Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 18 Nov 2009 11:28:36 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/18/t12585689654os1bfpa6gzu6r9.htm/, Retrieved Fri, 01 Nov 2024 00:31:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=57582, Retrieved Fri, 01 Nov 2024 00:31:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact249
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RM D  [Multiple Regression] [Seatbelt] [2009-11-12 14:06:21] [b98453cac15ba1066b407e146608df68]
-    D      [Multiple Regression] [WS7_3] [2009-11-18 18:28:36] [f0f26816ac6124f58333f11f6c174000] [Current]
-             [Multiple Regression] [] [2009-11-19 14:03:28] [08fc5c07292c885b941f0cb515ce13f3]
-    D          [Multiple Regression] [] [2009-11-20 17:16:53] [4d62210f0915d3a20cbf115865da7cd4]
-    D        [Multiple Regression] [Paper Multiple re...] [2010-12-04 13:53:29] [814f53995537cd15c528d8efbf1cf544]
Feedback Forum

Post a new message
Dataseries X:
3.88	153.3
3.98	154.5
3.29	155.2
2.88	156.9
3.22	157
3.62	157.4
3.82	157.2
3.54	157.5
2.53	158
2.22	158.5
2.85	159
2.78	159.3
2.28	160
2.26	160.8
2.71	161.9
2.77	162.5
2.77	162.7
2.64	162.8
2.56	162.9
2.07	163
2.32	164
2.16	164.7
2.23	164.8
2.4	164.9
2.84	165
2.77	165.8
2.93	166.1
2.91	167.2
2.69	167.7
2.38	168.3
2.58	168.6
3.19	168.9
2.82	169.1
2.72	169.5
2.53	169.6
2.7	169.7
2.42	169.8
2.5	170.4
2.31	170.9
2.41	171.9
2.56	171.9
2.76	172
2.71	172
2.44	172.4
2.46	173
2.12	173.7
1.99	173.8
1.86	173.8
1.88	173.9
1.82	174.6
1.74	175
1.71	175.9
1.38	176
1.27	175.1
1.19	175.6
1.28	175.9
1.19	176.7
1.22	176.1
1.47	176.1
1.46	176.2
1.96	176.3
1.88	177.8
2.03	178.5
2.04	179.4
1.9	179.5
1.8	179.6
1.92	179.7
1.92	179.7
1.97	179.8
2.46	179.9
2.36	180.2
2.53	180.4
2.31	180.4
1.98	181.3
1.46	181.9
1.26	182.5
1.58	182.7
1.74	183.1
1.89	183.6
1.85	183.7
1.62	183.8
1.3	183.9
1.42	184.1
1.15	184.4
0.42	184.5
0.74	185.9
1.02	186.6
1.51	187.6
1.86	187.8
1.59	187.9
1.03	188
0.44	188.3
0.82	188.4
0.86	188.5
0.58	188.5
0.59	188.6
0.95	188.6
0.98	189.4
1.23	190
1.17	191.9
0.84	192.5
0.74	193
0.65	193.5
0.91	193.9
1.19	194.2
1.3	194.9
1.53	194.9
1.94	194.9
1.79	194.9
1.95	195.5
2.26	196
2.04	196.2
2.16	196.2
2.75	196.2
2.79	196.2
2.88	197
3.36	197.7
2.97	198
3.1	198.2
2.49	198.5
2.2	198.6
2.25	199.5
2.09	200
2.79	201.3
3.14	202.2
2.93	202.9
2.65	203.5
2.67	203.5
2.26	204
2.35	204.1
2.13	204.3
2.18	204.5
2.9	204.8
2.63	205.1
2.67	205.7
1.81	206.5
1.33	206.9
0.88	207.1
1.28	207.8
1.26	208
1.26	208.5
1.29	208.6
1.1	209
1.37	209.1
1.21	209.7
1.74	209.8
1.76	209.9
1.48	210
1.04	210.8
1.62	211.4
1.49	211.7
1.79	212
1.8	212.2
1.58	212.4
1.86	212.9
1.74	213.4
1.59	213.7
1.26	214
1.13	214.3
1.92	214.8
2.61	215
2.26	215.9
2.41	216.4
2.26	216.9
2.03	217.2
2.86	217.5
2.55	217.9
2.27	218.1
2.26	218.6
2.57	218.9
3.07	219.3
2.76	220.4
2.51	220.9
2.87	221
3.14	221.8
3.11	222
3.16	222.2
2.47	222.5
2.57	222.9
2.89	223.1
2.63	223.4
2.38	224
1.69	225.1
1.96	225.5
2.19	225.9
1.87	226.3
1.6	226.5
1.63	227
1.22	227.3
1.21	227.8
1.49	228.1
1.64	228.4
1.66	228.5
1.77	228.8
1.82	229
1.78	229.1
1.28	229.3
1.29	229.6
1.37	229.9
1.12	230
1.51	230.2
2.24	230.8
2.94	231
3.09	231.7
3.46	231.9
3.64	233
4.39	235.1
4.15	236
5.21	236.9
5.8	237.1
5.91	237.5
5.39	238.2
5.46	238.9
4.72	239.1
3.14	240
2.63	240.2
2.32	240.5
1.93	240.7
0.62	241.1
0.6	241.4
-0.37	242.2
-1.1	242.9
-1.68	243.2
-0.78	243.9




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = -25.4133631689989 + 0.179229739292978X[t] + 0.095280873041429M1[t] + 0.0421340272055563M2[t] -0.0422355774266983M3[t] -0.132143448451306M4[t] -0.132177275468981M5[t] -0.124486492861985M6[t] -0.132564913920593M7[t] -0.139372069077023M8[t] + 0.00123723721385846M9[t] -0.0336295549066252M10[t] -0.0235177431578595M11[t] -0.0695730755602266t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  -25.4133631689989 +  0.179229739292978X[t] +  0.095280873041429M1[t] +  0.0421340272055563M2[t] -0.0422355774266983M3[t] -0.132143448451306M4[t] -0.132177275468981M5[t] -0.124486492861985M6[t] -0.132564913920593M7[t] -0.139372069077023M8[t] +  0.00123723721385846M9[t] -0.0336295549066252M10[t] -0.0235177431578595M11[t] -0.0695730755602266t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  -25.4133631689989 +  0.179229739292978X[t] +  0.095280873041429M1[t] +  0.0421340272055563M2[t] -0.0422355774266983M3[t] -0.132143448451306M4[t] -0.132177275468981M5[t] -0.124486492861985M6[t] -0.132564913920593M7[t] -0.139372069077023M8[t] +  0.00123723721385846M9[t] -0.0336295549066252M10[t] -0.0235177431578595M11[t] -0.0695730755602266t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = -25.4133631689989 + 0.179229739292978X[t] + 0.095280873041429M1[t] + 0.0421340272055563M2[t] -0.0422355774266983M3[t] -0.132143448451306M4[t] -0.132177275468981M5[t] -0.124486492861985M6[t] -0.132564913920593M7[t] -0.139372069077023M8[t] + 0.00123723721385846M9[t] -0.0336295549066252M10[t] -0.0235177431578595M11[t] -0.0695730755602266t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-25.41336316899897.882439-3.2240.0014660.000733
X0.1792297392929780.0511433.50450.0005590.00028
M10.0952808730414290.3358730.28370.7769340.388467
M20.04213402720555630.3357190.12550.9002450.450122
M3-0.04223557742669830.336122-0.12570.9001250.450062
M4-0.1321434484513060.337958-0.3910.696190.348095
M5-0.1321772754689810.337897-0.39120.6960630.348032
M6-0.1244864928619850.337376-0.3690.7125110.356256
M7-0.1325649139205930.337046-0.39330.6944870.347243
M8-0.1393720690770230.336799-0.41380.6794330.339716
M90.001237237213858460.3407010.00360.9971060.498553
M10-0.03362955490662520.340469-0.09880.9214120.460706
M11-0.02351774315785950.340263-0.06910.9449630.472481
