Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 18 Nov 2009 05:06:02 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/18/t1258546123wn4pb1jj4kb9etl.htm/, Retrieved Wed, 15 Jan 2025 14:07:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=57437, Retrieved Wed, 15 Jan 2025 14:07:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact237
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
-    D      [Multiple Regression] [] [2009-11-18 12:06:02] [830aa0f7fb5acd5849dbc0c6ad889830] [Current]
-    D        [Multiple Regression] [] [2009-12-15 14:57:54] [6ba840d2473f9a55d7b3e13093db69b8]
-   PD          [Multiple Regression] [] [2009-12-21 11:18:14] [6ba840d2473f9a55d7b3e13093db69b8]
-    D          [Multiple Regression] [] [2009-12-21 11:50:01] [6ba840d2473f9a55d7b3e13093db69b8]
Feedback Forum

Post a new message
Dataseries X:
149657	0
142773	0
133639	0
128332	0
120297	0
118632	0
155276	0
169316	0
167395	0
157939	0
149601	0
146310	0
141579	0
136473	0
129818	0
124226	0
116428	0
116440	0
147747	0
160069	0
163129	0
151108	0
141481	0
139174	0
134066	0
130104	0
123090	0
116598	0
109627	0
105428	0
137272	0
159836	0
155283	0
141514	0
131852	0
130691	0
128461	0
123066	0
117599	0
111599	0
105395	0
102334	0
131305	0
149033	0
144954	0
132404	0
122104	0
118755	0
116222	1
110924	1
103753	1
99983	1
93302	1
91496	1
119321	1
139261	1
133739	1
123913	1
113438	1
109416	1
109406	1
105645	1
101328	1
97686	1
93093	1
91382	1
122257	1
139183	1
139887	1
131822	1
116805	1
113706	1
113012	1
110452	1
107005	1
102841	1
98173	1
98181	1
137277	1
147579	1
146571	1
138920	1
130340	1
128140	1
127059	1
122860	1
117702	1
113537	1
108366	1
111078	1
150739	1
159129	1
157928	1
147768	1
137507	1
136919	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 135213.4375 -14649.1250000000X[t] -456.124999999875M1[t] -5101.74999999997M2[t] -11147.1250000000M3[t] -16038.625M4[t] -22303.75M5[t] -23517.5000000000M6[t] + 9760.37499999999M7[t] + 25036.875M8[t] + 23221.8750000000M9[t] + 12784.625M10[t] + 2502.12500000000M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  135213.4375 -14649.1250000000X[t] -456.124999999875M1[t] -5101.74999999997M2[t] -11147.1250000000M3[t] -16038.625M4[t] -22303.75M5[t] -23517.5000000000M6[t] +  9760.37499999999M7[t] +  25036.875M8[t] +  23221.8750000000M9[t] +  12784.625M10[t] +  2502.12500000000M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  135213.4375 -14649.1250000000X[t] -456.124999999875M1[t] -5101.74999999997M2[t] -11147.1250000000M3[t] -16038.625M4[t] -22303.75M5[t] -23517.5000000000M6[t] +  9760.37499999999M7[t] +  25036.875M8[t] +  23221.8750000000M9[t] +  12784.625M10[t] +  2502.12500000000M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 135213.4375 -14649.1250000000X[t] -456.124999999875M1[t] -5101.74999999997M2[t] -11147.1250000000M3[t] -16038.625M4[t] -22303.75M5[t] -23517.5000000000M6[t] + 9760.37499999999M7[t] + 25036.875M8[t] + 23221.8750000000M9[t] + 12784.625M10[t] + 2502.12500000000M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)135213.43753374.05034340.074500
X-14649.12500000001871.586388-7.827100
M1-456.1249999998754584.431659-0.09950.9209860.460493
M2-5101.749999999974584.431659-1.11280.2689890.134494
M3-11147.12500000004584.431659-2.43150.0171880.008594
M4-16038.6254584.431659-3.49850.0007550.000377
M5-22303.754584.431659-4.86515e-063e-06
M6-23517.50000000004584.431659-5.12992e-061e-06
M79760.374999999994584.4316592.1290.0362160.018108
M825036.8754584.4316595.461300
M923221.87500000004584.4316595.06542e-061e-06
M1012784.6254584.4316592.78870.0065610.00328
M112502.125000000004584.4316590.54580.5866760.293338

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 135213.4375 & 3374.050343 & 40.0745 & 0 & 0 \tabularnewline
X & -14649.1250000000 & 1871.586388 & -7.8271 & 0 & 0 \tabularnewline
M1 & -456.124999999875 & 4584.431659 & -0.0995 & 0.920986 & 0.460493 \tabularnewline
M2 & -5101.74999999997 & 4584.431659 & -1.1128 & 0.268989 & 0.134494 \tabularnewline
M3 & -11147.1250000000 & 4584.431659 & -2.4315 & 0.017188 & 0.008594 \tabularnewline
M4 & -16038.625 & 4584.431659 & -3.4985 & 0.000755 & 0.000377 \tabularnewline
M5 & -22303.75 & 4584.431659 & -4.8651 & 5e-06 & 3e-06 \tabularnewline
M6 & -23517.5000000000 & 4584.431659 & -5.1299 & 2e-06 & 1e-06 \tabularnewline
M7 & 9760.37499999999 & 4584.431659 & 2.129 & 0.036216 & 0.018108 \tabularnewline
M8 & 25036.875 & 4584.431659 & 5.4613 & 0 & 0 \tabularnewline
M9 & 23221.8750000000 & 4584.431659 & 5.0654 & 2e-06 & 1e-06 \tabularnewline
M10 & 12784.625 & 4584.431659 & 2.7887 & 0.006561 & 0.00328 \tabularnewline
M11 & 2502.12500000000 & 4584.431659 & 0.5458 & 0.586676 & 0.293338 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]135213.4375[/C][C]3374.050343[/C][C]40.0745[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]-14649.1250000000[/C][C]1871.586388[/C][C]-7.8271[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]-456.124999999875[/C][C]4584.431659[/C][C]-0.0995[/C][C]0.920986[/C][C]0.460493[/C][/ROW]
[ROW][C]M2[/C][C]-5101.74999999997[/C][C]4584.431659[/C][C]-1.1128[/C][C]0.268989[/C][C]0.134494[/C][/ROW]
[ROW][C]M3[/C][C]-11147.1250000000[/C][C]4584.431659[/C][C]-2.4315[/C][C]0.017188[/C][C]0.008594[/C][/ROW]
[ROW][C]M4[/C][C]-16038.625[/C][C]4584.431659[/C][C]-3.4985[/C][C]0.000755[/C][C]0.000377[/C][/ROW]
[ROW][C]M5[/C][C]-22303.75[/C][C]4584.431659[/C][C]-4.8651[/C][C]5e-06[/C][C]3e-06[/C][/ROW]
[ROW][C]M6[/C][C]-23517.5000000000[/C][C]4584.431659[/C][C]-5.1299[/C][C]2e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]M7[/C][C]9760.37499999999[/C][C]4584.431659[/C][C]2.129[/C][C]0.036216[/C][C]0.018108[/C][/ROW]
[ROW][C]M8[/C][C]25036.875[/C][C]4584.431659[/C][C]5.4613[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]23221.8750000000[/C][C]4584.431659[/C][C]5.0654[/C][C]2e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]M10[/C][C]12784.625[/C][C]4584.431659[/C][C]2.7887[/C][C]0.006561[/C][C]0.00328[/C][/ROW]
