Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_cross.wasp
Title produced by softwareCross Correlation Function
Date of computationMon, 08 Dec 2008 12:55:50 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/08/t1228766179h6zvxizl1r60bir.htm/, Retrieved Fri, 01 Nov 2024 00:12:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=30879, Retrieved Fri, 01 Nov 2024 00:12:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact270
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Spectral Analysis] [Spectral analyse ...] [2007-11-22 13:17:53] [ced1562ed3c62c3bc1f3b66b8f83b537]
- R PD  [Spectral Analysis] [WS 9] [2007-11-26 17:48:35] [74be16979710d4c4e7c6647856088456]
F    D    [Spectral Analysis] [Q4 derde link] [2008-12-01 18:24:30] [077ffec662d24c06be4c491541a44245]
F RMPD      [Cross Correlation Function] [Q7] [2008-12-01 18:36:52] [077ffec662d24c06be4c491541a44245]
-   P           [Cross Correlation Function] [Assesment] [2008-12-08 19:55:50] [5d823194959040fa9b19b8c8302177e6] [Current]
Feedback Forum

Post a new message
Dataseries X:
12300.00
12092.80
12380.80
12196.90
9455.00
13168.00
13427.90
11980.50
11884.80
11691.70
12233.80
14341.40
13130.70
12421.10
14285.80
12864.60
11160.20
14316.20
14388.70
14013.90
13419.00
12769.60
13315.50
15332.90
14243.00
13824.40
14962.90
13202.90
12199.00
15508.90
14199.80
15169.60
14058.00
13786.20
14147.90
16541.70
13587.50
15582.40
15802.80
14130.50
12923.20
15612.20
16033.70
16036.60
14037.80
15330.60
15038.30
17401.80
14992.50
16043.70
16929.60
15921.30
14417.20
15961.00
17851.90
16483.90
14215.50
17429.70
17839.50
17629.20
Dataseries Y:
15370.60
14956.90
15469.70
15101.80
11703.70
16283.60
16726.50
14968.90
14861.00
14583.30
15305.80
17903.90
16379.40
15420.30
17870.50
15912.80
13866.50
17823.20
17872.00
17420.40
16704.40
15991.20
16583.60
19123.50
17838.70
17209.40
18586.50
16258.10
15141.60
19202.10
17746.50
19090.10
18040.30
17515.50
17751.80
21072.40
17170.00
19439.50
19795.40
17574.90
16165.40
19464.60
19932.10
19961.20
17343.40
18924.20
18574.10
21350.60
18594.60
19823.10
20844.40
19640.20
17735.40
19813.60
22238.50
20682.20
17818.60
21872.10
22117.00
21865.90




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30879&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30879&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30879&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'George Udny Yule' @ 72.249.76.132







Cross Correlation Function
ParameterValue
Box-Cox transformation parameter (lambda) of X series1
Degree of non-seasonal differencing (d) of X series0
Degree of seasonal differencing (D) of X series1
Seasonal Period (s)12
Box-Cox transformation parameter (lambda) of Y series1
Degree of non-seasonal differencing (d) of Y series0
Degree of seasonal differencing (D) of Y series1
krho(Y[t],X[t+k])
-13-0.000906469894998299
-120.0624909418088126
-11-0.0442176398244366
-10-0.0424500690877031
-90.108754546545995
-80.0119734286237760
-7-0.109660924509572
-60.234104199319801
-5-0.0393656275810332
-40.035937569728965
-30.216119873015760
-2-0.183263641757785
-1-0.211245876317700
00.955448919704375
1-0.230373300733635
2-0.131077444064135
30.188614412912373
4-0.0200560166519821
5-0.0455128742868736
60.167406602822670
7-0.158306861850105
8-0.0443307937900771
90.0610174425422675
10-0.065085544161141
11-0.142185704171226
120.0243942744543664
13-0.0727214657417663

