Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationMon, 15 Dec 2008 02:51:35 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/15/t1229334822rttpen6z7uvyrgg.htm/, Retrieved Fri, 01 Nov 2024 00:00:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=33633, Retrieved Fri, 01 Nov 2024 00:00:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact231
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMPD  [Standard Deviation-Mean Plot] [SD mean plot step 1] [2008-12-08 19:47:44] [7d3039e6253bb5fb3b26df1537d500b4]
F    D    [Standard Deviation-Mean Plot] [SD mean plot step 1] [2008-12-08 19:54:49] [7d3039e6253bb5fb3b26df1537d500b4]
- RM D      [(Partial) Autocorrelation Function] [ACF Step 2] [2008-12-08 20:08:11] [7d3039e6253bb5fb3b26df1537d500b4]
-             [(Partial) Autocorrelation Function] [ACF Step 3] [2008-12-08 20:23:11] [7d3039e6253bb5fb3b26df1537d500b4]
- RMP             [ARIMA Backward Selection] [Arima backward se...] [2008-12-15 09:51:35] [35348cd8592af0baf5f138bd59921307] [Current]
Feedback Forum

Post a new message
Dataseries X:
7.8
7.6
7.5
7.6
7.5
7.3
7.6
7.5
7.6
7.9
7.9
8.1
8.2
8.0
7.5
6.8
6.5
6.6
7.6
8.0
8.0
7.7
7.5
7.6
7.7
7.9
7.8
7.5
7.5
7.1
7.5
7.5
7.6
7.7
7.7
7.9
8.1
8.2
8.2
8.1
7.9
7.3
6.9
6.6
6.7
6.9
7.0
7.1
7.2
7.1
6.9
7.0
6.8
6.4
6.7
6.7
6.4
6.3
6.2
6.5
6.8
6.8
6.5
6.3
5.9
5.9
6.4
6.4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33633&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33633&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33633&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'George Udny Yule' @ 72.249.76.132







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ma1sar1sar2sma1
Estimates ( 1 )1.152-0.6407-0.69491.2393-0.2399-0.9745
(p-val)(0 )(0 )(0 )(0 )(0.1822 )(0 )
Estimates ( 2 )1.1762-0.6185-0.72660.99020-0.8768
(p-val)(0 )(0 )(0 )(0 )(NA )(0 )
Estimates ( 3 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 4 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 1.152 & -0.6407 & -0.6949 & 1.2393 & -0.2399 & -0.9745 \tabularnewline
(p-val) & (0 ) & (0 ) & (0 ) & (0 ) & (0.1822 ) & (0 ) \tabularnewline
Estimates ( 2 ) & 1.1762 & -0.6185 & -0.7266 & 0.9902 & 0 & -0.8768 \tabularnewline
(p-val) & (0 ) & (0 ) & (0 ) & (0 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 3 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33633&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]1.152[/C][C]-0.6407[/C][C]-0.6949[/C][C]1.2393[/C][C]-0.2399[/C][C]-0.9745[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0 )[/C][C](0 )[/C][C](0 )[/C][C](0.1822 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]1.1762[/C][C]-0.6185[/C][C]-0.7266[/C][C]0.9902[/C][C]0[/C][C]-0.8768[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0 )[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33633&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33633&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ma1sar1sar2sma1
Estimates ( 1 )1.152-0.6407-0.69491.2393-0.2399-0.9745
(p-val)(0 )(0 )(0 )(0 )(0.1822 )(0 )
Estimates ( 2 )1.1762-0.6185-0.72660.99020-0.8768
(p-val)(0 )(0 )(0 )(0 )(NA )(0 )
Estimates ( 3 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 4 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
0.0077999893303456
-0.120922381618821
-0.00942464495121509
0.059496766052383
-0.164269835478541
-0.120509336472962
0.272793624399002
-0.248134832077263
0.126496993030342
0.167405931717428
-0.106046138321868
0.230474311732131
0.089848942915782
-0.0573412418297722
-0.275883872116953
-0.447382585158702
0.00286029378999322
0.00870598202732535
0.398884014271737
-0.065127750778068
-0.0877789185695248
-0.160199188885991
0.166709729806758