[ROW][C]M11[/C][C]2502.12500000000[/C][C]4584.431659[/C][C]0.5458[/C][C]0.586676[/C][C]0.293338[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)135213.43753374.05034340.074500
X-14649.12500000001871.586388-7.827100
M1-456.1249999998754584.431659-0.09950.9209860.460493
M2-5101.749999999974584.431659-1.11280.2689890.134494
M3-11147.12500000004584.431659-2.43150.0171880.008594
M4-16038.6254584.431659-3.49850.0007550.000377
M5-22303.754584.431659-4.86515e-063e-06
M6-23517.50000000004584.431659-5.12992e-061e-06
M79760.374999999994584.4316592.1290.0362160.018108
M825036.8754584.4316595.461300
M923221.87500000004584.4316595.06542e-061e-06
M1012784.6254584.4316592.78870.0065610.00328
M112502.125000000004584.4316590.54580.5866760.293338







Multiple Linear Regression - Regression Statistics
Multiple R0.895492940373178
R-squared0.8019076062582
Adjusted R-squared0.773267742102758
F-TEST (value)27.9997000651224
F-TEST (DF numerator)12
F-TEST (DF denominator)83
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9168.86331797323
Sum Squared Residuals6977648527.12503

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.895492940373178 \tabularnewline
R-squared & 0.8019076062582 \tabularnewline
Adjusted R-squared & 0.773267742102758 \tabularnewline
F-TEST (value) & 27.9997000651224 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 83 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 9168.86331797323 \tabularnewline
Sum Squared Residuals & 6977648527.12503 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.895492940373178[/C][/ROW]
[ROW][C]R-squared[/C][C]0.8019076062582[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.773267742102758[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]27.9997000651224[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]83[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]9168.86331797323[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]6977648527.12503[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.895492940373178
R-squared0.8019076062582
Adjusted R-squared0.773267742102758
F-TEST (value)27.9997000651224
F-TEST (DF numerator)12
F-TEST (DF denominator)83
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9168.86331797323
Sum Squared Residuals6977648527.12503







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1149657134757.31249999914899.6875000008
2142773130111.687512661.3125
3133639124066.31259572.68749999997
4128332119174.81259157.1874999999
5120297112909.68757387.31250000003
6118632111695.93756936.06249999996
7155276144973.812510302.1875
8169316160250.31259065.68750000006
9167395158435.31258959.68750000002
10157939147998.06259940.9375
11149601137715.562511885.4375000000
12146310135213.437511096.5625
13141579134757.31256821.68749999987
14136473130111.68756361.31249999998
15129818124066.31255751.68749999998
16124226119174.81255051.1875
17116428112909.68753518.31249999998
18116440111695.93754744.06249999999
19147747144973.81252773.18749999999
20160069160250.3125-181.312500000025
21163129158435.31254693.68749999998
22151108147998.06253109.93749999999
23141481137715.56253765.43749999999
24139174135213.43753960.5625
25134066134757.3125-691.312500000135
26130104130111.6875-7.68750000001614
27123090124066.3125-976.312500000013
28116598119174.8125-2576.8125
29109627112909.6875-3282.68750000002
30105428111695.9375-6267.93750000001
31137272144973.8125-7701.8125
32159836160250.3125-414.312500000025
33155283158435.3125-3152.31250000002
34141514147998.0625-6484.06250000001
35131852137715.5625-5863.56250000001
36130691135213.4375-4522.4375
37128461134757.3125-6296.31250000013
38123066130111.6875-7045.68750000002
39117599124066.3125-6467.31250000001
40111599119174.8125-7575.8125
41105395112909.6875-7514.68750000001
42102334111695.9375-9361.9375
43131305144973.8125-13668.8125
44149033160250.3125-11217.3125000000
45144954158435.3125-13481.3125000000
46132404147998.0625-15594.0625
47122104137715.5625-15611.5625
48118755135213.4375-16458.4375
49116222120108.187500000-3886.18750000011
50110924115462.5625-4538.56249999999
51103753109417.1875-5664.18749999999
5299983104525.6875-4542.68749999997
539330298260.5625-4958.5625
549149697046.8125-5550.81249999999
55119321130324.6875-11003.6875
56139261145601.1875-6340.18750000001
57133739143786.1875-10047.1875
58123913133348.9375-9435.9375
59113438123066.4375-9628.43749999999
60109416120564.3125-11148.3125000000
61109406120108.187500000-10702.1875000001
62105645115462.5625-9817.56249999999
63101328109417.1875-8089.18749999999
6497686104525.6875-6839.68749999997
659309398260.5625-5167.5625
669138297046.8125-5664.81249999999
67122257130324.6875-8067.68749999999
68139183145601.1875-6418.18750000001
69139887143786.1875-3899.1875
70131822133348.9375-1526.93749999999
71116805123066.4375-6261.43749999999
72113706120564.3125-6858.31249999999
73113012120108.187500000-7096.18750000011
74110452115462.5625-5010.56249999999
75107005109417.1875-2412.18749999999
76102841104525.6875-1684.68749999997
779817398260.5625-87.5624999999964
789818197046.81251134.18750000001
79137277130324.68756952.31250000001
80147579145601.18751977.81249999999
81146571143786.18752784.8125
82138920133348.93755571.06250000001
83130340123066.43757273.56250000001
84128140120564.31257575.68750000001
85127059120108.1875000006950.81249999989
86122860115462.56257397.43750
87117702109417.18758284.81250000001
88113537104525.68759011.31250000003
8910836698260.562510105.4375
9011107897046.812514031.1875
91150739130324.687520414.3125
92159129145601.187513527.8125
93157928143786.187514141.8125
94147768133348.937514419.0625
95137507123066.437514440.5625
96136919120564.312516354.6875

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 149657 & 134757.312499999 & 14899.6875000008 \tabularnewline
2 & 142773 & 130111.6875 & 12661.3125 \tabularnewline
