Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edabi.wasp
Title produced by softwareBivariate Explorative Data Analysis
Date of computationSat, 24 Oct 2009 05:47:39 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Oct/24/t1256385724by1e6xd1nbsym7l.htm/, Retrieved Fri, 01 Nov 2024 00:03:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=50079, Retrieved Fri, 01 Nov 2024 00:03:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsJSSHWWS4P2
Estimated Impact190
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Bivariate Explorative Data Analysis] [Voorspelling model 1] [2009-10-24 11:47:39] [c8fd62404619100d8e91184019148412] [Current]
-  M D    [Bivariate Explorative Data Analysis] [Bivariate EDA] [2009-12-05 12:42:06] [214e6e00abbde49700521a7ef1d30da2]
- RMPD    [Trivariate Scatterplots] [Trivariate Scatte...] [2009-12-05 13:27:11] [214e6e00abbde49700521a7ef1d30da2]
- RMPD    [Partial Correlation] [Partial Correlation] [2009-12-05 13:34:31] [214e6e00abbde49700521a7ef1d30da2]
-    D      [Partial Correlation] [Partiele correlatie] [2009-12-10 16:28:46] [214e6e00abbde49700521a7ef1d30da2]
Feedback Forum

Post a new message
Dataseries X:
8
8.1
7.7
7.5
7.6
7.8
7.8
7.8
7.5
7.5
7.1
7.5
7.5
7.6
7.7
7.7
7.9
8.1
8.2
8.2
8.2
7.9
7.3
6.9
6.6
6.7
6.9
7
7.1
7.2
7.1
6.9
7
6.8
6.4
6.7
6.6
6.4
6.3
6.2
6.5
6.8
6.8
6.4
6.1
5.8
6.1
7.2
7.3
6.9
6.1
5.8
6.2
7.1
7.7
7.9
7.7
7.4
7.5
8
Dataseries Y:
11,1
10,9
10
9,2
9,2
9,5
9,6
9,5
9,1
8,9
9
10,1
10,3
10,2
9,6
9,2
9,3
9,4
9,4
9,2
9
9
9
9,8
10
9,8
9,3
9
9
9,1
9,1
9,1
9,2
8,8
8,3
8,4
8,1
7,7
7,9
7,9
8
7,9
7,6
7,1
6,8
6,5
6,9
8,2
8,7
8,3
7,9
7,5
7,8
8,3
8,4
8,2
7,7
7,2
7,3
8,1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=50079&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=50079&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=50079&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Model: Y[t] = c + b X[t] + e[t]
c2.10224383044583
b0.926017592780037

\begin{tabular}{lllllllll}
\hline
Model: Y[t] = c + b X[t] + e[t] \tabularnewline
c & 2.10224383044583 \tabularnewline
b & 0.926017592780037 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=50079&T=1

[TABLE]
[ROW][C]Model: Y[t] = c + b X[t] + e[t][/C][/ROW]
[ROW][C]c[/C][C]2.10224383044583[/C][/ROW]
[ROW][C]b[/C][C]0.926017592780037[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=50079&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=50079&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Model: Y[t] = c + b X[t] + e[t]
c2.10224383044583
b0.926017592780037







Descriptive Statistics about e[t]
# observations60
minimum-1.75477401701811
Q1-0.43723413286663
median0.0397391775669192
mean-1.22406425273613e-17
Q30.375774663523389
maximum1.78604005720592

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics about e[t] \tabularnewline
# observations & 60 \tabularnewline
minimum & -1.75477401701811 \tabularnewline
Q1 & -0.43723413286663 \tabularnewline
median & 0.0397391775669192 \tabularnewline
mean & -1.22406425273613e-17 \tabularnewline
Q3 & 0.375774663523389 \tabularnewline
maximum & 1.78604005720592 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=50079&T=2

[TABLE]
[ROW][C]Descriptive Statistics about e[t][/C][/ROW]
[ROW][C]# observations[/C][C]60[/C][/ROW]
[ROW][C]minimum[/C][C]-1.75477401701811[/C][/ROW]
[ROW][C]Q1[/C][C]-0.43723413286663[/C][/ROW]
[ROW][C]median[/C][C]0.0397391775669192[/C][/ROW]
[ROW][C]mean[/C][C]-1.22406425273613e-17[/C][/ROW]
[ROW][C]Q3[/C][C]0.375774663523389[/C][/ROW]
[ROW][C]maximum[/C][C]1.78604005720592[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=50079&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=50079&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics about e[t]
# observations60
minimum-1.75477401701811
Q1-0.43723413286663
median0.0397391775669192
mean-1.22406425273613e-17
Q30.375774663523389
maximum1.78604005720592



Parameters (Session):
par1 = 0 ; par2 = 36 ;
Parameters (R input):
par1 = 0 ; par2 = 36 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
y <- as.ts(y)
mylm <- lm(y~x)
cbind(mylm$resid)
library(lattice)
bitmap(file='pic1.png')
plot(y,type='l',main='Run Sequence Plot of Y[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1a.png')
plot(x,type='l',main='Run Sequence Plot of X[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic1b.png')
plot(x,y,main='Scatter Plot',xlab='X[t]',ylab='Y[t]')
grid()
dev.off()
bitmap(file='pic1c.png')
plot(mylm$resid,type='l',main='Run Sequence Plot of e[t]',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(mylm$resid,main='Histogram of e[t]')
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~mylm$resid,col='black',main=paste('Density Plot of e[t] bw = ',par1),bw=par1)
} else {
densityplot(~mylm$resid,col='black',main='Density Plot of e[t]')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(mylm$resid,main='QQ plot of e[t]')
qqline(mylm$resid)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='pic5.png')
acf(mylm$resid,lag.max=par2,main='Residual Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Model: Y[t] = c + b X[t] + e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'c',1,TRUE)
a<-table.element(a,mylm$coeff[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'b',1,TRUE)
a<-table.element(a,mylm$coeff[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics about e[t]',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(mylm$resid))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(mylm$resid,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(mylm$resid))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')