0.0570865871073756
-0.0169656739391587
0.216924443828730
-0.0213450291564729
0.0207675594918890
0.251350161213149
-0.367972902591108
0.171131151859267
-0.163136460829267
0.0647664800557411
0.0265290257787051
-0.0312432393392872
0.103598410202042
0.135159176532665
0.0677613560815346
0.176009406100501
0.127146028237872
-0.075953471281388
-0.230027114383313
-0.490978378027652
-0.111099881762494
-0.122819443299050
-0.193781708090050
-0.146323257144323
-0.165135911041336
-0.0119407069445926
-0.136519356582720
-0.0781443702662538
0.231819706096308
-0.23744176740273
-0.0440351464686686
0.286262740929492
-0.0721690376316776
-0.333076841047578
0.0296853706938557
-0.0908750596563328
0.142101514255039
0.0196672861258231
-0.0658267735923616
-0.107961108610641
-0.0069195296435436
-0.195966558672547
0.313208622769671
0.0182521827198081
-0.115397340873822

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
0.0077999893303456 \tabularnewline
-0.120922381618821 \tabularnewline
-0.00942464495121509 \tabularnewline
0.059496766052383 \tabularnewline
-0.164269835478541 \tabularnewline
-0.120509336472962 \tabularnewline
0.272793624399002 \tabularnewline
-0.248134832077263 \tabularnewline
0.126496993030342 \tabularnewline
0.167405931717428 \tabularnewline
-0.106046138321868 \tabularnewline
0.230474311732131 \tabularnewline
0.089848942915782 \tabularnewline
-0.0573412418297722 \tabularnewline
-0.275883872116953 \tabularnewline
-0.447382585158702 \tabularnewline
0.00286029378999322 \tabularnewline
0.00870598202732535 \tabularnewline
0.398884014271737 \tabularnewline
-0.065127750778068 \tabularnewline
-0.0877789185695248 \tabularnewline
-0.160199188885991 \tabularnewline
0.166709729806758 \tabularnewline
0.0570865871073756 \tabularnewline
-0.0169656739391587 \tabularnewline
0.216924443828730 \tabularnewline
-0.0213450291564729 \tabularnewline
0.0207675594918890 \tabularnewline
0.251350161213149 \tabularnewline
-0.367972902591108 \tabularnewline
0.171131151859267 \tabularnewline
-0.163136460829267 \tabularnewline
0.0647664800557411 \tabularnewline
0.0265290257787051 \tabularnewline
-0.0312432393392872 \tabularnewline
0.103598410202042 \tabularnewline
0.135159176532665 \tabularnewline
0.0677613560815346 \tabularnewline
0.176009406100501 \tabularnewline
0.127146028237872 \tabularnewline
-0.075953471281388 \tabularnewline
-0.230027114383313 \tabularnewline
-0.490978378027652 \tabularnewline
-0.111099881762494 \tabularnewline
-0.122819443299050 \tabularnewline
-0.193781708090050 \tabularnewline
-0.146323257144323 \tabularnewline
-0.165135911041336 \tabularnewline
-0.0119407069445926 \tabularnewline
-0.136519356582720 \tabularnewline
-0.0781443702662538 \tabularnewline
0.231819706096308 \tabularnewline
-0.23744176740273 \tabularnewline
-0.0440351464686686 \tabularnewline
0.286262740929492 \tabularnewline
-0.0721690376316776 \tabularnewline
-0.333076841047578 \tabularnewline
0.0296853706938557 \tabularnewline
-0.0908750596563328 \tabularnewline
0.142101514255039 \tabularnewline
0.0196672861258231 \tabularnewline
-0.0658267735923616 \tabularnewline
-0.107961108610641 \tabularnewline
-0.0069195296435436 \tabularnewline
-0.195966558672547 \tabularnewline
0.313208622769671 \tabularnewline
0.0182521827198081 \tabularnewline
-0.115397340873822 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33633&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]0.0077999893303456[/C][/ROW]
[ROW][C]-0.120922381618821[/C][/ROW]
[ROW][C]-0.00942464495121509[/C][/ROW]
[ROW][C]0.059496766052383[/C][/ROW]
[ROW][C]-0.164269835478541[/C][/ROW]
[ROW][C]-0.120509336472962[/C][/ROW]
[ROW][C]0.272793624399002[/C][/ROW]
[ROW][C]-0.248134832077263[/C][/ROW]
[ROW][C]0.126496993030342[/C][/ROW]