3 & 133639 & 124066.3125 & 9572.68749999997 \tabularnewline
4 & 128332 & 119174.8125 & 9157.1874999999 \tabularnewline
5 & 120297 & 112909.6875 & 7387.31250000003 \tabularnewline
6 & 118632 & 111695.9375 & 6936.06249999996 \tabularnewline
7 & 155276 & 144973.8125 & 10302.1875 \tabularnewline
8 & 169316 & 160250.3125 & 9065.68750000006 \tabularnewline
9 & 167395 & 158435.3125 & 8959.68750000002 \tabularnewline
10 & 157939 & 147998.0625 & 9940.9375 \tabularnewline
11 & 149601 & 137715.5625 & 11885.4375000000 \tabularnewline
12 & 146310 & 135213.4375 & 11096.5625 \tabularnewline
13 & 141579 & 134757.3125 & 6821.68749999987 \tabularnewline
14 & 136473 & 130111.6875 & 6361.31249999998 \tabularnewline
15 & 129818 & 124066.3125 & 5751.68749999998 \tabularnewline
16 & 124226 & 119174.8125 & 5051.1875 \tabularnewline
17 & 116428 & 112909.6875 & 3518.31249999998 \tabularnewline
18 & 116440 & 111695.9375 & 4744.06249999999 \tabularnewline
19 & 147747 & 144973.8125 & 2773.18749999999 \tabularnewline
20 & 160069 & 160250.3125 & -181.312500000025 \tabularnewline
21 & 163129 & 158435.3125 & 4693.68749999998 \tabularnewline
22 & 151108 & 147998.0625 & 3109.93749999999 \tabularnewline
23 & 141481 & 137715.5625 & 3765.43749999999 \tabularnewline
24 & 139174 & 135213.4375 & 3960.5625 \tabularnewline
25 & 134066 & 134757.3125 & -691.312500000135 \tabularnewline
26 & 130104 & 130111.6875 & -7.68750000001614 \tabularnewline
27 & 123090 & 124066.3125 & -976.312500000013 \tabularnewline
28 & 116598 & 119174.8125 & -2576.8125 \tabularnewline
29 & 109627 & 112909.6875 & -3282.68750000002 \tabularnewline
30 & 105428 & 111695.9375 & -6267.93750000001 \tabularnewline
31 & 137272 & 144973.8125 & -7701.8125 \tabularnewline
32 & 159836 & 160250.3125 & -414.312500000025 \tabularnewline
33 & 155283 & 158435.3125 & -3152.31250000002 \tabularnewline
34 & 141514 & 147998.0625 & -6484.06250000001 \tabularnewline
35 & 131852 & 137715.5625 & -5863.56250000001 \tabularnewline
36 & 130691 & 135213.4375 & -4522.4375 \tabularnewline
37 & 128461 & 134757.3125 & -6296.31250000013 \tabularnewline
38 & 123066 & 130111.6875 & -7045.68750000002 \tabularnewline
39 & 117599 & 124066.3125 & -6467.31250000001 \tabularnewline
40 & 111599 & 119174.8125 & -7575.8125 \tabularnewline
41 & 105395 & 112909.6875 & -7514.68750000001 \tabularnewline
42 & 102334 & 111695.9375 & -9361.9375 \tabularnewline
43 & 131305 & 144973.8125 & -13668.8125 \tabularnewline
44 & 149033 & 160250.3125 & -11217.3125000000 \tabularnewline
45 & 144954 & 158435.3125 & -13481.3125000000 \tabularnewline
46 & 132404 & 147998.0625 & -15594.0625 \tabularnewline
47 & 122104 & 137715.5625 & -15611.5625 \tabularnewline
48 & 118755 & 135213.4375 & -16458.4375 \tabularnewline
49 & 116222 & 120108.187500000 & -3886.18750000011 \tabularnewline
50 & 110924 & 115462.5625 & -4538.56249999999 \tabularnewline
51 & 103753 & 109417.1875 & -5664.18749999999 \tabularnewline
52 & 99983 & 104525.6875 & -4542.68749999997 \tabularnewline
53 & 93302 & 98260.5625 & -4958.5625 \tabularnewline
54 & 91496 & 97046.8125 & -5550.81249999999 \tabularnewline
55 & 119321 & 130324.6875 & -11003.6875 \tabularnewline
56 & 139261 & 145601.1875 & -6340.18750000001 \tabularnewline
57 & 133739 & 143786.1875 & -10047.1875 \tabularnewline
58 & 123913 & 133348.9375 & -9435.9375 \tabularnewline
59 & 113438 & 123066.4375 & -9628.43749999999 \tabularnewline
60 & 109416 & 120564.3125 & -11148.3125000000 \tabularnewline
61 & 109406 & 120108.187500000 & -10702.1875000001 \tabularnewline
62 & 105645 & 115462.5625 & -9817.56249999999 \tabularnewline
63 & 101328 & 109417.1875 & -8089.18749999999 \tabularnewline
64 & 97686 & 104525.6875 & -6839.68749999997 \tabularnewline
65 & 93093 & 98260.5625 & -5167.5625 \tabularnewline
66 & 91382 & 97046.8125 & -5664.81249999999 \tabularnewline
67 & 122257 & 130324.6875 & -8067.68749999999 \tabularnewline
68 & 139183 & 145601.1875 & -6418.18750000001 \tabularnewline
69 & 139887 & 143786.1875 & -3899.1875 \tabularnewline
70 & 131822 & 133348.9375 & -1526.93749999999 \tabularnewline
71 & 116805 & 123066.4375 & -6261.43749999999 \tabularnewline
72 & 113706 & 120564.3125 & -6858.31249999999 \tabularnewline
73 & 113012 & 120108.187500000 & -7096.18750000011 \tabularnewline
74 & 110452 & 115462.5625 & -5010.56249999999 \tabularnewline
75 & 107005 & 109417.1875 & -2412.18749999999 \tabularnewline
76 & 102841 & 104525.6875 & -1684.68749999997 \tabularnewline
77 & 98173 & 98260.5625 & -87.5624999999964 \tabularnewline
78 & 98181 & 97046.8125 & 1134.18750000001 \tabularnewline
79 & 137277 & 130324.6875 & 6952.31250000001 \tabularnewline
80 & 147579 & 145601.1875 & 1977.81249999999 \tabularnewline
81 & 146571 & 143786.1875 & 2784.8125 \tabularnewline
82 & 138920 & 133348.9375 & 5571.06250000001 \tabularnewline
83 & 130340 & 123066.4375 & 7273.56250000001 \tabularnewline
84 & 128140 & 120564.3125 & 7575.68750000001 \tabularnewline
85 & 127059 & 120108.187500000 & 6950.81249999989 \tabularnewline
86 & 122860 & 115462.5625 & 7397.43750 \tabularnewline
87 & 117702 & 109417.1875 & 8284.81250000001 \tabularnewline
88 & 113537 & 104525.6875 & 9011.31250000003 \tabularnewline
89 & 108366 & 98260.5625 & 10105.4375 \tabularnewline
90 & 111078 & 97046.8125 & 14031.1875 \tabularnewline
91 & 150739 & 130324.6875 & 20414.3125 \tabularnewline
92 & 159129 & 145601.1875 & 13527.8125 \tabularnewline
93 & 157928 & 143786.1875 & 14141.8125 \tabularnewline
94 & 147768 & 133348.9375 & 14419.0625 \tabularnewline
95 & 137507 & 123066.4375 & 14440.5625 \tabularnewline
96 & 136919 & 120564.3125 & 16354.6875 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]149657[/C][C]134757.312499999[/C][C]14899.6875000008[/C][/ROW]
[ROW][C]2[/C][C]142773[/C][C]130111.6875[/C][C]12661.3125[/C][/ROW]
[ROW][C]3[/C][C]133639[/C][C]124066.3125[/C][C]9572.68749999997[/C][/ROW]
