Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot1.wasp
Title produced by softwareBootstrap Plot - Central Tendency
Date of computationWed, 13 May 2009 12:11:08 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/May/13/t12422383025qbi2z7ls907agw.htm/, Retrieved Thu, 31 Oct 2024 23:08:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=39890, Retrieved Thu, 31 Oct 2024 23:08:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact179
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bootstrap Plot - Central Tendency] [opgave 7-oefeing ...] [2008-12-16 18:17:44] [ca4e42c3236d1c0cb4de680f9dd82ba0]
-   P   [Bootstrap Plot - Central Tendency] [opgave 7-oefening...] [2008-12-17 14:34:00] [ca4e42c3236d1c0cb4de680f9dd82ba0]
-           [Bootstrap Plot - Central Tendency] [Kristof Nollekens...] [2009-05-13 18:11:08] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
20
25
15
15
25
25
25
21
30
25
20
40
13
30
25
20
25
20
25
20
20
15
15
12
20
5
20
15
25
22
20
22
25
20
20
35
30
25
20
20
20
25
25
15
20
35
25
25
30
23
10
22
25
25
22
30
20
25
25
22
25
25
25
22
25
12
18
20
20
22
30
25
22
20
50
30
25
20
30
22
25
30
22
25
22
22
25
25
25
20
22
15
20
30
20
25
30
35
22
12
30
15
10
30
9
25
20
20
35
25
35
30
12
25
15
25
25
20
20
6
15
40
20
40
25
25
20
15
15
22
24
22
20
25
25
25
35
40
20
22
22
20
25
25
18
25
20
25
30
20
22
35
22
25
25
25
25
22
23
35
15
25
18
22
25
25
28
30
20
25
25
30
22
30
10
10
25
20
22
25
25
15
22
25
25
28
22
30
25
20
25
25
20
30
20
30
50
19
20
28
20
25
35
25
25
15
16
20
20
25
30
20
25
25
25
20
20
25
25
30
22
20
25
25
18
18
20
25
25
30
25
20
25
20
20
20
22
18
22
20
15
25
25
20
25
15
22
25
25
15
12
25
30
22
15
22
25
12
18
30
25
25
40
24
25
15
25
20
25
25
25
20
30
20
25
30
22
25
25
25
50
19
50
25
35
20
20
20
20
20
25
25
25
20
20
20
20
25
18
25
22
22
30
30
8
20
25
30
50
22
20
10
25
25
25
25
18
25
20
25
30
18
20
25
22
22
20
20
25
20
20
20
20
25
20
10
20
25
30
25
50
30
30
50
15
25
25
22
20
22
30
25
18
22
22
30
40
25
20
10
20
9
15
20
15
20
30
12
15
12
20
15
12
25
20
25
25
25
30
20
25
15
15
22
10
15
10
20
25
20
20
38
20
20
20
40
25
25
30
25
10
20
25
12
15
25
20
22
22
20
25
25
25
15
40
20
20
16
25
15
20
25
20
30
50
20
25
20
30
30
25
25
12
25
25
25
20
20
20
15
20
25
15
25
50
30
20
20
25
12
15
20
20
35
22
15
18
30
22
12
12
20
20
15
25
15
20
20
25
18
30
20
25
25
25
20
20
25
20
22
15
15
22
20
10
25
20
20
15
12
20
5
20
15
15
25
25
25
15
25
22
25
20
18
22
25
35
25
25
25
35
30
22
30
50
15
25
24
20
25
25
25
12
15
22
25
25
25
25
15
20
20
15
35
30
20
22
65
20
25
22
20
25
25
20
25
15
20
12
15
10
25
15
30
35
25
25
25
25
25
40
40
25
25
20
25
25
22
25
30
25
25
30
25
25
30
25
25
20
22
22
20
25
22
25
22
40
25
25
25
22
20
35
20
35
25
22
25
25
25
25
25
40
25
30
25
20
25
25
30
22
22
20
15
15
25
25
20
20
15
25
15
20
22
25
15
15
18
5
15
25
18
40
25
25
20
30
20
25
25
25
22
22
25
25
30
25
25
25
25
20
20
25
25
25
25
20
30
25
22
30
20
20
30
25
25
30
20
25
25
24
25
30
18
15
22
22
25
22
22
25
15
20
22
18
35
20
20
20
25
25
30
15
25
22
26
25
20
25
25
25
22
25
25
20
22
30
15
30
25
20
25
25
35
22
20
25
20
20
18
20
22
25
10
20
25
20
20
30
25
20
15
20
25
10
20
25
22
22
25
25
15
25
20
10
25
16
25
35
25
15
25
25
30
25
10
22
20
25
20
20
25
22
18
30
19
25
20
25
20
25
20
22
12
30
12
22
25
25
25
25
30
30
10
22
22
25
20
22
20
25
20
15
25
20
25
20
30
15
40
25
20
22
22
30
20
40
20
25
20
25
20
50
50
25
25
40
30
22
30
20
25
25
30
25
25
20
18
18
28
25
22
15
40
40
12
12
18
12
25
26
18
25
22
15
25
15
15
15
25
15
12
22
20
20
25
20
12
9
15
12
15
25
20
20
15
15
30
21
25
22
22
50
15
25
15
25
22
18
50
20
50
20
20
30
25
20
22
25
50
40
25
25
25
25
30
40
25
30
20




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=39890&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=39890&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=39890&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Estimation Results of Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean23.016666666666723.165555555555623.31111111111110.2189926718170550.294444444444444
median2222251.316476090357293
midrange27.535353.717404400571317.5

\begin{tabular}{lllllllll}
\hline
Estimation Results of Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 23.0166666666667 & 23.1655555555556 & 23.3111111111111 & 0.218992671817055 & 0.294444444444444 \tabularnewline
median & 22 & 22 & 25 & 1.31647609035729 & 3 \tabularnewline
midrange & 27.5 & 35 & 35 & 3.71740440057131 & 7.5 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=39890&T=1

[TABLE]
[ROW][C]Estimation Results of Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]23.0166666666667[/C][C]23.1655555555556[/C][C]23.3111111111111[/C][C]0.218992671817055[/C][C]0.294444444444444[/C][/ROW]
[ROW][C]median[/C][C]22[/C][C]22[/C][C]25[/C][C]1.31647609035729[/C][C]3[/C][/ROW]
[ROW][C]midrange[/C][C]27.5[/C][C]35[/C][C]35[/C][C]3.71740440057131[/C][C]7.5[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=39890&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=39890&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean23.016666666666723.165555555555623.31111111111110.2189926718170550.294444444444444
median2222251.316476090357293
midrange27.535353.717404400571317.5



Parameters (Session):
par1 = 200 ;
Parameters (R input):
par1 = 200 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
library(lattice)
library(boot)
boot.stat <- function(s,i)
{
s.mean <- mean(s[i])
s.median <- median(s[i])
s.midrange <- (max(s[i]) + min(s[i])) / 2
c(s.mean, s.median, s.midrange)
}
(r <- boot(x,boot.stat, R=par1, stype='i'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3]))
colnames(z) <- list('mean','median','midrange')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Bootstrap',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[1])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,1])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[2])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,2])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[3])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,3])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')