\begin{tabular}{lllllllll}
\hline
Cross Correlation Function \tabularnewline
Parameter & Value \tabularnewline
Box-Cox transformation parameter (lambda) of X series & 1 \tabularnewline
Degree of non-seasonal differencing (d) of X series & 0 \tabularnewline
Degree of seasonal differencing (D) of X series & 1 \tabularnewline
Seasonal Period (s) & 12 \tabularnewline
Box-Cox transformation parameter (lambda) of Y series & 1 \tabularnewline
Degree of non-seasonal differencing (d) of Y series & 0 \tabularnewline
Degree of seasonal differencing (D) of Y series & 1 \tabularnewline
k & rho(Y[t],X[t+k]) \tabularnewline
-13 & -0.000906469894998299 \tabularnewline
-12 & 0.0624909418088126 \tabularnewline
-11 & -0.0442176398244366 \tabularnewline
-10 & -0.0424500690877031 \tabularnewline
-9 & 0.108754546545995 \tabularnewline
-8 & 0.0119734286237760 \tabularnewline
-7 & -0.109660924509572 \tabularnewline
-6 & 0.234104199319801 \tabularnewline
-5 & -0.0393656275810332 \tabularnewline
-4 & 0.035937569728965 \tabularnewline
-3 & 0.216119873015760 \tabularnewline
-2 & -0.183263641757785 \tabularnewline
-1 & -0.211245876317700 \tabularnewline
0 & 0.955448919704375 \tabularnewline
1 & -0.230373300733635 \tabularnewline
2 & -0.131077444064135 \tabularnewline
3 & 0.188614412912373 \tabularnewline
4 & -0.0200560166519821 \tabularnewline
5 & -0.0455128742868736 \tabularnewline
6 & 0.167406602822670 \tabularnewline
7 & -0.158306861850105 \tabularnewline
8 & -0.0443307937900771 \tabularnewline
9 & 0.0610174425422675 \tabularnewline
10 & -0.065085544161141 \tabularnewline
11 & -0.142185704171226 \tabularnewline
12 & 0.0243942744543664 \tabularnewline
13 & -0.0727214657417663 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30879&T=1

[TABLE]
[ROW][C]Cross Correlation Function[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]Box-Cox transformation parameter (lambda) of X series[/C][C]1[/C][/ROW]
[ROW][C]Degree of non-seasonal differencing (d) of X series[/C][C]0[/C][/ROW]
[ROW][C]Degree of seasonal differencing (D) of X series[/C][C]1[/C][/ROW]
[ROW][C]Seasonal Period (s)[/C][C]12[/C][/ROW]
[ROW][C]Box-Cox transformation parameter (lambda) of Y series[/C][C]1[/C][/ROW]
[ROW][C]Degree of non-seasonal differencing (d) of Y series[/C][C]0[/C][/ROW]
[ROW][C]Degree of seasonal differencing (D) of Y series[/C][C]1[/C][/ROW]
[ROW][C]k[/C][C]rho(Y[t],X[t+k])[/C][/ROW]
[ROW][C]-13[/C][C]-0.000906469894998299[/C][/ROW]
[ROW][C]-12[/C][C]0.0624909418088126[/C][/ROW]
[ROW][C]-11[/C][C]-0.0442176398244366[/C][/ROW]
[ROW][C]-10[/C][C]-0.0424500690877031[/C][/ROW]
[ROW][C]-9[/C][C]0.108754546545995[/C][/ROW]
[ROW][C]-8[/C][C]0.0119734286237760[/C][/ROW]
[ROW][C]-7[/C][C]-0.109660924509572[/C][/ROW]
[ROW][C]-6[/C][C]0.234104199319801[/C][/ROW]
[ROW][C]-5[/C][C]-0.0393656275810332[/C][/ROW]
[ROW][C]-4[/C][C]0.035937569728965[/C][/ROW]
[ROW][C]-3[/C][C]0.216119873015760[/C][/ROW]
[ROW][C]-2[/C][C]-0.183263641757785[/C][/ROW]
[ROW][C]-1[/C][C]-0.211245876317700[/C][/ROW]
[ROW][C]0[/C][C]0.955448919704375[/C][/ROW]
[ROW][C]1[/C][C]-0.230373300733635[/C][/ROW]
[ROW][C]2[/C][C]-0.131077444064135[/C][/ROW]
[ROW][C]3[/C][C]0.188614412912373[/C][/ROW]
[ROW][C]4[/C][C]-0.0200560166519821[/C][/ROW]
[ROW][C]5[/C][C]-0.0455128742868736[/C][/ROW]
[ROW][C]6[/C][C]0.167406602822670[/C][/ROW]
[ROW][C]7[/C][C]-0.158306861850105[/C][/ROW]
[ROW][C]8[/C][C]-0.0443307937900771[/C][/ROW]
[ROW][C]9[/C][C]0.0610174425422675[/C][/ROW]
[ROW][C]10[/C][C]-0.065085544161141[/C][/ROW]
[ROW][C]11[/C][C]-0.142185704171226[/C][/ROW]
[ROW][C]12[/C][C]0.0243942744543664[/C][/ROW]
[ROW][C]13[/C][C]-0.0727214657417663[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30879&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30879&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Cross Correlation Function
ParameterValue
Box-Cox transformation parameter (lambda) of X series1
Degree of non-seasonal differencing (d) of X series0
Degree of seasonal differencing (D) of X series1
Seasonal Period (s)12
Box-Cox transformation parameter (lambda) of Y series1
Degree of non-seasonal differencing (d) of Y series0
Degree of seasonal differencing (D) of Y series1
krho(Y[t],X[t+k])
-13-0.000906469894998299
-120.0624909418088126
-11-0.0442176398244366
-10-0.0424500690877031
-90.108754546545995
-80.0119734286237760
-7-0.109660924509572
-60.234104199319801
-5-0.0393656275810332
-40.035937569728965
-30.216119873015760
-2-0.183263641757785
-1-0.211245876317700
00.955448919704375
1-0.230373300733635
2-0.131077444064135
30.188614412912373
4-0.0200560166519821
5-0.0455128742868736
60.167406602822670
7-0.158306861850105
8-0.0443307937900771
90.0610174425422675
10-0.065085544161141
11-0.142185704171226
120.0243942744543664
13-0.0727214657417663