[ROW][C]4[/C][C]128332[/C][C]119174.8125[/C][C]9157.1874999999[/C][/ROW]
[ROW][C]5[/C][C]120297[/C][C]112909.6875[/C][C]7387.31250000003[/C][/ROW]
[ROW][C]6[/C][C]118632[/C][C]111695.9375[/C][C]6936.06249999996[/C][/ROW]
[ROW][C]7[/C][C]155276[/C][C]144973.8125[/C][C]10302.1875[/C][/ROW]
[ROW][C]8[/C][C]169316[/C][C]160250.3125[/C][C]9065.68750000006[/C][/ROW]
[ROW][C]9[/C][C]167395[/C][C]158435.3125[/C][C]8959.68750000002[/C][/ROW]
[ROW][C]10[/C][C]157939[/C][C]147998.0625[/C][C]9940.9375[/C][/ROW]
[ROW][C]11[/C][C]149601[/C][C]137715.5625[/C][C]11885.4375000000[/C][/ROW]
[ROW][C]12[/C][C]146310[/C][C]135213.4375[/C][C]11096.5625[/C][/ROW]
[ROW][C]13[/C][C]141579[/C][C]134757.3125[/C][C]6821.68749999987[/C][/ROW]
[ROW][C]14[/C][C]136473[/C][C]130111.6875[/C][C]6361.31249999998[/C][/ROW]
[ROW][C]15[/C][C]129818[/C][C]124066.3125[/C][C]5751.68749999998[/C][/ROW]
[ROW][C]16[/C][C]124226[/C][C]119174.8125[/C][C]5051.1875[/C][/ROW]
[ROW][C]17[/C][C]116428[/C][C]112909.6875[/C][C]3518.31249999998[/C][/ROW]
[ROW][C]18[/C][C]116440[/C][C]111695.9375[/C][C]4744.06249999999[/C][/ROW]
[ROW][C]19[/C][C]147747[/C][C]144973.8125[/C][C]2773.18749999999[/C][/ROW]
[ROW][C]20[/C][C]160069[/C][C]160250.3125[/C][C]-181.312500000025[/C][/ROW]
[ROW][C]21[/C][C]163129[/C][C]158435.3125[/C][C]4693.68749999998[/C][/ROW]
[ROW][C]22[/C][C]151108[/C][C]147998.0625[/C][C]3109.93749999999[/C][/ROW]
[ROW][C]23[/C][C]141481[/C][C]137715.5625[/C][C]3765.43749999999[/C][/ROW]
[ROW][C]24[/C][C]139174[/C][C]135213.4375[/C][C]3960.5625[/C][/ROW]
[ROW][C]25[/C][C]134066[/C][C]134757.3125[/C][C]-691.312500000135[/C][/ROW]
[ROW][C]26[/C][C]130104[/C][C]130111.6875[/C][C]-7.68750000001614[/C][/ROW]
[ROW][C]27[/C][C]123090[/C][C]124066.3125[/C][C]-976.312500000013[/C][/ROW]
[ROW][C]28[/C][C]116598[/C][C]119174.8125[/C][C]-2576.8125[/C][/ROW]
[ROW][C]29[/C][C]109627[/C][C]112909.6875[/C][C]-3282.68750000002[/C][/ROW]
[ROW][C]30[/C][C]105428[/C][C]111695.9375[/C][C]-6267.93750000001[/C][/ROW]
[ROW][C]31[/C][C]137272[/C][C]144973.8125[/C][C]-7701.8125[/C][/ROW]
[ROW][C]32[/C][C]159836[/C][C]160250.3125[/C][C]-414.312500000025[/C][/ROW]
[ROW][C]33[/C][C]155283[/C][C]158435.3125[/C][C]-3152.31250000002[/C][/ROW]
[ROW][C]34[/C][C]141514[/C][C]147998.0625[/C][C]-6484.06250000001[/C][/ROW]
[ROW][C]35[/C][C]131852[/C][C]137715.5625[/C][C]-5863.56250000001[/C][/ROW]
[ROW][C]36[/C][C]130691[/C][C]135213.4375[/C][C]-4522.4375[/C][/ROW]
[ROW][C]37[/C][C]128461[/C][C]134757.3125[/C][C]-6296.31250000013[/C][/ROW]
[ROW][C]38[/C][C]123066[/C][C]130111.6875[/C][C]-7045.68750000002[/C][/ROW]
[ROW][C]39[/C][C]117599[/C][C]124066.3125[/C][C]-6467.31250000001[/C][/ROW]
[ROW][C]40[/C][C]111599[/C][C]119174.8125[/C][C]-7575.8125[/C][/ROW]
[ROW][C]41[/C][C]105395[/C][C]112909.6875[/C][C]-7514.68750000001[/C][/ROW]
[ROW][C]42[/C][C]102334[/C][C]111695.9375[/C][C]-9361.9375[/C][/ROW]
[ROW][C]43[/C][C]131305[/C][C]144973.8125[/C][C]-13668.8125[/C][/ROW]
[ROW][C]44[/C][C]149033[/C][C]160250.3125[/C][C]-11217.3125000000[/C][/ROW]
[ROW][C]45[/C][C]144954[/C][C]158435.3125[/C][C]-13481.3125000000[/C][/ROW]
[ROW][C]46[/C][C]132404[/C][C]147998.0625[/C][C]-15594.0625[/C][/ROW]
[ROW][C]47[/C][C]122104[/C][C]137715.5625[/C][C]-15611.5625[/C][/ROW]
[ROW][C]48[/C][C]118755[/C][C]135213.4375[/C][C]-16458.4375[/C][/ROW]
[ROW][C]49[/C][C]116222[/C][C]120108.187500000[/C][C]-3886.18750000011[/C][/ROW]
[ROW][C]50[/C][C]110924[/C][C]115462.5625[/C][C]-4538.56249999999[/C][/ROW]
[ROW][C]51[/C][C]103753[/C][C]109417.1875[/C][C]-5664.18749999999[/C][/ROW]
[ROW][C]52[/C][C]99983[/C][C]104525.6875[/C][C]-4542.68749999997[/C][/ROW]
[ROW][C]53[/C][C]93302[/C][C]98260.5625[/C][C]-4958.5625[/C][/ROW]
[ROW][C]54[/C][C]91496[/C][C]97046.8125[/C][C]-5550.81249999999[/C][/ROW]
[ROW][C]55[/C][C]119321[/C][C]130324.6875[/C][C]-11003.6875[/C][/ROW]
[ROW][C]56[/C][C]139261[/C][C]145601.1875[/C][C]-6340.18750000001[/C][/ROW]
[ROW][C]57[/C][C]133739[/C][C]143786.1875[/C][C]-10047.1875[/C][/ROW]
[ROW][C]58[/C][C]123913[/C][C]133348.9375[/C][C]-9435.9375[/C][/ROW]
[ROW][C]59[/C][C]113438[/C][C]123066.4375[/C][C]-9628.43749999999[/C][/ROW]
[ROW][C]60[/C][C]109416[/C][C]120564.3125[/C][C]-11148.3125000000[/C][/ROW]
[ROW][C]61[/C][C]109406[/C][C]120108.187500000[/C][C]-10702.1875000001[/C][/ROW]
[ROW][C]62[/C][C]105645[/C][C]115462.5625[/C][C]-9817.56249999999[/C][/ROW]
[ROW][C]63[/C][C]101328[/C][C]109417.1875[/C][C]-8089.18749999999[/C][/ROW]
[ROW][C]64[/C][C]97686[/C][C]104525.6875[/C][C]-6839.68749999997[/C][/ROW]
[ROW][C]65[/C][C]93093[/C][C]98260.5625[/C][C]-5167.5625[/C][/ROW]
[ROW][C]66[/C][C]91382[/C][C]97046.8125[/C][C]-5664.81249999999[/C][/ROW]
[ROW][C]67[/C][C]122257[/C][C]130324.6875[/C][C]-8067.68749999999[/C][/ROW]
[ROW][C]68[/C][C]139183[/C][C]145601.1875[/C][C]-6418.18750000001[/C][/ROW]
[ROW][C]69[/C][C]139887[/C][C]143786.1875[/C][C]-3899.1875[/C][/ROW]
[ROW][C]70[/C][C]131822[/C][C]133348.9375[/C][C]-1526.93749999999[/C][/ROW]
[ROW][C]71[/C][C]116805[/C][C]123066.4375[/C][C]-6261.43749999999[/C][/ROW]
[ROW][C]72[/C][C]113706[/C][C]120564.3125[/C][C]-6858.31249999999[/C][/ROW]
[ROW][C]73[/C][C]113012[/C][C]120108.187500000[/C][C]-7096.18750000011[/C][/ROW]
[ROW][C]74[/C][C]110452[/C][C]115462.5625[/C][C]-5010.56249999999[/C][/ROW]
[ROW][C]75[/C][C]107005[/C][C]109417.1875[/C][C]-2412.18749999999[/C][/ROW]
[ROW][C]76[/C][C]102841[/C][C]104525.6875[/C][C]-1684.68749999997[/C][/ROW]
[ROW][C]77[/C][C]98173[/C][C]98260.5625[/C][C]-87.5624999999964[/C][/ROW]
[ROW][C]78[/C][C]98181[/C][C]97046.8125[/C][C]1134.18750000001[/C][/ROW]
[ROW][C]79[/C][C]137277[/C][C]130324.6875[/C][C]6952.31250000001[/C][/ROW]
[ROW][C]80[/C][C]147579[/C][C]145601.1875[/C][C]1977.81249999999[/C][/ROW]
[ROW][C]81[/C][C]146571[/C][C]143786.1875[/C][C]2784.8125[/C][/ROW]
[ROW][C]82[/C][C]138920[/C][C]133348.9375[/C][C]5571.06250000001[/C][/ROW]
[ROW][C]83[/C][C]130340[/C][C]123066.4375[/C][C]7273.56250000001[/C][/ROW]