t-0.06957307556022660.019631-3.5440.0004860.000243

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -25.4133631689989 & 7.882439 & -3.224 & 0.001466 & 0.000733 \tabularnewline
X & 0.179229739292978 & 0.051143 & 3.5045 & 0.000559 & 0.00028 \tabularnewline
M1 & 0.095280873041429 & 0.335873 & 0.2837 & 0.776934 & 0.388467 \tabularnewline
M2 & 0.0421340272055563 & 0.335719 & 0.1255 & 0.900245 & 0.450122 \tabularnewline
M3 & -0.0422355774266983 & 0.336122 & -0.1257 & 0.900125 & 0.450062 \tabularnewline
M4 & -0.132143448451306 & 0.337958 & -0.391 & 0.69619 & 0.348095 \tabularnewline
M5 & -0.132177275468981 & 0.337897 & -0.3912 & 0.696063 & 0.348032 \tabularnewline
M6 & -0.124486492861985 & 0.337376 & -0.369 & 0.712511 & 0.356256 \tabularnewline
M7 & -0.132564913920593 & 0.337046 & -0.3933 & 0.694487 & 0.347243 \tabularnewline
M8 & -0.139372069077023 & 0.336799 & -0.4138 & 0.679433 & 0.339716 \tabularnewline
M9 & 0.00123723721385846 & 0.340701 & 0.0036 & 0.997106 & 0.498553 \tabularnewline
M10 & -0.0336295549066252 & 0.340469 & -0.0988 & 0.921412 & 0.460706 \tabularnewline
M11 & -0.0235177431578595 & 0.340263 & -0.0691 & 0.944963 & 0.472481 \tabularnewline
t & -0.0695730755602266 & 0.019631 & -3.544 & 0.000486 & 0.000243 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-25.4133631689989[/C][C]7.882439[/C][C]-3.224[/C][C]0.001466[/C][C]0.000733[/C][/ROW]
[ROW][C]X[/C][C]0.179229739292978[/C][C]0.051143[/C][C]3.5045[/C][C]0.000559[/C][C]0.00028[/C][/ROW]
[ROW][C]M1[/C][C]0.095280873041429[/C][C]0.335873[/C][C]0.2837[/C][C]0.776934[/C][C]0.388467[/C][/ROW]
[ROW][C]M2[/C][C]0.0421340272055563[/C][C]0.335719[/C][C]0.1255[/C][C]0.900245[/C][C]0.450122[/C][/ROW]
[ROW][C]M3[/C][C]-0.0422355774266983[/C][C]0.336122[/C][C]-0.1257[/C][C]0.900125[/C][C]0.450062[/C][/ROW]
[ROW][C]M4[/C][C]-0.132143448451306[/C][C]0.337958[/C][C]-0.391[/C][C]0.69619[/C][C]0.348095[/C][/ROW]
[ROW][C]M5[/C][C]-0.132177275468981[/C][C]0.337897[/C][C]-0.3912[/C][C]0.696063[/C][C]0.348032[/C][/ROW]
[ROW][C]M6[/C][C]-0.124486492861985[/C][C]0.337376[/C][C]-0.369[/C][C]0.712511[/C][C]0.356256[/C][/ROW]
[ROW][C]M7[/C][C]-0.132564913920593[/C][C]0.337046[/C][C]-0.3933[/C][C]0.694487[/C][C]0.347243[/C][/ROW]
[ROW][C]M8[/C][C]-0.139372069077023[/C][C]0.336799[/C][C]-0.4138[/C][C]0.679433[/C][C]0.339716[/C][/ROW]
[ROW][C]M9[/C][C]0.00123723721385846[/C][C]0.340701[/C][C]0.0036[/C][C]0.997106[/C][C]0.498553[/C][/ROW]
[ROW][C]M10[/C][C]-0.0336295549066252[/C][C]0.340469[/C][C]-0.0988[/C][C]0.921412[/C][C]0.460706[/C][/ROW]
[ROW][C]M11[/C][C]-0.0235177431578595[/C][C]0.340263[/C][C]-0.0691[/C][C]0.944963[/C][C]0.472481[/C][/ROW]
[ROW][C]t[/C][C]-0.0695730755602266[/C][C]0.019631[/C][C]-3.544[/C][C]0.000486[/C][C]0.000243[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-25.41336316899897.882439-3.2240.0014660.000733
X0.1792297392929780.0511433.50450.0005590.00028
M10.0952808730414290.3358730.28370.7769340.388467
M20.04213402720555630.3357190.12550.9002450.450122
M3-0.04223557742669830.336122-0.12570.9001250.450062
M4-0.1321434484513060.337958-0.3910.696190.348095
M5-0.1321772754689810.337897-0.39120.6960630.348032
M6-0.1244864928619850.337376-0.3690.7125110.356256
M7-0.1325649139205930.337046-0.39330.6944870.347243
M8-0.1393720690770230.336799-0.41380.6794330.339716
M90.001237237213858460.3407010.00360.9971060.498553
M10-0.03362955490662520.340469-0.09880.9214120.460706
M11-0.02351774315785950.340263-0.06910.9449630.472481
t-0.06957307556022660.019631-3.5440.0004860.000243







Multiple Linear Regression - Regression Statistics
Multiple R0.243310752051549
R-squared0.0592001220638905
Adjusted R-squared0.000960129620226513
F-TEST (value)1.01648574424448
F-TEST (DF numerator)13
F-TEST (DF denominator)210
p-value0.436507145272958
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.02046354510624
Sum Squared Residuals218.682627847067

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.243310752051549 \tabularnewline
R-squared & 0.0592001220638905 \tabularnewline
Adjusted R-squared & 0.000960129620226513 \tabularnewline
F-TEST (value) & 1.01648574424448 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 210 \tabularnewline
p-value & 0.436507145272958 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.02046354510624 \tabularnewline
Sum Squared Residuals & 218.682627847067 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.243310752051549[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0592001220638905[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.000960129620226513[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.01648574424448[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]210[/C][/ROW]
[ROW][C]p-value[/C][C]0.436507145272958[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.02046354510624[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]218.682627847067[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.243310752051549
R-squared0.0592001220638905
Adjusted R-squared0.000960129620226513
F-TEST (value)1.01648574424448
F-TEST (DF numerator)13
F-TEST (DF denominator)210
p-value0.436507145272958
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.02046354510624
Sum Squared Residuals218.682627847067







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
13.882.088263662095741.79173633790426
23.982.180619427851191.79938057214881
33.292.152137565163811.13786243483619
42.882.297347175377040.582652824622961
53.222.245663246728430.974336753271567
63.622.255472849492401.36452715050760
73.822.141975405014961.67802459498504
83.542.11936409608621.42063590391380
92.532.280015196463340.249984803536656
102.222.26519019842912-0.0451901984291231
112.852.295343804264150.554656195735849
