.8724432559849
149-19.834.4725053891208-54.2725053891208
15044.89-7.4467951890745652.3367951890746
151118.732.977390742648685.7226092573514







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
15299.1882980527509-41.8078871539283240.18448325943
15399.1882980527509-78.9685968675478277.34519297305
15499.1882980527509-109.617435040114307.994031145615
15599.1882980527509-136.31072346805334.687319573552
15699.1882980527509-160.272188538292358.648784643794
15799.1882980527509-182.200577112681380.577173218183
15899.1882980527509-202.539483286113400.916079391615
15999.1882980527509-221.591391136698419.9679872422
16099.1882980527509-239.573512016338437.95010812184
16199.1882980527509-256.648067326185455.024663431687
16299.1882980527509-272.940004943538471.31660104904
16399.1882980527509-288.547989719885486.924585825386

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
152 & 99.1882980527509 & -41.8078871539283 & 240.18448325943 \tabularnewline
153 & 99.1882980527509 & -78.9685968675478 & 277.34519297305 \tabularnewline
154 & 99.1882980527509 & -109.617435040114 & 307.994031145615 \tabularnewline
155 & 99.1882980527509 & -136.31072346805 & 334.687319573552 \tabularnewline
156 & 99.1882980527509 & -160.272188538292 & 358.648784643794 \tabularnewline
157 & 99.1882980527509 & -182.200577112681 & 380.577173218183 \tabularnewline
158 & 99.1882980527509 & -202.539483286113 & 400.916079391615 \tabularnewline
159 & 99.1882980527509 & -221.591391136698 & 419.9679872422 \tabularnewline
160 & 99.1882980527509 & -239.573512016338 & 437.95010812184 \tabularnewline
161 & 99.1882980527509 & -256.648067326185 & 455.024663431687 \tabularnewline
162 & 99.1882980527509 & -272.940004943538 & 471.31660104904 \tabularnewline
163 & 99.1882980527509 & -288.547989719885 & 486.924585825386 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285150&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]152[/C][C]99.1882980527509[/C][C]-41.8078871539283[/C][C]240.18448325943[/C][/ROW]
[ROW][C]153[/C][C]99.1882980527509[/C][C]-78.9685968675478[/C][C]277.34519297305[/C][/ROW]
[ROW][C]154[/C][C]99.1882980527509[/C][C]-109.617435040114[/C][C]307.994031145615[/C][/ROW]
[ROW][C]155[/C][C]99.1882980527509[/C][C]-136.31072346805[/C][C]334.687319573552[/C][/ROW]
[ROW][C]156[/C][C]99.1882980527509[/C][C]-160.272188538292[/C][C]358.648784643794[/C][/ROW]
[ROW][C]157[/C][C]99.1882980527509[/C][C]-182.200577112681[/C][C]380.577173218183[/C][/ROW]
[ROW][C]158[/C][C]99.1882980527509[/C][C]-202.539483286113[/C][C]400.916079391615[/C][/ROW]
[ROW][C]159[/C][C]99.1882980527509[/C][C]-221.591391136698[/C][C]419.9679872422[/C][/ROW]
[ROW][C]160[/C][C]99.1882980527509[/C][C]-239.573512016338[/C][C]437.95010812184[/C][/ROW]
[ROW][C]161[/C][C]99.1882980527509[/C][C]-256.648067326185[/C][C]455.024663431687[/C][/ROW]
[ROW][C]162[/C][C]99.1882980527509[/C][C]-272.940004943538[/C][C]471.31660104904[/C][/ROW]
[ROW][C]163[/C][C]99.1882980527509[/C][C]-288.547989719885[/C][C]486.924585825386[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285150&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285150&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
15299.1882980527509-41.8078871539283240.18448325943
15399.1882980527509-78.9685968675478277.34519297305
15499.1882980527509-109.617435040114307.994031145615
15599.1882980527509-136.31072346805334.687319573552
15699.1882980527509-160.272188538292358.648784643794
15799.1882980527509-182.200577112681380.577173218183
15899.1882980527509-202.539483286113400.916079391615
15999.1882980527509-221.591391136698419.9679872422
16099.1882980527509-239.573512016338437.95010812184
16199.1882980527509-256.648067326185455.024663431687
16299.1882980527509-272.940004943538471.31660104904
16399.1882980527509-288.547989719885486.924585825386



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')