[ROW][C]84[/C][C]128140[/C][C]120564.3125[/C][C]7575.68750000001[/C][/ROW]
[ROW][C]85[/C][C]127059[/C][C]120108.187500000[/C][C]6950.81249999989[/C][/ROW]
[ROW][C]86[/C][C]122860[/C][C]115462.5625[/C][C]7397.43750[/C][/ROW]
[ROW][C]87[/C][C]117702[/C][C]109417.1875[/C][C]8284.81250000001[/C][/ROW]
[ROW][C]88[/C][C]113537[/C][C]104525.6875[/C][C]9011.31250000003[/C][/ROW]
[ROW][C]89[/C][C]108366[/C][C]98260.5625[/C][C]10105.4375[/C][/ROW]
[ROW][C]90[/C][C]111078[/C][C]97046.8125[/C][C]14031.1875[/C][/ROW]
[ROW][C]91[/C][C]150739[/C][C]130324.6875[/C][C]20414.3125[/C][/ROW]
[ROW][C]92[/C][C]159129[/C][C]145601.1875[/C][C]13527.8125[/C][/ROW]
[ROW][C]93[/C][C]157928[/C][C]143786.1875[/C][C]14141.8125[/C][/ROW]
[ROW][C]94[/C][C]147768[/C][C]133348.9375[/C][C]14419.0625[/C][/ROW]
[ROW][C]95[/C][C]137507[/C][C]123066.4375[/C][C]14440.5625[/C][/ROW]
[ROW][C]96[/C][C]136919[/C][C]120564.3125[/C][C]16354.6875[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1149657134757.31249999914899.6875000008
2142773130111.687512661.3125
3133639124066.31259572.68749999997
4128332119174.81259157.1874999999
5120297112909.68757387.31250000003
6118632111695.93756936.06249999996
7155276144973.812510302.1875
8169316160250.31259065.68750000006
9167395158435.31258959.68750000002
10157939147998.06259940.9375
11149601137715.562511885.4375000000
12146310135213.437511096.5625
13141579134757.31256821.68749999987
14136473130111.68756361.31249999998
15129818124066.31255751.68749999998
16124226119174.81255051.1875
17116428112909.68753518.31249999998
18116440111695.93754744.06249999999
19147747144973.81252773.18749999999
20160069160250.3125-181.312500000025
21163129158435.31254693.68749999998
22151108147998.06253109.93749999999
23141481137715.56253765.43749999999
24139174135213.43753960.5625
25134066134757.3125-691.312500000135
26130104130111.6875-7.68750000001614
27123090124066.3125-976.312500000013
28116598119174.8125-2576.8125
29109627112909.6875-3282.68750000002
30105428111695.9375-6267.93750000001
31137272144973.8125-7701.8125
32159836160250.3125-414.312500000025
33155283158435.3125-3152.31250000002
34141514147998.0625-6484.06250000001
35131852137715.5625-5863.56250000001
36130691135213.4375-4522.4375
37128461134757.3125-6296.31250000013
38123066130111.6875-7045.68750000002
39117599124066.3125-6467.31250000001
40111599119174.8125-7575.8125
41105395112909.6875-7514.68750000001
42102334111695.9375-9361.9375
43131305144973.8125-13668.8125
44149033160250.3125-11217.3125000000
45144954158435.3125-13481.3125000000
46132404147998.0625-15594.0625
47122104137715.5625-15611.5625
48118755135213.4375-16458.4375
49116222120108.187500000-3886.18750000011
50110924115462.5625-4538.56249999999
51103753109417.1875-5664.18749999999
5299983104525.6875-4542.68749999997
539330298260.5625-4958.5625
549149697046.8125-5550.81249999999
55119321130324.6875-11003.6875
56139261145601.1875-6340.18750000001
57133739143786.1875-10047.1875
58123913133348.9375-9435.9375
59113438123066.4375-9628.43749999999
60109416120564.3125-11148.3125000000
61109406120108.187500000-10702.1875000001
62105645115462.5625-9817.56249999999
63101328109417.1875-8089.18749999999
6497686104525.6875-6839.68749999997
659309398260.5625-5167.5625
669138297046.8125-5664.81249999999
67122257130324.6875-8067.68749999999
68139183145601.1875-6418.18750000001
69139887143786.1875-3899.1875
70131822133348.9375-1526.93749999999
71116805123066.4375-6261.43749999999
72113706120564.3125-6858.31249999999
73113012120108.187500000-7096.18750000011
74110452115462.5625-5010.56249999999
75107005109417.1875-2412.18749999999
76102841104525.6875-1684.68749999997
779817398260.5625-87.5624999999964
789818197046.81251134.18750000001
79137277130324.68756952.31250000001
80147579145601.18751977.81249999999
81146571143786.18752784.8125
82138920133348.93755571.06250000001
83130340123066.43757273.56250000001
84128140120564.31257575.68750000001
85127059120108.1875000006950.81249999989
86122860115462.56257397.43750
87117702109417.18758284.81250000001
88113537104525.68759011.31250000003
8910836698260.562510105.4375
9011107897046.812514031.1875
91150739130324.687520414.3125
92159129145601.187513527.8125
93157928143786.187514141.8125
94147768133348.937514419.0625
95137507123066.437514440.5625
96136919120564.312516354.6875







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.1873237494259930.3746474988519850.812676250574007
170.0998183389946440.1996366779892880.900181661005356
180.04660669211671020.09321338423342040.95339330788329
190.04146906787135400.08293813574270810.958530932128646
200.04629994005469260.09259988010938530.953700059945307
210.02822394841534180.05644789683068360.971776051584658
220.02240747172079510.04481494344159030.977592528279205
230.02165853188132030.04331706376264070.97834146811868
240.01855062467710880.03710124935421760.981449375322891
250.03716908480319940.07433816960639880.9628309151968
260.04570710192266690.09141420384533380.954292898077333
270.04775996137550330.09551992275100660.952240038624497
280.05353299284711030.1070659856942210.94646700715289
290.0525766503703560.1051533007407120.947423349629644
300.06930435274962940.1386087054992590.930695647250371
310.1036984012184700.2073968024369400.89630159878153
320.08381571444350860.1676314288870170.916184285556491
330.08595583713985170.1719116742797030.914044162860148
340.1042187367879500.2084374735758990.89578126321205
350.1277351630309260.2554703260618520.872264836969074
360.1383041564073950.276608312814790.861695843592605
370.1696798440372860.3393596880745710.830320155962714
380.1994862249414960.3989724498829920.800513775058504
390.208588670098980.417177340197960.79141132990102
400.2147046790331290.4294093580662590.78529532096687
410.2085780902449880.4171561804899750.791421909755012
420.2051673797926250.4103347595852490.794832620207375
430.2319452122475230.4638904244950460.768054787752477