122.782.303057393649680.47694260635032
132.282.45422600863596-0.174226008635964
142.262.47488987867425-0.214889878674251
152.712.518099911704040.191900088295957
162.772.466156808694990.303843191305007
172.772.432395853975680.337604146024316
182.642.388436534951760.251563465048243
192.562.328708012262220.231291987737782
202.072.27025075547486-0.200250755474859
212.322.52051672549849-0.200516725498491
222.162.54153767532286-0.381537675322863
232.232.49999938544070-0.269999385440704
242.42.47186702696763-0.0718670269676341
252.842.515497798378130.324502201621867
262.772.536161668416420.233838331583582
272.932.435987910011830.494012089988174
282.912.473659676649270.436340323350734
292.692.493667643717850.196332356282147
302.382.53932319434041-0.159323194340413
312.582.515440619509470.0645593804905305
323.192.492829310580710.697170689419292
332.822.599711489169960.220288510830043
342.722.566963517206440.153036482793562
352.532.525425227324270.00457477267572591
362.72.497292868851200.202707131148797
372.422.54092364026171-0.120923640261707
382.52.52574156244139-0.0257415624413933
392.312.4614137518954-0.151413751895402
402.412.48116254460354-0.071162544603544
412.562.411555642025640.148444357974358
422.762.367596323001710.392403676998291
432.712.289944826382870.420055173617126
442.442.285256491383410.15474350861659
452.462.46383056568985-0.0038305656898506
462.122.48485151551422-0.364851515514222
471.992.44331322563206-0.453313225632063
481.862.39725789322970-0.537257893229696
491.882.44088866464019-0.560888664640195
501.822.44362956074918-0.623629560749178
511.742.36137877627389-0.621378776273889
521.712.36320459505274-0.653204595052735
531.382.31152066640413-0.93152066640413
541.272.08833160808722-0.818331608087219
551.192.10029498111487-0.910294981114872
561.282.07768367218611-0.797683672186112
571.192.29210369435115-1.10210369435115
581.222.08012598309465-0.86012598309465
591.472.02066471928319-0.550664719283189
601.461.99253236081012-0.532532360810118
611.962.03616313222062-0.0761631322206229
621.882.18228781976399-0.30228781976399
632.032.15380595707659-0.123805957076591
642.042.15563177585544-0.115631775855437
651.92.10394784720683-0.203947847206832
661.82.0599885281829-0.259988528182898
671.922.00026000549336-0.0802600054933604
681.921.92387977477670-0.00387977477670409
691.972.01283897943666-0.0428389794366607
702.461.926322085685250.533677914314753
712.361.920629743661680.439370256338324
722.531.910420359117910.619579640882092
732.311.936128156599110.37387184340089
741.981.974715000566690.00528499943330803
751.461.92831016395000-0.468310163949996
761.261.87636706094095-0.616367060940947
771.581.84260610622164-0.262606106221639
781.741.8524157089856-0.112415708985600
791.891.864379082013250.0256209179867456
801.851.805921825225890.0440781747741052
811.621.89488102988585-0.274881029885851
821.31.80836413613444-0.508364136134438
831.421.78474882018157-0.364748820181570
841.151.7924624095671-0.642462409567099
850.421.83609318097760-1.41609318097760
860.741.96429489459167-1.22429489459167
871.021.93581303190427-0.91581303190427
881.511.95556182461241-0.445561824612412
891.861.92180086989311-0.0618008698931087
901.591.87784155086918-0.287841550869175
911.031.81811302817964-0.788113028179637
920.441.79550171925088-1.35550171925088
930.821.88446092391083-1.06446092391083
940.861.79794403015941-0.937944030159414
950.581.73848276634795-1.15848276634795
960.591.71035040787488-1.12035040787488
970.951.73605820535609-0.786058205356085
980.981.75672207539437-0.77672207539437
991.231.71031723877767-0.480317238777674
1001.171.89137279684950-0.721372796849498
1010.841.92930373784738-1.08930373784738
1020.741.95703631454064-1.21703631454064
1030.651.96899968756829-1.31899968756829
1040.911.96431135256883-1.05431135256883
1051.192.08911650508738-0.899116505087375
1061.32.11013745491175-0.810137454911752
1071.532.05067619110029-0.520676191100291
1081.942.00462085869792-0.0646208586979243
1091.792.03032865617913-0.240328656179127
1101.952.01514657835881-0.065146578358813
1112.261.950818767812820.309181232187179
1122.041.827183769086580.212816230913421
1132.161.757576866508680.402423133491323
1142.751.695694573555451.05430542644455
1152.791.618043076936611.17195692306339
1162.881.685046637654341.19495336234566
1173.361.881543685890081.47845631410992
1182.971.830872739997261.13912726000274
1193.11.807257424044391.29274257595561
1202.491.814971013429920.675028986570077
1212.21.858601784840420.341398215159578
1222.251.897188628808000.352811371191996
1232.091.832860818262010.257139181737988
1242.791.906378532758050.88362146724195
1253.141.998078395543821.14192160445618
1262.932.061656920095680.86834307990432
1272.652.091543267052630.558456732947368
1282.672.015163036335970.654836963664025
1292.262.175814136713120.0841858632868812
1302.352.089297242961710.260702757038295
1312.132.065681927008840.0643180729911573
1322.182.055472542465070.124527457534931
1332.92.134949261734170.765050738265833
1342.632.065998262125960.564001737874042
1352.672.019593425509260.650406574490738
1361.812.00349627035881-0.193496270358812
1371.332.0055812634981-0.675581263498101
1380.881.97954491840346-1.09954491840346
1391.282.02735423928972-0.747354239289718
1401.261.98681995643166-0.726819956431655
1411.262.1474710568088-0.887471056808798
1421.292.06095416305738-0.770954163057385
1431.12.07318479496312-0.973184794963116
1441.372.04505243649005-0.675052436490045
1451.212.17829807754703-0.968298077547034
1461.742.07350113008024-0.333501130080236
1471.761.93748142381705-0.177481423817052
1481.481.79592345116151-0.315923451161514
1491.041.86970034001800-0.829700340017996
1501.621.91535589064055-0.295355890640551
