Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSat, 15 Dec 2007 04:59:18 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2007/Dec/15/t1197719035c5biwzl8xtwbca7.htm/, Retrieved Thu, 31 Oct 2024 23:59:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=4024, Retrieved Thu, 31 Oct 2024 23:59:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact293
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [autocorrelatie la...] [2007-12-15 11:59:18] [c5caf8a1e3802eaf41184f28719e74c9] [Current]
-   PD    [(Partial) Autocorrelation Function] [aanpassing lambda...] [2007-12-20 17:12:17] [74be16979710d4c4e7c6647856088456]
-   PD    [(Partial) Autocorrelation Function] [ACF TIJDREEKS 1 V...] [2007-12-22 22:39:52] [74be16979710d4c4e7c6647856088456]
- RMPD    [ARIMA Backward Selection] [Backward selectio...] [2007-12-22 22:51:36] [ac43070f252ecb0e957ff7a950840d09]
Feedback Forum

Post a new message
Dataseries X:
36845
35338
35022
34777
26887
23970
22780
17351
21382
24561
17409
11514
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698
31956
29506
34506
27165
26736
23691
18157
17328
18205
20995
17382
9367




Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of compuational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=4024&T=0

[TABLE]
[ROW][C]Summary of compuational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=4024&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=4024&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Autocorrelation Function
Time lag kACF(k)T-STATP-value
016.92820
10.0432570.29970.382854
20.1168870.80980.211021
30.0311320.21570.415071
4-0.004785-0.03320.513154
5-0.087079-0.60330.725427
60.0115010.07970.46841
7-0.192122-1.33110.905272
8-0.003903-0.0270.510729
90.0249590.17290.43172
10-0.186042-1.28890.898201
11-0.067132-0.46510.67802
120.075490.5230.301686
13-0.108606-0.75240.772272
140.0152710.10580.458092
15-0.010462-0.07250.52874
16-0.050295-0.34850.635488

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
0 & 1 & 6.9282 & 0 \tabularnewline
1 & 0.043257 & 0.2997 & 0.382854 \tabularnewline
2 & 0.116887 & 0.8098 & 0.211021 \tabularnewline
3 & 0.031132 & 0.2157 & 0.415071 \tabularnewline
4 & -0.004785 & -0.0332 & 0.513154 \tabularnewline
5 & -0.087079 & -0.6033 & 0.725427 \tabularnewline
6 & 0.011501 & 0.0797 & 0.46841 \tabularnewline
7 & -0.192122 & -1.3311 & 0.905272 \tabularnewline
8 & -0.003903 & -0.027 & 0.510729 \tabularnewline
9 & 0.024959 & 0.1729 & 0.43172 \tabularnewline
10 & -0.186042 & -1.2889 & 0.898201 \tabularnewline
11 & -0.067132 & -0.4651 & 0.67802 \tabularnewline
12 & 0.07549 & 0.523 & 0.301686 \tabularnewline
13 & -0.108606 & -0.7524 & 0.772272 \tabularnewline
14 & 0.015271 & 0.1058 & 0.458092 \tabularnewline
15 & -0.010462 & -0.0725 & 0.52874 \tabularnewline
16 & -0.050295 & -0.3485 & 0.635488 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=4024&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]0[/C][C]1[/C][C]6.9282[/C][C]0[/C][/ROW]
[ROW][C]1[/C][C]0.043257[/C][C]0.2997[/C][C]0.382854[/C][/ROW]
[ROW][C]2[/C][C]0.116887[/C][C]0.8098[/C][C]0.211021[/C][/ROW]
[ROW][C]3[/C][C]0.031132[/C][C]0.2157[/C][C]0.415071[/C][/ROW]
[ROW][C]4[/C][C]-0.004785[/C][C]-0.0332[/C][C]0.513154[/C][/ROW]
[ROW][C]5[/C][C]-0.087079[/C][C]-0.6033[/C][C]0.725427[/C][/ROW]
[ROW][C]6[/C][C]0.011501[/C][C]0.0797[/C][C]0.46841[/C][/ROW]
[ROW][C]7[/C][C]-0.192122[/C][C]-1.3311[/C][C]0.905272[/C][/ROW]
[ROW][C]8[/C][C]-0.003903[/C][C]-0.027[/C][C]0.510729[/C][/ROW]
[ROW][C]9[/C][C]0.024959[/C][C]0.1729[/C][C]0.43172[/C][/ROW]
[ROW][C]10[/C][C]-0.186042[/C][C]-1.2889[/C][C]0.898201[/C][/ROW]
[ROW][C]11[/C][C]-0.067132[/C][C]-0.4651[/C][C]0.67802[/C][/ROW]
[ROW][C]12[/C][C]0.07549[/C][C]0.523[/C][C]0.301686[/C][/ROW]
[ROW][C]13[/C][C]-0.108606[/C][C]-0.7524[/C][C]0.772272[/C][/ROW]
[ROW][C]14[/C][C]0.015271[/C][C]0.1058[/C][C]0.458092[/C][/ROW]
[ROW][C]15[/C][C]-0.010462[/C][C]-0.0725[/C][C]0.52874[/C][/ROW]
[ROW][C]16[/C][C]-0.050295[/C][C]-0.3485[/C][C]0.635488[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=4024&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=4024&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
016.92820
10.0432570.29970.382854
20.1168870.80980.211021
30.0311320.21570.415071
4-0.004785-0.03320.513154
5-0.087079-0.60330.725427
60.0115010.07970.46841
7-0.192122-1.33110.905272
8-0.003903-0.0270.510729
90.0249590.17290.43172
10-0.186042-1.28890.898201
11-0.067132-0.46510.67802
120.075490.5230.301686
13-0.108606-0.75240.772272
140.0152710.10580.458092
15-0.010462-0.07250.52874
16-0.050295-0.34850.635488