440.2451057453685630.4902114907371260.754894254631437
450.2806582259750450.5613164519500890.719341774024955
460.3170919524099450.634183904819890.682908047590055
470.3585480193288170.7170960386576340.641451980671183
480.4037439754845240.8074879509690490.596256024515476
490.3391801671410780.6783603342821550.660819832858922
500.2799099116495280.5598198232990560.720090088350472
510.2300086398046450.460017279609290.769991360195355
520.1857275492519180.3714550985038370.814272450748082
530.150357273567230.300714547134460.84964272643277
540.1241511594512810.2483023189025620.87584884054872
550.1324604245635850.2649208491271690.867539575436415
560.1103413093381560.2206826186763110.889658690661844
570.107364091708670.214728183417340.89263590829133
580.1101641454724490.2203282909448970.889835854527551
590.1112825228962270.2225650457924550.888717477103773
600.1269184363982660.2538368727965320.873081563601734
610.1167156942565670.2334313885131340.883284305743433
620.1054989567714480.2109979135428960.894501043228552
630.09280385067757620.1856077013551520.907196149322424
640.07946784543706820.1589356908741360.920532154562932
650.06735046900841160.1347009380168230.932649530991588
660.06541403251643570.1308280650328710.934585967483564
670.1166675289112500.2333350578225010.88333247108875
680.1258813015870280.2517626031740550.874118698412972
690.1276107516674250.2552215033348500.872389248332575
700.1300894878473210.2601789756946410.86991051215268
710.1840016559995050.368003311999010.815998344000495
720.3099830307799930.6199660615599860.690016969220007
730.3353222099311920.6706444198623840.664677790068808
740.3393397780920810.6786795561841610.66066022190792
750.3216151086548240.6432302173096480.678384891345176
760.3049393053278430.6098786106556860.695060694672157
770.2829393214274370.5658786428548730.717060678572563
780.3121543146097040.6243086292194090.687845685390295
790.388477750600580.776955501201160.61152224939942
800.3981540140025450.796308028005090.601845985997455

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.187323749425993 & 0.374647498851985 & 0.812676250574007 \tabularnewline
17 & 0.099818338994644 & 0.199636677989288 & 0.900181661005356 \tabularnewline
18 & 0.0466066921167102 & 0.0932133842334204 & 0.95339330788329 \tabularnewline
19 & 0.0414690678713540 & 0.0829381357427081 & 0.958530932128646 \tabularnewline
20 & 0.0462999400546926 & 0.0925998801093853 & 0.953700059945307 \tabularnewline
21 & 0.0282239484153418 & 0.0564478968306836 & 0.971776051584658 \tabularnewline
22 & 0.0224074717207951 & 0.0448149434415903 & 0.977592528279205 \tabularnewline
23 & 0.0216585318813203 & 0.0433170637626407 & 0.97834146811868 \tabularnewline
24 & 0.0185506246771088 & 0.0371012493542176 & 0.981449375322891 \tabularnewline
25 & 0.0371690848031994 & 0.0743381696063988 & 0.9628309151968 \tabularnewline
26 & 0.0457071019226669 & 0.0914142038453338 & 0.954292898077333 \tabularnewline
27 & 0.0477599613755033 & 0.0955199227510066 & 0.952240038624497 \tabularnewline
28 & 0.0535329928471103 & 0.107065985694221 & 0.94646700715289 \tabularnewline
29 & 0.052576650370356 & 0.105153300740712 & 0.947423349629644 \tabularnewline
30 & 0.0693043527496294 & 0.138608705499259 & 0.930695647250371 \tabularnewline
31 & 0.103698401218470 & 0.207396802436940 & 0.89630159878153 \tabularnewline
32 & 0.0838157144435086 & 0.167631428887017 & 0.916184285556491 \tabularnewline
33 & 0.0859558371398517 & 0.171911674279703 & 0.914044162860148 \tabularnewline
34 & 0.104218736787950 & 0.208437473575899 & 0.89578126321205 \tabularnewline
35 & 0.127735163030926 & 0.255470326061852 & 0.872264836969074 \tabularnewline
36 & 0.138304156407395 & 0.27660831281479 & 0.861695843592605 \tabularnewline
37 & 0.169679844037286 & 0.339359688074571 & 0.830320155962714 \tabularnewline
38 & 0.199486224941496 & 0.398972449882992 & 0.800513775058504 \tabularnewline
39 & 0.20858867009898 & 0.41717734019796 & 0.79141132990102 \tabularnewline
40 & 0.214704679033129 & 0.429409358066259 & 0.78529532096687 \tabularnewline
41 & 0.208578090244988 & 0.417156180489975 & 0.791421909755012 \tabularnewline
42 & 0.205167379792625 & 0.410334759585249 & 0.794832620207375 \tabularnewline
43 & 0.231945212247523 & 0.463890424495046 & 0.768054787752477 \tabularnewline
44 & 0.245105745368563 & 0.490211490737126 & 0.754894254631437 \tabularnewline
45 & 0.280658225975045 & 0.561316451950089 & 0.719341774024955 \tabularnewline
46 & 0.317091952409945 & 0.63418390481989 & 0.682908047590055 \tabularnewline
47 & 0.358548019328817 & 0.717096038657634 & 0.641451980671183 \tabularnewline
48 & 0.403743975484524 & 0.807487950969049 & 0.596256024515476 \tabularnewline
49 & 0.339180167141078 & 0.678360334282155 & 0.660819832858922 \tabularnewline
50 & 0.279909911649528 & 0.559819823299056 & 0.720090088350472 \tabularnewline
51 & 0.230008639804645 & 0.46001727960929 & 0.769991360195355 \tabularnewline
52 & 0.185727549251918 & 0.371455098503837 & 0.814272450748082 \tabularnewline
53 & 0.15035727356723 & 0.30071454713446 & 0.84964272643277 \tabularnewline
54 & 0.124151159451281 & 0.248302318902562 & 0.87584884054872 \tabularnewline
55 & 0.132460424563585 & 0.264920849127169 & 0.867539575436415 \tabularnewline
56 & 0.110341309338156 & 0.220682618676311 & 0.889658690661844 \tabularnewline
57 & 0.10736409170867 & 0.21472818341734 & 0.89263590829133 \tabularnewline
58 & 0.110164145472449 & 0.220328290944897 & 0.889835854527551 \tabularnewline
59 & 0.111282522896227 & 0.222565045792455 & 0.888717477103773 \tabularnewline
60 & 0.126918436398266 & 0.253836872796532 & 0.873081563601734 \tabularnewline
61 & 0.116715694256567 & 0.233431388513134 & 0.883284305743433 \tabularnewline
62 & 0.105498956771448 & 0.210997913542896 & 0.894501043228552 \tabularnewline
63 & 0.0928038506775762 & 0.185607701355152 & 0.907196149322424 \tabularnewline