1511.491.89147331580961-0.401473315809607
1521.791.86886200688085-0.0788620068808458
1531.81.97574418547009-0.175744185470093
1541.581.90715026564798-0.327150265647982
1551.861.93730387148301-0.0773038714830098
1561.741.98086340872713-0.240863408727131
1571.592.06034012799622-0.470340127996224
1581.261.99138912838802-0.73138912838802
1591.131.89121536998343-0.761215369983435
1601.921.821349293045090.0986507069549115
1612.611.787588338325780.82241166167422
1622.261.887012810736230.372987189263769
1632.411.898976183763880.511023816236115
1642.261.912210822693720.347789177306283
1652.032.03701597521226-0.00701597521226226
1662.861.986345029319450.873654970680553
1672.551.998575661225180.551424338774821
1682.271.988366276681400.281633723318596
1692.262.103688943809100.156311056190903
1702.572.034737944200890.535262055799107
1713.071.952487159725601.11751284027440
1722.761.990158926363040.769841073636957
1732.512.010166893431630.499833106568371
1742.871.966207574407700.903792425592304
1753.142.031939869223241.10806013077676
1763.111.991405586365181.11859441363482
1773.162.098287764954431.06171223504557
1782.472.047616819061620.422383180938384
1792.572.059847450967350.510152549032653
1802.892.049638066423570.840361933576427
1812.632.129114785692670.500885214307329
1822.382.113932707872360.266067292127643
1831.692.15714274090215-0.46714274090215
1841.962.06935369003451-0.109353690034508
1852.192.07143868317380.118561316826202
1861.872.08124828593776-0.211248285937759
1871.62.03944273717752-0.439442737177518
1881.632.05267737610735-0.422677376107351
1891.222.1774825286259-0.957482528625901
1901.212.16265753059168-0.95265753059168
1911.492.15696518856811-0.666965188568109
1921.642.16467877795364-0.524678777953637
1931.662.20830954936414-0.548309549364137
1941.772.13935854975593-0.369358549755932
1951.822.02126181742205-0.201261817422045
1961.781.87970384476651-0.0997038447665063
1971.281.84594289004720-0.565942890047203
1981.291.83782951888186-0.547829518881863
1991.371.81394694405092-0.443946944050924
2001.121.75548968726356-0.635489687263563
2011.511.86237186585281-0.352371865852812
2022.241.865469841747890.374530158252107
2032.941.841854525795031.09814547420497
2043.091.921260010897741.16873998910226
2053.461.982813756237541.47718624376246
2063.642.057246548063721.58275345193628
2074.392.279686320386492.11031367961351
2084.152.281512139165331.86848786083467
2095.212.373212001951112.83678799804889
2105.82.347175656856483.45282434314352
2115.912.341216055954833.56878394404517
2125.392.390296642743262.99970335725674
2135.462.5867936909792.873206309021
2144.722.518199771156882.20180022884312
2153.142.620045272709100.519954727290896
2162.632.609835888165330.0201641118346695
2172.322.68931260743443-0.369312607434429
2181.932.60243863389692-0.672438633896922
2190.622.52018784942163-1.90018784942163
2200.62.41447582462469-1.81447582462469
221-0.372.48825271348117-2.85825271348117
222-1.12.55183123803303-3.65183123803303
223-1.682.52794866320208-4.20794866320208
224-0.782.57702924999051-3.35702924999051

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 3.88 & 2.08826366209574 & 1.79173633790426 \tabularnewline
2 & 3.98 & 2.18061942785119 & 1.79938057214881 \tabularnewline
3 & 3.29 & 2.15213756516381 & 1.13786243483619 \tabularnewline
4 & 2.88 & 2.29734717537704 & 0.582652824622961 \tabularnewline
5 & 3.22 & 2.24566324672843 & 0.974336753271567 \tabularnewline
6 & 3.62 & 2.25547284949240 & 1.36452715050760 \tabularnewline
7 & 3.82 & 2.14197540501496 & 1.67802459498504 \tabularnewline
8 & 3.54 & 2.1193640960862 & 1.42063590391380 \tabularnewline
9 & 2.53 & 2.28001519646334 & 0.249984803536656 \tabularnewline
10 & 2.22 & 2.26519019842912 & -0.0451901984291231 \tabularnewline
11 & 2.85 & 2.29534380426415 & 0.554656195735849 \tabularnewline
12 & 2.78 & 2.30305739364968 & 0.47694260635032 \tabularnewline
13 & 2.28 & 2.45422600863596 & -0.174226008635964 \tabularnewline
14 & 2.26 & 2.47488987867425 & -0.214889878674251 \tabularnewline
15 & 2.71 & 2.51809991170404 & 0.191900088295957 \tabularnewline
16 & 2.77 & 2.46615680869499 & 0.303843191305007 \tabularnewline
17 & 2.77 & 2.43239585397568 & 0.337604146024316 \tabularnewline
18 & 2.64 & 2.38843653495176 & 0.251563465048243 \tabularnewline
19 & 2.56 & 2.32870801226222 & 0.231291987737782 \tabularnewline
20 & 2.07 & 2.27025075547486 & -0.200250755474859 \tabularnewline
21 & 2.32 & 2.52051672549849 & -0.200516725498491 \tabularnewline
22 & 2.16 & 2.54153767532286 & -0.381537675322863 \tabularnewline
23 & 2.23 & 2.49999938544070 & -0.269999385440704 \tabularnewline
24 & 2.4 & 2.47186702696763 & -0.0718670269676341 \tabularnewline
25 & 2.84 & 2.51549779837813 & 0.324502201621867 \tabularnewline
26 & 2.77 & 2.53616166841642 & 0.233838331583582 \tabularnewline
27 & 2.93 & 2.43598791001183 & 0.494012089988174 \tabularnewline
28 & 2.91 & 2.47365967664927 & 0.436340323350734 \tabularnewline
29 & 2.69 & 2.49366764371785 & 0.196332356282147 \tabularnewline
30 & 2.38 & 2.53932319434041 & -0.159323194340413 \tabularnewline
31 & 2.58 & 2.51544061950947 & 0.0645593804905305 \tabularnewline
32 & 3.19 & 2.49282931058071 & 0.697170689419292 \tabularnewline
33 & 2.82 & 2.59971148916996 & 0.220288510830043 \tabularnewline
34 & 2.72 & 2.56696351720644 & 0.153036482793562 \tabularnewline
35 & 2.53 & 2.52542522732427 & 0.00457477267572591 \tabularnewline
36 & 2.7 & 2.49729286885120 & 0.202707131148797 \tabularnewline
37 & 2.42 & 2.54092364026171 & -0.120923640261707 \tabularnewline
38 & 2.5 & 2.52574156244139 & -0.0257415624413933 \tabularnewline
39 & 2.31 & 2.4614137518954 & -0.151413751895402 \tabularnewline
40 & 2.41 & 2.48116254460354 & -0.071162544603544 \tabularnewline