[ROW][C]0.167405931717428[/C][/ROW]
[ROW][C]-0.106046138321868[/C][/ROW]
[ROW][C]0.230474311732131[/C][/ROW]
[ROW][C]0.089848942915782[/C][/ROW]
[ROW][C]-0.0573412418297722[/C][/ROW]
[ROW][C]-0.275883872116953[/C][/ROW]
[ROW][C]-0.447382585158702[/C][/ROW]
[ROW][C]0.00286029378999322[/C][/ROW]
[ROW][C]0.00870598202732535[/C][/ROW]
[ROW][C]0.398884014271737[/C][/ROW]
[ROW][C]-0.065127750778068[/C][/ROW]
[ROW][C]-0.0877789185695248[/C][/ROW]
[ROW][C]-0.160199188885991[/C][/ROW]
[ROW][C]0.166709729806758[/C][/ROW]
[ROW][C]0.0570865871073756[/C][/ROW]
[ROW][C]-0.0169656739391587[/C][/ROW]
[ROW][C]0.216924443828730[/C][/ROW]
[ROW][C]-0.0213450291564729[/C][/ROW]
[ROW][C]0.0207675594918890[/C][/ROW]
[ROW][C]0.251350161213149[/C][/ROW]
[ROW][C]-0.367972902591108[/C][/ROW]
[ROW][C]0.171131151859267[/C][/ROW]
[ROW][C]-0.163136460829267[/C][/ROW]
[ROW][C]0.0647664800557411[/C][/ROW]
[ROW][C]0.0265290257787051[/C][/ROW]
[ROW][C]-0.0312432393392872[/C][/ROW]
[ROW][C]0.103598410202042[/C][/ROW]
[ROW][C]0.135159176532665[/C][/ROW]
[ROW][C]0.0677613560815346[/C][/ROW]
[ROW][C]0.176009406100501[/C][/ROW]
[ROW][C]0.127146028237872[/C][/ROW]
[ROW][C]-0.075953471281388[/C][/ROW]
[ROW][C]-0.230027114383313[/C][/ROW]
[ROW][C]-0.490978378027652[/C][/ROW]
[ROW][C]-0.111099881762494[/C][/ROW]
[ROW][C]-0.122819443299050[/C][/ROW]
[ROW][C]-0.193781708090050[/C][/ROW]
[ROW][C]-0.146323257144323[/C][/ROW]
[ROW][C]-0.165135911041336[/C][/ROW]
[ROW][C]-0.0119407069445926[/C][/ROW]
[ROW][C]-0.136519356582720[/C][/ROW]
[ROW][C]-0.0781443702662538[/C][/ROW]
[ROW][C]0.231819706096308[/C][/ROW]
[ROW][C]-0.23744176740273[/C][/ROW]
[ROW][C]-0.0440351464686686[/C][/ROW]
[ROW][C]0.286262740929492[/C][/ROW]
[ROW][C]-0.0721690376316776[/C][/ROW]
[ROW][C]-0.333076841047578[/C][/ROW]
[ROW][C]0.0296853706938557[/C][/ROW]
[ROW][C]-0.0908750596563328[/C][/ROW]
[ROW][C]0.142101514255039[/C][/ROW]
[ROW][C]0.0196672861258231[/C][/ROW]
[ROW][C]-0.0658267735923616[/C][/ROW]
[ROW][C]-0.107961108610641[/C][/ROW]
[ROW][C]-0.0069195296435436[/C][/ROW]
[ROW][C]-0.195966558672547[/C][/ROW]
[ROW][C]0.313208622769671[/C][/ROW]
[ROW][C]0.0182521827198081[/C][/ROW]
[ROW][C]-0.115397340873822[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33633&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33633&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
0.0077999893303456
-0.120922381618821
-0.00942464495121509
0.059496766052383
-0.164269835478541
-0.120509336472962
0.272793624399002
-0.248134832077263
0.126496993030342
0.167405931717428
-0.106046138321868
0.230474311732131
0.089848942915782
-0.0573412418297722
-0.275883872116953
-0.447382585158702
0.00286029378999322
0.00870598202732535
0.398884014271737
-0.065127750778068
-0.0877789185695248
-0.160199188885991
0.166709729806758
0.0570865871073756
-0.0169656739391587
0.216924443828730
-0.0213450291564729
0.0207675594918890
0.251350161213149
-0.367972902591108
0.171131151859267
-0.163136460829267
0.0647664800557411
0.0265290257787051
-0.0312432393392872
0.103598410202042
0.135159176532665
0.0677613560815346
0.176009406100501
0.127146028237872
-0.075953471281388
-0.230027114383313
-0.490978378027652
-0.111099881762494
-0.122819443299050
-0.193781708090050
-0.146323257144323
-0.165135911041336
-0.0119407069445926
-0.136519356582720
-0.0781443702662538
0.231819706096308
-0.23744176740273
-0.0440351464686686
0.286262740929492
-0.0721690376316776
-0.333076841047578
0.0296853706938557
-0.0908750596563328
0.142101514255039
0.0196672861258231
-0.0658267735923616
-0.107961108610641
-0.0069195296435436
-0.195966558672547
0.313208622769671
0.0182521827198081
-0.115397340873822



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')