64 & 0.0794678454370682 & 0.158935690874136 & 0.920532154562932 \tabularnewline
65 & 0.0673504690084116 & 0.134700938016823 & 0.932649530991588 \tabularnewline
66 & 0.0654140325164357 & 0.130828065032871 & 0.934585967483564 \tabularnewline
67 & 0.116667528911250 & 0.233335057822501 & 0.88333247108875 \tabularnewline
68 & 0.125881301587028 & 0.251762603174055 & 0.874118698412972 \tabularnewline
69 & 0.127610751667425 & 0.255221503334850 & 0.872389248332575 \tabularnewline
70 & 0.130089487847321 & 0.260178975694641 & 0.86991051215268 \tabularnewline
71 & 0.184001655999505 & 0.36800331199901 & 0.815998344000495 \tabularnewline
72 & 0.309983030779993 & 0.619966061559986 & 0.690016969220007 \tabularnewline
73 & 0.335322209931192 & 0.670644419862384 & 0.664677790068808 \tabularnewline
74 & 0.339339778092081 & 0.678679556184161 & 0.66066022190792 \tabularnewline
75 & 0.321615108654824 & 0.643230217309648 & 0.678384891345176 \tabularnewline
76 & 0.304939305327843 & 0.609878610655686 & 0.695060694672157 \tabularnewline
77 & 0.282939321427437 & 0.565878642854873 & 0.717060678572563 \tabularnewline
78 & 0.312154314609704 & 0.624308629219409 & 0.687845685390295 \tabularnewline
79 & 0.38847775060058 & 0.77695550120116 & 0.61152224939942 \tabularnewline
80 & 0.398154014002545 & 0.79630802800509 & 0.601845985997455 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.187323749425993[/C][C]0.374647498851985[/C][C]0.812676250574007[/C][/ROW]
[ROW][C]17[/C][C]0.099818338994644[/C][C]0.199636677989288[/C][C]0.900181661005356[/C][/ROW]
[ROW][C]18[/C][C]0.0466066921167102[/C][C]0.0932133842334204[/C][C]0.95339330788329[/C][/ROW]
[ROW][C]19[/C][C]0.0414690678713540[/C][C]0.0829381357427081[/C][C]0.958530932128646[/C][/ROW]
[ROW][C]20[/C][C]0.0462999400546926[/C][C]0.0925998801093853[/C][C]0.953700059945307[/C][/ROW]
[ROW][C]21[/C][C]0.0282239484153418[/C][C]0.0564478968306836[/C][C]0.971776051584658[/C][/ROW]
[ROW][C]22[/C][C]0.0224074717207951[/C][C]0.0448149434415903[/C][C]0.977592528279205[/C][/ROW]
[ROW][C]23[/C][C]0.0216585318813203[/C][C]0.0433170637626407[/C][C]0.97834146811868[/C][/ROW]
[ROW][C]24[/C][C]0.0185506246771088[/C][C]0.0371012493542176[/C][C]0.981449375322891[/C][/ROW]
[ROW][C]25[/C][C]0.0371690848031994[/C][C]0.0743381696063988[/C][C]0.9628309151968[/C][/ROW]
[ROW][C]26[/C][C]0.0457071019226669[/C][C]0.0914142038453338[/C][C]0.954292898077333[/C][/ROW]
[ROW][C]27[/C][C]0.0477599613755033[/C][C]0.0955199227510066[/C][C]0.952240038624497[/C][/ROW]
[ROW][C]28[/C][C]0.0535329928471103[/C][C]0.107065985694221[/C][C]0.94646700715289[/C][/ROW]
[ROW][C]29[/C][C]0.052576650370356[/C][C]0.105153300740712[/C][C]0.947423349629644[/C][/ROW]
[ROW][C]30[/C][C]0.0693043527496294[/C][C]0.138608705499259[/C][C]0.930695647250371[/C][/ROW]
[ROW][C]31[/C][C]0.103698401218470[/C][C]0.207396802436940[/C][C]0.89630159878153[/C][/ROW]
[ROW][C]32[/C][C]0.0838157144435086[/C][C]0.167631428887017[/C][C]0.916184285556491[/C][/ROW]
[ROW][C]33[/C][C]0.0859558371398517[/C][C]0.171911674279703[/C][C]0.914044162860148[/C][/ROW]
[ROW][C]34[/C][C]0.104218736787950[/C][C]0.208437473575899[/C][C]0.89578126321205[/C][/ROW]
[ROW][C]35[/C][C]0.127735163030926[/C][C]0.255470326061852[/C][C]0.872264836969074[/C][/ROW]
[ROW][C]36[/C][C]0.138304156407395[/C][C]0.27660831281479[/C][C]0.861695843592605[/C][/ROW]
[ROW][C]37[/C][C]0.169679844037286[/C][C]0.339359688074571[/C][C]0.830320155962714[/C][/ROW]
[ROW][C]38[/C][C]0.199486224941496[/C][C]0.398972449882992[/C][C]0.800513775058504[/C][/ROW]
[ROW][C]39[/C][C]0.20858867009898[/C][C]0.41717734019796[/C][C]0.79141132990102[/C][/ROW]
[ROW][C]40[/C][C]0.214704679033129[/C][C]0.429409358066259[/C][C]0.78529532096687[/C][/ROW]
[ROW][C]41[/C][C]0.208578090244988[/C][C]0.417156180489975[/C][C]0.791421909755012[/C][/ROW]
[ROW][C]42[/C][C]0.205167379792625[/C][C]0.410334759585249[/C][C]0.794832620207375[/C][/ROW]
[ROW][C]43[/C][C]0.231945212247523[/C][C]0.463890424495046[/C][C]0.768054787752477[/C][/ROW]
[ROW][C]44[/C][C]0.245105745368563[/C][C]0.490211490737126[/C][C]0.754894254631437[/C][/ROW]
[ROW][C]45[/C][C]0.280658225975045[/C][C]0.561316451950089[/C][C]0.719341774024955[/C][/ROW]
[ROW][C]46[/C][C]0.317091952409945[/C][C]0.63418390481989[/C][C]0.682908047590055[/C][/ROW]
[ROW][C]47[/C][C]0.358548019328817[/C][C]0.717096038657634[/C][C]0.641451980671183[/C][/ROW]
[ROW][C]48[/C][C]0.403743975484524[/C][C]0.807487950969049[/C][C]0.596256024515476[/C][/ROW]
[ROW][C]49[/C][C]0.339180167141078[/C][C]0.678360334282155[/C][C]0.660819832858922[/C][/ROW]
[ROW][C]50[/C][C]0.279909911649528[/C][C]0.559819823299056[/C][C]0.720090088350472[/C][/ROW]
[ROW][C]51[/C][C]0.230008639804645[/C][C]0.46001727960929[/C][C]0.769991360195355[/C][/ROW]
[ROW][C]52[/C][C]0.185727549251918[/C][C]0.371455098503837[/C][C]0.814272450748082[/C][/ROW]
[ROW][C]53[/C][C]0.15035727356723[/C][C]0.30071454713446[/C][C]0.84964272643277[/C][/ROW]
[ROW][C]54[/C][C]0.124151159451281[/C][C]0.248302318902562[/C][C]0.87584884054872[/C][/ROW]
[ROW][C]55[/C][C]0.132460424563585[/C][C]0.264920849127169[/C][C]0.867539575436415[/C][/ROW]
[ROW][C]56[/C][C]0.110341309338156[/C][C]0.220682618676311[/C][C]0.889658690661844[/C][/ROW]
[ROW][C]57[/C][C]0.10736409170867[/C][C]0.21472818341734[/C][C]0.89263590829133[/C][/ROW]
[ROW][C]58[/C][C]0.110164145472449[/C][C]0.220328290944897[/C][C]0.889835854527551[/C][/ROW]
[ROW][C]59[/C][C]0.111282522896227[/C][C]0.222565045792455[/C][C]0.888717477103773[/C][/ROW]
[ROW][C]60[/C][C]0.126918436398266[/C][C]0.253836872796532[/C][C]0.873081563601734[/C][/ROW]
[ROW][C]61[/C][C]0.116715694256567[/C][C]0.233431388513134[/C][C]0.883284305743433[/C][/ROW]
[ROW][C]62[/C][C]0.105498956771448[/C][C]0.210997913542896[/C][C]0.894501043228552[/C][/ROW]
[ROW][C]63[/C][C]0.0928038506775762[/C][C]0.185607701355152[/C][C]0.907196149322424[/C][/ROW]
[ROW][C]64[/C][C]0.0794678454370682[/C][C]0.158935690874136[/C][C]0.920532154562932[/C][/ROW]