41 & 2.56 & 2.41155564202564 & 0.148444357974358 \tabularnewline
42 & 2.76 & 2.36759632300171 & 0.392403676998291 \tabularnewline
43 & 2.71 & 2.28994482638287 & 0.420055173617126 \tabularnewline
44 & 2.44 & 2.28525649138341 & 0.15474350861659 \tabularnewline
45 & 2.46 & 2.46383056568985 & -0.0038305656898506 \tabularnewline
46 & 2.12 & 2.48485151551422 & -0.364851515514222 \tabularnewline
47 & 1.99 & 2.44331322563206 & -0.453313225632063 \tabularnewline
48 & 1.86 & 2.39725789322970 & -0.537257893229696 \tabularnewline
49 & 1.88 & 2.44088866464019 & -0.560888664640195 \tabularnewline
50 & 1.82 & 2.44362956074918 & -0.623629560749178 \tabularnewline
51 & 1.74 & 2.36137877627389 & -0.621378776273889 \tabularnewline
52 & 1.71 & 2.36320459505274 & -0.653204595052735 \tabularnewline
53 & 1.38 & 2.31152066640413 & -0.93152066640413 \tabularnewline
54 & 1.27 & 2.08833160808722 & -0.818331608087219 \tabularnewline
55 & 1.19 & 2.10029498111487 & -0.910294981114872 \tabularnewline
56 & 1.28 & 2.07768367218611 & -0.797683672186112 \tabularnewline
57 & 1.19 & 2.29210369435115 & -1.10210369435115 \tabularnewline
58 & 1.22 & 2.08012598309465 & -0.86012598309465 \tabularnewline
59 & 1.47 & 2.02066471928319 & -0.550664719283189 \tabularnewline
60 & 1.46 & 1.99253236081012 & -0.532532360810118 \tabularnewline
61 & 1.96 & 2.03616313222062 & -0.0761631322206229 \tabularnewline
62 & 1.88 & 2.18228781976399 & -0.30228781976399 \tabularnewline
63 & 2.03 & 2.15380595707659 & -0.123805957076591 \tabularnewline
64 & 2.04 & 2.15563177585544 & -0.115631775855437 \tabularnewline
65 & 1.9 & 2.10394784720683 & -0.203947847206832 \tabularnewline
66 & 1.8 & 2.0599885281829 & -0.259988528182898 \tabularnewline
67 & 1.92 & 2.00026000549336 & -0.0802600054933604 \tabularnewline
68 & 1.92 & 1.92387977477670 & -0.00387977477670409 \tabularnewline
69 & 1.97 & 2.01283897943666 & -0.0428389794366607 \tabularnewline
70 & 2.46 & 1.92632208568525 & 0.533677914314753 \tabularnewline
71 & 2.36 & 1.92062974366168 & 0.439370256338324 \tabularnewline
72 & 2.53 & 1.91042035911791 & 0.619579640882092 \tabularnewline
73 & 2.31 & 1.93612815659911 & 0.37387184340089 \tabularnewline
74 & 1.98 & 1.97471500056669 & 0.00528499943330803 \tabularnewline
75 & 1.46 & 1.92831016395000 & -0.468310163949996 \tabularnewline
76 & 1.26 & 1.87636706094095 & -0.616367060940947 \tabularnewline
77 & 1.58 & 1.84260610622164 & -0.262606106221639 \tabularnewline
78 & 1.74 & 1.8524157089856 & -0.112415708985600 \tabularnewline
79 & 1.89 & 1.86437908201325 & 0.0256209179867456 \tabularnewline
80 & 1.85 & 1.80592182522589 & 0.0440781747741052 \tabularnewline
81 & 1.62 & 1.89488102988585 & -0.274881029885851 \tabularnewline
82 & 1.3 & 1.80836413613444 & -0.508364136134438 \tabularnewline
83 & 1.42 & 1.78474882018157 & -0.364748820181570 \tabularnewline
84 & 1.15 & 1.7924624095671 & -0.642462409567099 \tabularnewline
85 & 0.42 & 1.83609318097760 & -1.41609318097760 \tabularnewline
86 & 0.74 & 1.96429489459167 & -1.22429489459167 \tabularnewline
87 & 1.02 & 1.93581303190427 & -0.91581303190427 \tabularnewline
88 & 1.51 & 1.95556182461241 & -0.445561824612412 \tabularnewline
89 & 1.86 & 1.92180086989311 & -0.0618008698931087 \tabularnewline
90 & 1.59 & 1.87784155086918 & -0.287841550869175 \tabularnewline
91 & 1.03 & 1.81811302817964 & -0.788113028179637 \tabularnewline
92 & 0.44 & 1.79550171925088 & -1.35550171925088 \tabularnewline
93 & 0.82 & 1.88446092391083 & -1.06446092391083 \tabularnewline
94 & 0.86 & 1.79794403015941 & -0.937944030159414 \tabularnewline
95 & 0.58 & 1.73848276634795 & -1.15848276634795 \tabularnewline
96 & 0.59 & 1.71035040787488 & -1.12035040787488 \tabularnewline
97 & 0.95 & 1.73605820535609 & -0.786058205356085 \tabularnewline
98 & 0.98 & 1.75672207539437 & -0.77672207539437 \tabularnewline
99 & 1.23 & 1.71031723877767 & -0.480317238777674 \tabularnewline
100 & 1.17 & 1.89137279684950 & -0.721372796849498 \tabularnewline
101 & 0.84 & 1.92930373784738 & -1.08930373784738 \tabularnewline
102 & 0.74 & 1.95703631454064 & -1.21703631454064 \tabularnewline
103 & 0.65 & 1.96899968756829 & -1.31899968756829 \tabularnewline
104 & 0.91 & 1.96431135256883 & -1.05431135256883 \tabularnewline
105 & 1.19 & 2.08911650508738 & -0.899116505087375 \tabularnewline
106 & 1.3 & 2.11013745491175 & -0.810137454911752 \tabularnewline
107 & 1.53 & 2.05067619110029 & -0.520676191100291 \tabularnewline
108 & 1.94 & 2.00462085869792 & -0.0646208586979243 \tabularnewline
109 & 1.79 & 2.03032865617913 & -0.240328656179127 \tabularnewline
110 & 1.95 & 2.01514657835881 & -0.065146578358813 \tabularnewline
111 & 2.26 & 1.95081876781282 & 0.309181232187179 \tabularnewline
112 & 2.04 & 1.82718376908658 & 0.212816230913421 \tabularnewline
113 & 2.16 & 1.75757686650868 & 0.402423133491323 \tabularnewline
114 & 2.75 & 1.69569457355545 & 1.05430542644455 \tabularnewline
115 & 2.79 & 1.61804307693661 & 1.17195692306339 \tabularnewline
116 & 2.88 & 1.68504663765434 & 1.19495336234566 \tabularnewline
117 & 3.36 & 1.88154368589008 & 1.47845631410992 \tabularnewline
118 & 2.97 & 1.83087273999726 & 1.13912726000274 \tabularnewline
119 & 3.1 & 1.80725742404439 & 1.29274257595561 \tabularnewline
120 & 2.49 & 1.81497101342992 & 0.675028986570077 \tabularnewline
121 & 2.2 & 1.85860178484042 & 0.341398215159578 \tabularnewline
122 & 2.25 & 1.89718862880800 & 0.352811371191996 \tabularnewline
123 & 2.09 & 1.83286081826201 & 0.257139181737988 \tabularnewline
124 & 2.79 & 1.90637853275805 & 0.88362146724195 \tabularnewline
125 & 3.14 & 1.99807839554382 & 1.14192160445618 \tabularnewline
126 & 2.93 & 2.06165692009568 & 0.86834307990432 \tabularnewline