Parameters (Session):
par1 = 1 ; par2 = 0 ; par3 = 1 ; par4 = 12 ; par5 = 1 ; par6 = 0 ; par7 = 1 ;
Parameters (R input):
par1 = 1 ; par2 = 0 ; par3 = 1 ; par4 = 12 ; par5 = 1 ; par6 = 0 ; par7 = 1 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
par6 <- as.numeric(par6)
par7 <- as.numeric(par7)
if (par1 == 0) {
x <- log(x)
} else {
x <- (x ^ par1 - 1) / par1
}
if (par5 == 0) {
y <- log(y)
} else {
y <- (y ^ par5 - 1) / par5
}
if (par2 > 0) x <- diff(x,lag=1,difference=par2)
if (par6 > 0) y <- diff(y,lag=1,difference=par6)
if (par3 > 0) x <- diff(x,lag=par4,difference=par3)
if (par7 > 0) y <- diff(y,lag=par4,difference=par7)
x
y
bitmap(file='test1.png')
(r <- ccf(x,y,main='Cross Correlation Function',ylab='CCF',xlab='Lag (k)'))
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Cross Correlation Function',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Box-Cox transformation parameter (lambda) of X series',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degree of non-seasonal differencing (d) of X series',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degree of seasonal differencing (D) of X series',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal Period (s)',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Box-Cox transformation parameter (lambda) of Y series',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degree of non-seasonal differencing (d) of Y series',header=TRUE)
a<-table.element(a,par6)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degree of seasonal differencing (D) of Y series',header=TRUE)
a<-table.element(a,par7)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'k',header=TRUE)
a<-table.element(a,'rho(Y[t],X[t+k])',header=TRUE)
a<-table.row.end(a)
mylength <- length(r$acf)
myhalf <- floor((mylength-1)/2)
for (i in 1:mylength) {
a<-table.row.start(a)
a<-table.element(a,i-myhalf-1,header=TRUE)
a<-table.element(a,r$acf[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')