[ROW][C]65[/C][C]0.0673504690084116[/C][C]0.134700938016823[/C][C]0.932649530991588[/C][/ROW]
[ROW][C]66[/C][C]0.0654140325164357[/C][C]0.130828065032871[/C][C]0.934585967483564[/C][/ROW]
[ROW][C]67[/C][C]0.116667528911250[/C][C]0.233335057822501[/C][C]0.88333247108875[/C][/ROW]
[ROW][C]68[/C][C]0.125881301587028[/C][C]0.251762603174055[/C][C]0.874118698412972[/C][/ROW]
[ROW][C]69[/C][C]0.127610751667425[/C][C]0.255221503334850[/C][C]0.872389248332575[/C][/ROW]
[ROW][C]70[/C][C]0.130089487847321[/C][C]0.260178975694641[/C][C]0.86991051215268[/C][/ROW]
[ROW][C]71[/C][C]0.184001655999505[/C][C]0.36800331199901[/C][C]0.815998344000495[/C][/ROW]
[ROW][C]72[/C][C]0.309983030779993[/C][C]0.619966061559986[/C][C]0.690016969220007[/C][/ROW]
[ROW][C]73[/C][C]0.335322209931192[/C][C]0.670644419862384[/C][C]0.664677790068808[/C][/ROW]
[ROW][C]74[/C][C]0.339339778092081[/C][C]0.678679556184161[/C][C]0.66066022190792[/C][/ROW]
[ROW][C]75[/C][C]0.321615108654824[/C][C]0.643230217309648[/C][C]0.678384891345176[/C][/ROW]
[ROW][C]76[/C][C]0.304939305327843[/C][C]0.609878610655686[/C][C]0.695060694672157[/C][/ROW]
[ROW][C]77[/C][C]0.282939321427437[/C][C]0.565878642854873[/C][C]0.717060678572563[/C][/ROW]
[ROW][C]78[/C][C]0.312154314609704[/C][C]0.624308629219409[/C][C]0.687845685390295[/C][/ROW]
[ROW][C]79[/C][C]0.38847775060058[/C][C]0.77695550120116[/C][C]0.61152224939942[/C][/ROW]
[ROW][C]80[/C][C]0.398154014002545[/C][C]0.79630802800509[/C][C]0.601845985997455[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.1873237494259930.3746474988519850.812676250574007
170.0998183389946440.1996366779892880.900181661005356
180.04660669211671020.09321338423342040.95339330788329
190.04146906787135400.08293813574270810.958530932128646
200.04629994005469260.09259988010938530.953700059945307
210.02822394841534180.05644789683068360.971776051584658
220.02240747172079510.04481494344159030.977592528279205
230.02165853188132030.04331706376264070.97834146811868
240.01855062467710880.03710124935421760.981449375322891
250.03716908480319940.07433816960639880.9628309151968
260.04570710192266690.09141420384533380.954292898077333
270.04775996137550330.09551992275100660.952240038624497
280.05353299284711030.1070659856942210.94646700715289
290.0525766503703560.1051533007407120.947423349629644
300.06930435274962940.1386087054992590.930695647250371
310.1036984012184700.2073968024369400.89630159878153
320.08381571444350860.1676314288870170.916184285556491
330.08595583713985170.1719116742797030.914044162860148
340.1042187367879500.2084374735758990.89578126321205
350.1277351630309260.2554703260618520.872264836969074
360.1383041564073950.276608312814790.861695843592605
370.1696798440372860.3393596880745710.830320155962714
380.1994862249414960.3989724498829920.800513775058504
390.208588670098980.417177340197960.79141132990102
400.2147046790331290.4294093580662590.78529532096687
410.2085780902449880.4171561804899750.791421909755012
420.2051673797926250.4103347595852490.794832620207375
430.2319452122475230.4638904244950460.768054787752477
440.2451057453685630.4902114907371260.754894254631437
450.2806582259750450.5613164519500890.719341774024955
460.3170919524099450.634183904819890.682908047590055
470.3585480193288170.7170960386576340.641451980671183
480.4037439754845240.8074879509690490.596256024515476
490.3391801671410780.6783603342821550.660819832858922
500.2799099116495280.5598198232990560.720090088350472
510.2300086398046450.460017279609290.769991360195355
520.1857275492519180.3714550985038370.814272450748082
530.150357273567230.300714547134460.84964272643277
540.1241511594512810.2483023189025620.87584884054872
550.1324604245635850.2649208491271690.867539575436415
560.1103413093381560.2206826186763110.889658690661844
570.107364091708670.214728183417340.89263590829133
580.1101641454724490.2203282909448970.889835854527551
590.1112825228962270.2225650457924550.888717477103773
600.1269184363982660.2538368727965320.873081563601734
610.1167156942565670.2334313885131340.883284305743433
620.1054989567714480.2109979135428960.894501043228552
630.09280385067757620.1856077013551520.907196149322424
640.07946784543706820.1589356908741360.920532154562932
650.06735046900841160.1347009380168230.932649530991588
660.06541403251643570.1308280650328710.934585967483564
670.1166675289112500.2333350578225010.88333247108875
680.1258813015870280.2517626031740550.874118698412972
690.1276107516674250.2552215033348500.872389248332575
700.1300894878473210.2601789756946410.86991051215268
710.1840016559995050.368003311999010.815998344000495
720.3099830307799930.6199660615599860.690016969220007
730.3353222099311920.6706444198623840.664677790068808
740.3393397780920810.6786795561841610.66066022190792
750.3216151086548240.6432302173096480.678384891345176
760.3049393053278430.6098786106556860.695060694672157
770.2829393214274370.5658786428548730.717060678572563
780.3121543146097040.6243086292194090.687845685390295
790.388477750600580.776955501201160.61152224939942
800.3981540140025450.796308028005090.601845985997455







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level30.0461538461538462OK
10% type I error level100.153846153846154NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 3 & 0.0461538461538462 & OK \tabularnewline
10% type I error level & 10 & 0.153846153846154 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57437&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]3[/C][C]0.0461538461538462[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]10[/C][C]0.153846153846154[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57437&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57437&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level30.0461538461538462OK
10% type I error level100.153846153846154NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}