127 & 2.65 & 2.09154326705263 & 0.558456732947368 \tabularnewline
128 & 2.67 & 2.01516303633597 & 0.654836963664025 \tabularnewline
129 & 2.26 & 2.17581413671312 & 0.0841858632868812 \tabularnewline
130 & 2.35 & 2.08929724296171 & 0.260702757038295 \tabularnewline
131 & 2.13 & 2.06568192700884 & 0.0643180729911573 \tabularnewline
132 & 2.18 & 2.05547254246507 & 0.124527457534931 \tabularnewline
133 & 2.9 & 2.13494926173417 & 0.765050738265833 \tabularnewline
134 & 2.63 & 2.06599826212596 & 0.564001737874042 \tabularnewline
135 & 2.67 & 2.01959342550926 & 0.650406574490738 \tabularnewline
136 & 1.81 & 2.00349627035881 & -0.193496270358812 \tabularnewline
137 & 1.33 & 2.0055812634981 & -0.675581263498101 \tabularnewline
138 & 0.88 & 1.97954491840346 & -1.09954491840346 \tabularnewline
139 & 1.28 & 2.02735423928972 & -0.747354239289718 \tabularnewline
140 & 1.26 & 1.98681995643166 & -0.726819956431655 \tabularnewline
141 & 1.26 & 2.1474710568088 & -0.887471056808798 \tabularnewline
142 & 1.29 & 2.06095416305738 & -0.770954163057385 \tabularnewline
143 & 1.1 & 2.07318479496312 & -0.973184794963116 \tabularnewline
144 & 1.37 & 2.04505243649005 & -0.675052436490045 \tabularnewline
145 & 1.21 & 2.17829807754703 & -0.968298077547034 \tabularnewline
146 & 1.74 & 2.07350113008024 & -0.333501130080236 \tabularnewline
147 & 1.76 & 1.93748142381705 & -0.177481423817052 \tabularnewline
148 & 1.48 & 1.79592345116151 & -0.315923451161514 \tabularnewline
149 & 1.04 & 1.86970034001800 & -0.829700340017996 \tabularnewline
150 & 1.62 & 1.91535589064055 & -0.295355890640551 \tabularnewline
151 & 1.49 & 1.89147331580961 & -0.401473315809607 \tabularnewline
152 & 1.79 & 1.86886200688085 & -0.0788620068808458 \tabularnewline
153 & 1.8 & 1.97574418547009 & -0.175744185470093 \tabularnewline
154 & 1.58 & 1.90715026564798 & -0.327150265647982 \tabularnewline
155 & 1.86 & 1.93730387148301 & -0.0773038714830098 \tabularnewline
156 & 1.74 & 1.98086340872713 & -0.240863408727131 \tabularnewline
157 & 1.59 & 2.06034012799622 & -0.470340127996224 \tabularnewline
158 & 1.26 & 1.99138912838802 & -0.73138912838802 \tabularnewline
159 & 1.13 & 1.89121536998343 & -0.761215369983435 \tabularnewline
160 & 1.92 & 1.82134929304509 & 0.0986507069549115 \tabularnewline
161 & 2.61 & 1.78758833832578 & 0.82241166167422 \tabularnewline
162 & 2.26 & 1.88701281073623 & 0.372987189263769 \tabularnewline
163 & 2.41 & 1.89897618376388 & 0.511023816236115 \tabularnewline
164 & 2.26 & 1.91221082269372 & 0.347789177306283 \tabularnewline
165 & 2.03 & 2.03701597521226 & -0.00701597521226226 \tabularnewline
166 & 2.86 & 1.98634502931945 & 0.873654970680553 \tabularnewline
167 & 2.55 & 1.99857566122518 & 0.551424338774821 \tabularnewline
168 & 2.27 & 1.98836627668140 & 0.281633723318596 \tabularnewline
169 & 2.26 & 2.10368894380910 & 0.156311056190903 \tabularnewline
170 & 2.57 & 2.03473794420089 & 0.535262055799107 \tabularnewline
171 & 3.07 & 1.95248715972560 & 1.11751284027440 \tabularnewline
172 & 2.76 & 1.99015892636304 & 0.769841073636957 \tabularnewline
173 & 2.51 & 2.01016689343163 & 0.499833106568371 \tabularnewline
174 & 2.87 & 1.96620757440770 & 0.903792425592304 \tabularnewline
175 & 3.14 & 2.03193986922324 & 1.10806013077676 \tabularnewline
176 & 3.11 & 1.99140558636518 & 1.11859441363482 \tabularnewline
177 & 3.16 & 2.09828776495443 & 1.06171223504557 \tabularnewline
178 & 2.47 & 2.04761681906162 & 0.422383180938384 \tabularnewline
179 & 2.57 & 2.05984745096735 & 0.510152549032653 \tabularnewline
180 & 2.89 & 2.04963806642357 & 0.840361933576427 \tabularnewline
181 & 2.63 & 2.12911478569267 & 0.500885214307329 \tabularnewline
182 & 2.38 & 2.11393270787236 & 0.266067292127643 \tabularnewline
183 & 1.69 & 2.15714274090215 & -0.46714274090215 \tabularnewline
184 & 1.96 & 2.06935369003451 & -0.109353690034508 \tabularnewline
185 & 2.19 & 2.0714386831738 & 0.118561316826202 \tabularnewline
186 & 1.87 & 2.08124828593776 & -0.211248285937759 \tabularnewline
187 & 1.6 & 2.03944273717752 & -0.439442737177518 \tabularnewline
188 & 1.63 & 2.05267737610735 & -0.422677376107351 \tabularnewline
189 & 1.22 & 2.1774825286259 & -0.957482528625901 \tabularnewline
190 & 1.21 & 2.16265753059168 & -0.95265753059168 \tabularnewline
191 & 1.49 & 2.15696518856811 & -0.666965188568109 \tabularnewline
192 & 1.64 & 2.16467877795364 & -0.524678777953637 \tabularnewline
193 & 1.66 & 2.20830954936414 & -0.548309549364137 \tabularnewline
194 & 1.77 & 2.13935854975593 & -0.369358549755932 \tabularnewline
195 & 1.82 & 2.02126181742205 & -0.201261817422045 \tabularnewline
196 & 1.78 & 1.87970384476651 & -0.0997038447665063 \tabularnewline
197 & 1.28 & 1.84594289004720 & -0.565942890047203 \tabularnewline
198 & 1.29 & 1.83782951888186 & -0.547829518881863 \tabularnewline
199 & 1.37 & 1.81394694405092 & -0.443946944050924 \tabularnewline
200 & 1.12 & 1.75548968726356 & -0.635489687263563 \tabularnewline
201 & 1.51 & 1.86237186585281 & -0.352371865852812 \tabularnewline
202 & 2.24 & 1.86546984174789 & 0.374530158252107 \tabularnewline
203 & 2.94 & 1.84185452579503 & 1.09814547420497 \tabularnewline
204 & 3.09 & 1.92126001089774 & 1.16873998910226 \tabularnewline
205 & 3.46 & 1.98281375623754 & 1.47718624376246 \tabularnewline
206 & 3.64 & 2.05724654806372 & 1.58275345193628 \tabularnewline
207 & 4.39 & 2.27968632038649 & 2.11031367961351 \tabularnewline
208 & 4.15 & 2.28151213916533 & 1.86848786083467 \tabularnewline
209 & 5.21 & 2.37321200195111 & 2.83678799804889 \tabularnewline
210 & 5.8 & 2.34717565685648 & 3.45282434314352 \tabularnewline
211 & 5.91 & 2.34121605595483 & 3.56878394404517 \tabularnewline
