Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_correlation.wasp
Title produced by softwarePearson Correlation
Date of computationFri, 15 Dec 2017 13:52:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/15/t1513342394pmoztahqi509v99.htm/, Retrieved Thu, 31 Oct 2024 23:04:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=309672, Retrieved Thu, 31 Oct 2024 23:04:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Pearson Correlation] [] [2017-12-15 12:52:19] [30e08ccf92bdf95f8dcbf6f321363364] [Current]
Feedback Forum

Post a new message
Dataseries X:
28,4
33,6
21,4
21,0
31,7
30,8
28,4
38,9
28,0
32,7
31,5
20,1
15,3
37,3
22,3
31,5
41,1
21,0
18,9
35,7
32,0
22,8
18,4
16,4
24,0
18,4
36,0
33,0
40,1
31,7
39,1
44,2
Dataseries Y:
31,8
40,1
33,6
23,4
42,6
24,4
47,5
46,5
30,1
37,5
36,5
25,4
19,8
43,4
40,1
45,3
41,1
27,3
20,2
35,0
29,1
32,6
26,9
17,9
36,7
23,9
49,6
46,7
43,1
46,5
47,5
35,3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309672&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309672&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309672&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean28.92812535.23125
Biased Variance62.55202148437585.3915234375
Biased Standard Deviation7.90898359363429.24075340205007
Covariance54.9465120967742
Correlation0.728322605079658
Determination0.530453817070019
T-Test5.82163884283595
p-value (2 sided)2.29768741144872e-06
p-value (1 sided)1.14884370572436e-06
95% CI of Correlation[0.508859445053108, 0.858891124502346]
Degrees of Freedom30
Number of Observations32

\begin{tabular}{lllllllll}
\hline
Pearson Product Moment Correlation - Ungrouped Data \tabularnewline
Statistic & Variable X & Variable Y \tabularnewline
Mean & 28.928125 & 35.23125 \tabularnewline
Biased Variance & 62.552021484375 & 85.3915234375 \tabularnewline
Biased Standard Deviation & 7.9089835936342 & 9.24075340205007 \tabularnewline
Covariance & 54.9465120967742 \tabularnewline
Correlation & 0.728322605079658 \tabularnewline
Determination & 0.530453817070019 \tabularnewline
T-Test & 5.82163884283595 \tabularnewline
p-value (2 sided) & 2.29768741144872e-06 \tabularnewline
p-value (1 sided) & 1.14884370572436e-06 \tabularnewline
95% CI of Correlation & [0.508859445053108, 0.858891124502346] \tabularnewline
Degrees of Freedom & 30 \tabularnewline
Number of Observations & 32 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309672&T=1

[TABLE]
[ROW][C]Pearson Product Moment Correlation - Ungrouped Data[/C][/ROW]
[ROW][C]Statistic[/C][C]Variable X[/C][C]Variable Y[/C][/ROW]
[ROW][C]Mean[/C][C]28.928125[/C][C]35.23125[/C][/ROW]
[ROW][C]Biased Variance[/C][C]62.552021484375[/C][C]85.3915234375[/C][/ROW]
[ROW][C]Biased Standard Deviation[/C][C]7.9089835936342[/C][C]9.24075340205007[/C][/ROW]
[ROW][C]Covariance[/C][C]54.9465120967742[/C][/ROW]
[ROW][C]Correlation[/C][C]0.728322605079658[/C][/ROW]
[ROW][C]Determination[/C][C]0.530453817070019[/C][/ROW]
[ROW][C]T-Test[/C][C]5.82163884283595[/C][/ROW]
[ROW][C]p-value (2 sided)[/C][C]2.29768741144872e-06[/C][/ROW]
[ROW][C]p-value (1 sided)[/C][C]1.14884370572436e-06[/C][/ROW]
[ROW][C]95% CI of Correlation[/C][C][0.508859445053108, 0.858891124502346][/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]30[/C][/ROW]
[ROW][C]Number of Observations[/C][C]32[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309672&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309672&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean28.92812535.23125
Biased Variance62.55202148437585.3915234375
Biased Standard Deviation7.90898359363429.24075340205007
Covariance54.9465120967742
Correlation0.728322605079658
Determination0.530453817070019
T-Test5.82163884283595
p-value (2 sided)2.29768741144872e-06
p-value (1 sided)1.14884370572436e-06
95% CI of Correlation[0.508859445053108, 0.858891124502346]
Degrees of Freedom30
Number of Observations32







Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.6065, p-value = 0.4479
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 2.0154, p-value = 0.3651
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.53718, p-value = 0.1559
> ad.y
	Anderson-Darling normality test
data:  y
A = 0.46077, p-value = 0.2435

\begin{tabular}{lllllllll}
\hline
Normality Tests \tabularnewline
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.6065, p-value = 0.4479
alternative hypothesis: greater
\tabularnewline
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 2.0154, p-value = 0.3651
alternative hypothesis: greater
\tabularnewline
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.53718, p-value = 0.1559
\tabularnewline
> ad.y
	Anderson-Darling normality test
data:  y
A = 0.46077, p-value = 0.2435
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=309672&T=2

[TABLE]
[ROW][C]Normality Tests[/C][/ROW]
[ROW][C]
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.6065, p-value = 0.4479
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 2.0154, p-value = 0.3651
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.53718, p-value = 0.1559
[/C][/ROW] [ROW][C]
> ad.y
	Anderson-Darling normality test
data:  y
A = 0.46077, p-value = 0.2435
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309672&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309672&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.6065, p-value = 0.4479
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 2.0154, p-value = 0.3651
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.53718, p-value = 0.1559
> ad.y
	Anderson-Darling normality test
data:  y
A = 0.46077, p-value = 0.2435



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
library(psychometric)
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
bitmap(file='test1.png')
histx <- hist(x, plot=FALSE)
histy <- hist(y, plot=FALSE)
maxcounts <- max(c(histx$counts, histx$counts))
xrange <- c(min(x),max(x))
yrange <- c(min(y),max(y))
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(4,4,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
par(mar=c(0,4,1,1))
barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
par(mar=c(4,0,1,1))
barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
dev.off()
lx = length(x)
makebiased = (lx-1)/lx
varx = var(x)*makebiased
vary = var(y)*makebiased
corxy <- cor.test(x,y,method='pearson', na.rm = T)
cxy <- as.matrix(corxy$estimate)[1,1]
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistic',1,TRUE)
a<-table.element(a,'Variable X',1,TRUE)
a<-table.element(a,'Variable Y',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.element(a,mean(y))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Variance',header=TRUE)
a<-table.element(a,varx)
a<-table.element(a,vary)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Standard Deviation',header=TRUE)
a<-table.element(a,sqrt(varx))
a<-table.element(a,sqrt(vary))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Covariance',header=TRUE)
a<-table.element(a,cov(x,y),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',header=TRUE)
a<-table.element(a,cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Determination',header=TRUE)
a<-table.element(a,cxy*cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-Test',header=TRUE)
a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (2 sided)',header=TRUE)
a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (1 sided)',header=TRUE)
a<-table.element(a,p2/2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'95% CI of Correlation',header=TRUE)
a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degrees of Freedom',header=TRUE)
a<-table.element(a,lx-2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of Observations',header=TRUE)
a<-table.element(a,lx,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
library(moments)
library(nortest)
jarque.x <- jarque.test(x)
jarque.y <- jarque.test(y)
if(lx>7) {
ad.x <- ad.test(x)
ad.y <- ad.test(y)
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Normality Tests',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.y'),'
',sep=''))
a<-table.row.end(a)
if(lx>7) {
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.y'),'
',sep=''))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
library(car)
bitmap(file='test2.png')
qqPlot(x,main='QQplot of variable x')
dev.off()
bitmap(file='test3.png')
qqPlot(y,main='QQplot of variable y')
dev.off()