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
00.0432570.29970.382854
10.1152320.79830.2143
20.0220070.15250.439728
3-0.020541-0.14230.556285
4-0.093813-0.650.74059
50.0205740.14250.443623
6-0.175637-1.21690.885195
70.0125020.08660.465667
80.0657710.45570.32534
9-0.197248-1.36660.910937
10-0.066154-0.45830.675609
110.1019020.7060.2418
12-0.097496-0.67550.748692
13-0.027388-0.18980.574849
14-0.014051-0.09730.538572
15-0.03919-0.27150.60642
160.0406870.28190.38962

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
0 & 0.043257 & 0.2997 & 0.382854 \tabularnewline
1 & 0.115232 & 0.7983 & 0.2143 \tabularnewline
2 & 0.022007 & 0.1525 & 0.439728 \tabularnewline
3 & -0.020541 & -0.1423 & 0.556285 \tabularnewline
4 & -0.093813 & -0.65 & 0.74059 \tabularnewline
5 & 0.020574 & 0.1425 & 0.443623 \tabularnewline
6 & -0.175637 & -1.2169 & 0.885195 \tabularnewline
7 & 0.012502 & 0.0866 & 0.465667 \tabularnewline
8 & 0.065771 & 0.4557 & 0.32534 \tabularnewline
9 & -0.197248 & -1.3666 & 0.910937 \tabularnewline
10 & -0.066154 & -0.4583 & 0.675609 \tabularnewline
11 & 0.101902 & 0.706 & 0.2418 \tabularnewline
12 & -0.097496 & -0.6755 & 0.748692 \tabularnewline
13 & -0.027388 & -0.1898 & 0.574849 \tabularnewline
14 & -0.014051 & -0.0973 & 0.538572 \tabularnewline
15 & -0.03919 & -0.2715 & 0.60642 \tabularnewline
16 & 0.040687 & 0.2819 & 0.38962 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=4024&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]0[/C][C]0.043257[/C][C]0.2997[/C][C]0.382854[/C][/ROW]
[ROW][C]1[/C][C]0.115232[/C][C]0.7983[/C][C]0.2143[/C][/ROW]
[ROW][C]2[/C][C]0.022007[/C][C]0.1525[/C][C]0.439728[/C][/ROW]
[ROW][C]3[/C][C]-0.020541[/C][C]-0.1423[/C][C]0.556285[/C][/ROW]
[ROW][C]4[/C][C]-0.093813[/C][C]-0.65[/C][C]0.74059[/C][/ROW]
[ROW][C]5[/C][C]0.020574[/C][C]0.1425[/C][C]0.443623[/C][/ROW]
[ROW][C]6[/C][C]-0.175637[/C][C]-1.2169[/C][C]0.885195[/C][/ROW]
[ROW][C]7[/C][C]0.012502[/C][C]0.0866[/C][C]0.465667[/C][/ROW]
[ROW][C]8[/C][C]0.065771[/C][C]0.4557[/C][C]0.32534[/C][/ROW]
[ROW][C]9[/C][C]-0.197248[/C][C]-1.3666[/C][C]0.910937[/C][/ROW]
[ROW][C]10[/C][C]-0.066154[/C][C]-0.4583[/C][C]0.675609[/C][/ROW]
[ROW][C]11[/C][C]0.101902[/C][C]0.706[/C][C]0.2418[/C][/ROW]
[ROW][C]12[/C][C]-0.097496[/C][C]-0.6755[/C][C]0.748692[/C][/ROW]
[ROW][C]13[/C][C]-0.027388[/C][C]-0.1898[/C][C]0.574849[/C][/ROW]
[ROW][C]14[/C][C]-0.014051[/C][C]-0.0973[/C][C]0.538572[/C][/ROW]
[ROW][C]15[/C][C]-0.03919[/C][C]-0.2715[/C][C]0.60642[/C][/ROW]
[ROW][C]16[/C][C]0.040687[/C][C]0.2819[/C][C]0.38962[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=4024&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=4024&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
00.0432570.29970.382854
10.1152320.79830.2143
20.0220070.15250.439728
3-0.020541-0.14230.556285
4-0.093813-0.650.74059
50.0205740.14250.443623
6-0.175637-1.21690.885195
70.0125020.08660.465667
80.0657710.45570.32534
9-0.197248-1.36660.910937
10-0.066154-0.45830.675609
110.1019020.7060.2418
12-0.097496-0.67550.748692
13-0.027388-0.18980.574849
14-0.014051-0.09730.538572
15-0.03919-0.27150.60642
160.0406870.28190.38962



Parameters (Session):
par1 = Default ; par2 = -1.5 ; par3 = 0 ; par4 = 1 ; par5 = 12 ;
Parameters (R input):
par1 = Default ; par2 = -1.5 ; par3 = 0 ; par4 = 1 ; par5 = 12 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x,par1,main='Autocorrelation',xlab='lags',ylab='ACF')
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(mytstat,lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(mytstat,lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')