212 & 5.39 & 2.39029664274326 & 2.99970335725674 \tabularnewline
213 & 5.46 & 2.586793690979 & 2.873206309021 \tabularnewline
214 & 4.72 & 2.51819977115688 & 2.20180022884312 \tabularnewline
215 & 3.14 & 2.62004527270910 & 0.519954727290896 \tabularnewline
216 & 2.63 & 2.60983588816533 & 0.0201641118346695 \tabularnewline
217 & 2.32 & 2.68931260743443 & -0.369312607434429 \tabularnewline
218 & 1.93 & 2.60243863389692 & -0.672438633896922 \tabularnewline
219 & 0.62 & 2.52018784942163 & -1.90018784942163 \tabularnewline
220 & 0.6 & 2.41447582462469 & -1.81447582462469 \tabularnewline
221 & -0.37 & 2.48825271348117 & -2.85825271348117 \tabularnewline
222 & -1.1 & 2.55183123803303 & -3.65183123803303 \tabularnewline
223 & -1.68 & 2.52794866320208 & -4.20794866320208 \tabularnewline
224 & -0.78 & 2.57702924999051 & -3.35702924999051 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]3.88[/C][C]2.08826366209574[/C][C]1.79173633790426[/C][/ROW]
[ROW][C]2[/C][C]3.98[/C][C]2.18061942785119[/C][C]1.79938057214881[/C][/ROW]
[ROW][C]3[/C][C]3.29[/C][C]2.15213756516381[/C][C]1.13786243483619[/C][/ROW]
[ROW][C]4[/C][C]2.88[/C][C]2.29734717537704[/C][C]0.582652824622961[/C][/ROW]
[ROW][C]5[/C][C]3.22[/C][C]2.24566324672843[/C][C]0.974336753271567[/C][/ROW]
[ROW][C]6[/C][C]3.62[/C][C]2.25547284949240[/C][C]1.36452715050760[/C][/ROW]
[ROW][C]7[/C][C]3.82[/C][C]2.14197540501496[/C][C]1.67802459498504[/C][/ROW]
[ROW][C]8[/C][C]3.54[/C][C]2.1193640960862[/C][C]1.42063590391380[/C][/ROW]
[ROW][C]9[/C][C]2.53[/C][C]2.28001519646334[/C][C]0.249984803536656[/C][/ROW]
[ROW][C]10[/C][C]2.22[/C][C]2.26519019842912[/C][C]-0.0451901984291231[/C][/ROW]
[ROW][C]11[/C][C]2.85[/C][C]2.29534380426415[/C][C]0.554656195735849[/C][/ROW]
[ROW][C]12[/C][C]2.78[/C][C]2.30305739364968[/C][C]0.47694260635032[/C][/ROW]
[ROW][C]13[/C][C]2.28[/C][C]2.45422600863596[/C][C]-0.174226008635964[/C][/ROW]
[ROW][C]14[/C][C]2.26[/C][C]2.47488987867425[/C][C]-0.214889878674251[/C][/ROW]
[ROW][C]15[/C][C]2.71[/C][C]2.51809991170404[/C][C]0.191900088295957[/C][/ROW]
[ROW][C]16[/C][C]2.77[/C][C]2.46615680869499[/C][C]0.303843191305007[/C][/ROW]
[ROW][C]17[/C][C]2.77[/C][C]2.43239585397568[/C][C]0.337604146024316[/C][/ROW]
[ROW][C]18[/C][C]2.64[/C][C]2.38843653495176[/C][C]0.251563465048243[/C][/ROW]
[ROW][C]19[/C][C]2.56[/C][C]2.32870801226222[/C][C]0.231291987737782[/C][/ROW]
[ROW][C]20[/C][C]2.07[/C][C]2.27025075547486[/C][C]-0.200250755474859[/C][/ROW]
[ROW][C]21[/C][C]2.32[/C][C]2.52051672549849[/C][C]-0.200516725498491[/C][/ROW]
[ROW][C]22[/C][C]2.16[/C][C]2.54153767532286[/C][C]-0.381537675322863[/C][/ROW]
[ROW][C]23[/C][C]2.23[/C][C]2.49999938544070[/C][C]-0.269999385440704[/C][/ROW]
[ROW][C]24[/C][C]2.4[/C][C]2.47186702696763[/C][C]-0.0718670269676341[/C][/ROW]
[ROW][C]25[/C][C]2.84[/C][C]2.51549779837813[/C][C]0.324502201621867[/C][/ROW]
[ROW][C]26[/C][C]2.77[/C][C]2.53616166841642[/C][C]0.233838331583582[/C][/ROW]
[ROW][C]27[/C][C]2.93[/C][C]2.43598791001183[/C][C]0.494012089988174[/C][/ROW]
[ROW][C]28[/C][C]2.91[/C][C]2.47365967664927[/C][C]0.436340323350734[/C][/ROW]
[ROW][C]29[/C][C]2.69[/C][C]2.49366764371785[/C][C]0.196332356282147[/C][/ROW]
[ROW][C]30[/C][C]2.38[/C][C]2.53932319434041[/C][C]-0.159323194340413[/C][/ROW]
[ROW][C]31[/C][C]2.58[/C][C]2.51544061950947[/C][C]0.0645593804905305[/C][/ROW]
[ROW][C]32[/C][C]3.19[/C][C]2.49282931058071[/C][C]0.697170689419292[/C][/ROW]
[ROW][C]33[/C][C]2.82[/C][C]2.59971148916996[/C][C]0.220288510830043[/C][/ROW]
[ROW][C]34[/C][C]2.72[/C][C]2.56696351720644[/C][C]0.153036482793562[/C][/ROW]
[ROW][C]35[/C][C]2.53[/C][C]2.52542522732427[/C][C]0.00457477267572591[/C][/ROW]
[ROW][C]36[/C][C]2.7[/C][C]2.49729286885120[/C][C]0.202707131148797[/C][/ROW]
[ROW][C]37[/C][C]2.42[/C][C]2.54092364026171[/C][C]-0.120923640261707[/C][/ROW]
[ROW][C]38[/C][C]2.5[/C][C]2.52574156244139[/C][C]-0.0257415624413933[/C][/ROW]
[ROW][C]39[/C][C]2.31[/C][C]2.4614137518954[/C][C]-0.151413751895402[/C][/ROW]
[ROW][C]40[/C][C]2.41[/C][C]2.48116254460354[/C][C]-0.071162544603544[/C][/ROW]
[ROW][C]41[/C][C]2.56[/C][C]2.41155564202564[/C][C]0.148444357974358[/C][/ROW]
[ROW][C]42[/C][C]2.76[/C][C]2.36759632300171[/C][C]0.392403676998291[/C][/ROW]
[ROW][C]43[/C][C]2.71[/C][C]2.28994482638287[/C][C]0.420055173617126[/C][/ROW]
[ROW][C]44[/C][C]2.44[/C][C]2.28525649138341[/C][C]0.15474350861659[/C][/ROW]
[ROW][C]45[/C][C]2.46[/C][C]2.46383056568985[/C][C]-0.0038305656898506[/C][/ROW]
[ROW][C]46[/C][C]2.12[/C][C]2.48485151551422[/C][C]-0.364851515514222[/C][/ROW]
[ROW][C]47[/C][C]1.99[/C][C]2.44331322563206[/C][C]-0.453313225632063[/C][/ROW]
[ROW][C]48[/C][C]1.86[/C][C]2.39725789322970[/C][C]-0.537257893229696[/C][/ROW]
[ROW][C]49[/C][C]1.88[/C][C]2.44088866464019[/C][C]-0.560888664640195[/C][/ROW]
[ROW][C]50[/C][C]1.82[/C][C]2.44362956074918[/C][C]-0.623629560749178[/C][/ROW]
[ROW][C]51[/C][C]1.74[/C][C]2.36137877627389[/C][C]-0.621378776273889[/C][/ROW]
[ROW][C]52[/C][C]1.71[/C][C]2.36320459505274[/C][C]-0.653204595052735[/C][/ROW]
[ROW][C]53[/C][C]1.38[/C][C]2.31152066640413[/C][C]-0.93152066640413[/C][/ROW]
[ROW][C]54[/C][C]1.27[/C][C]2.08833160808722[/C][C]-0.818331608087219[/C][/ROW]
[ROW][C]55[/C][C]1.19[/C][C]2.10029498111487[/C][C]-0.910294981114872[/C][/ROW]
[ROW][C]56[/C][C]1.28[/C][C]2.07768367218611[/C][C]-0.797683672186112[/C][/ROW]
[ROW][C]57[/C][C]1.19[/C][C]2.29210369435115[/C][C]-1.10210369435115[/C][/ROW]
[ROW][C]58[/C][C]1.22[/C][C]2.08012598309465[/C][C]-0.86012598309465[/C][/ROW]
[ROW][C]59[/C][C]1.47[/C][C]2.02066471928319[/C][C]-0.550664719283189[/C][/ROW]
[ROW][C]60[/C][C]1.46[/C][C]1.99253236081012[/C][C]-0.532532360810118[/C][/ROW]
[ROW][C]61[/C][C]1.96[/C][C]2.03616313222062[/C][C]-0.0761631322206229[/C][/ROW]
[ROW][C]62[/C][C]1.88[/C][C]2.18228781976399[/C][C]-0.30228781976399[/C][/ROW]
[ROW][C]63[/C][C]2.03[/C][C]2.15380595707659[/C][C]-0.123805957076591[/C][/ROW]
[ROW][C]64[/C][C]2.04[/C][C]2.15563177585544[/C][C]-0.115631775855437[/C][/ROW]
[ROW][C]65[/C][C]1.9[/C][C]2.10394784720683[/C][C]-0.203947847206832[/C][/ROW]
[ROW][C]66[/C][C]1.8[/C][C]2.0599885281829[/C][C]-0.259988528182898[/C][/ROW]
[ROW][C]67[/C][C]1.92[/C][C]2.00026000549336[/C][C]-0.0802600054933604[/C][/ROW]
[ROW][C]68[/C][C]1.92[/C][C]1.92387977477670[/C][C]-0.00387977477670409[/C][/ROW]
[ROW][C]69[/C][C]1.97[/C][C]2.01283897943666[/C][C]-0.0428389794366607[/C][/ROW]
[ROW][C]70[/C][C]2.46[/C][C]1.92632208568525[/C][C]0.533677914314753[/C][/ROW]
[ROW][C]71[/C][C]2.36[/C][C]1.92062974366168[/C][C]0.439370256338324[/C][/ROW]
[ROW][C]72[/C][C]2.53[/C][C]1.91042035911791[/C][C]0.619579640882092[/C][/ROW]
[ROW][C]73[/C][C]2.31[/C][C]1.93612815659911[/C][C]0.37387184340089[/C][/ROW]
[ROW][C]74[/C][C]1.98[/C][C]1.97471500056669[/C][C]0.00528499943330803[/C][/ROW]
[ROW][C]75[/C][C]1.46[/C][C]1.92831016395000[/C][C]-0.468310163949996[/C][/ROW]
[ROW][C]76[/C][C]1.26[/C][C]1.87636706094095[/C][C]-0.616367060940947[/C][/ROW]
[ROW][C]77[/C][C]1.58[/C][C]1.84260610622164[/C][C]-0.262606106221639[/C][/ROW]
[ROW][C]78[/C][C]1.74[/C][C]1.8524157089856[/C][C]-0.112415708985600[/C][/ROW]
[ROW][C]79[/C][C]1.89[/C][C]1.86437908201325[/C][C]0.0256209179867456[/C][/ROW]
[ROW][C]80[/C][C]1.85[/C][C]1.80592182522589[/C][C]0.0440781747741052[/C][/ROW]
[ROW][C]81[/C][C]1.62[/C][C]1.89488102988585[/C][C]-0.274881029885851[/C][/ROW]
[ROW][C]82[/C][C]1.3[/C][C]1.80836413613444[/C][C]-0.508364136134438[/C][/ROW]
[ROW][C]83[/C][C]1.42[/C][C]1.78474882018157[/C][C]-0.364748820181570[/C][/ROW]
[ROW][C]84[/C][C]1.15[/C][C]1.7924624095671[/C][C]-0.642462409567099[/C][/ROW]
[ROW][C]85[/C][C]0.42[/C][C]1.83609318097760[/C][C]-1.41609318097760[/C][/ROW]
[ROW][C]86[/C][C]0.74[/C][C]1.96429489459167[/C][C]-1.22429489459167[/C][/ROW]
[ROW][C]87[/C][C]1.02[/C][C]1.93581303190427[/C][C]-0.91581303190427[/C][/ROW]
[ROW][C]88[/C][C]1.51[/C][C]1.95556182461241[/C][C]-0.445561824612412[/C][/ROW]
[ROW][C]89[/C][C]1.86[/C][C]1.92180086989311[/C][C]-0.0618008698931087[/C][/ROW]
[ROW][C]90[/C][C]1.59[/C][C]1.87784155086918[/C][C]-0.287841550869175[/C][/ROW]
[ROW][C]91[/C][C]1.03[/C][C]1.81811302817964[/C][C]-0.788113028179637[/C][/ROW]
[ROW][C]92[/C][C]0.44[/C][C]1.79550171925088[/C][C]-1.35550171925088[/C][/ROW]
[ROW][C]93[/C][C]0.82[/C][C]1.88446092391083[/C][C]-1.06446092391083[/C][/ROW]
[ROW][C]94[/C][C]0.86[/C][C]1.79794403015941[/C][C]-0.937944030159414[/C][/ROW]
[ROW][C]95[/C][C]0.58[/C][C]1.73848276634795[/C][C]-1.15848276634795[/C][/ROW]
[ROW][C]96[/C][C]0.59[/C][C]1.71035040787488[/C][C]-1.12035040787488[/C][/ROW]
[ROW][C]97[/C][C]0.95[/C][C]1.73605820535609[/C][C]-0.786058205356085[/C][/ROW]
[ROW][C]98[/C][C]0.98[/C][C]1.75672207539437[/C][C]-0.77672207539437[/C][/ROW]
[ROW][C]99[/C][C]1.23[/C][C]1.71031723877767[/C][C]-0.480317238777674[/C][/ROW]
[ROW][C]100[/C][C]1.17[/C][C]1.89137279684950[/C][C]-0.721372796849498[/C][/ROW]
[ROW][C]101[/C][C]0.84[/C][C]1.92930373784738[/C][C]-1.08930373784738[/C][/ROW]
[ROW][C]102[/C][C]0.74[/C][C]1.95703631454064[/C][C]-1.21703631454064[/C][/ROW]
[ROW][C]103[/C][C]0.65[/C][C]1.96899968756829[/C][C]-1.31899968756829[/C][/ROW]
[ROW][C]104[/C][C]0.91[/C][C]1.96431135256883[/C][C]-1.05431135256883[/C][/ROW]
[ROW][C]105[/C][C]1.19[/C][C]2.08911650508738[/C][C]-0.899116505087375[/C][/ROW]
[ROW][C]106[/C][C]1.3[/C][C]2.11013745491175[/C][C]-0.810137454911752[/C][/ROW]
[ROW][C]107[/C][C]1.53[/C][C]2.05067619110029[/C][C]-0.520676191100291[/C][/ROW]
[ROW][C]108[/C][C]1.94[/C][C]2.00462085869792[/C][C]-0.0646208586979243[/C][/ROW]
[ROW][C]109[/C][C]1.79[/C][C]2.03032865617913[/C][C]-0.240328656179127[/C][/ROW]
[ROW][C]110[/C][C]1.95[/C][C]2.01514657835881[/C][C]-0.065146578358813[/C][/ROW]
[ROW][C]111[/C][C]2.26[/C][C]1.95081876781282[/C][C]0.309181232187179[/C][/ROW]
[ROW][C]112[/C][C]2.04[/C][C]1.82718376908658[/C][C]0.212816230913421[/C][/ROW]
[ROW][C]113[/C][C]2.16[/C][C]1.75757686650868[/C][C]0.402423133491323[/C][/ROW]
[ROW][C]114[/C][C]2.75[/C][C]1.69569457355545[/C][C]1.05430542644455[/C][/ROW]
[ROW][C]115[/C][C]2.79[/C][C]1.61804307693661[/C][C]1.17195692306339[/C][/ROW]
[ROW][C]116[/C][C]2.88[/C][C]1.68504663765434[/C][C]1.19495336234566[/C][/ROW]
[ROW][C]117[/C][C]3.36[/C][C]1.88154368589008[/C][C]1.47845631410992[/C][/ROW]
[ROW][C]118[/C][C]2.97[/C][C]1.83087273999726[/C][C]1.13912726000274[/C][/ROW]
[ROW][C]119[/C][C]3.1[/C][C]1.80725742404439[/C][C]1.29274257595561[/C][/ROW]
[ROW][C]120[/C][C]2.49[/C][C]1.81497101342992[/C][C]0.675028986570077[/C][/ROW]
[ROW][C]121[/C][C]2.2[/C][C]1.85860178484042[/C][C]0.341398215159578[/C][/ROW]
[ROW][C]122[/C][C]2.25[/C][C]1.89718862880800[/C][C]0.352811371191996[/C][/ROW]
[ROW][C]123[/C][C]2.09[/C][C]1.83286081826201[/C][C]0.257139181737988[/C][/ROW]
[ROW][C]124[/C][C]2.79[/C][C]1.90637853275805[/C][C]0.88362146724195[/C][/ROW]
[ROW][C]125[/C][C]3.14[/C][C]1.99807839554382[/C][C]1.14192160445618[/C][/ROW]
[ROW][C]126[/C][C]2.93[/C][C]2.06165692009568[/C][C]0.86834307990432[/C][/ROW]
[ROW][C]127[/C][C]2.65[/C][C]2.09154326705263[/C][C]0.558456732947368[/C][/ROW]
[ROW][C]128[/C][C]2.67[/C][C]2.01516303633597[/C][C]0.654836963664025[/C][/ROW]
[ROW][C]129[/C][C]2.26[/C][C]2.17581413671312[/C][C]0.0841858632868812[/C][/ROW]
[ROW][C]130[/C][C]2.35[/C][C]2.08929724296171[/C][C]0.260702757038295[/C][/ROW]
[ROW][C]131[/C][C]2.13[/C][C]2.06568192700884[/C][C]0.0643180729911573[/C][/ROW]
[ROW][C]132[/C][C]2.18[/C][C]2.05547254246507[/C][C]0.124527457534931[/C][/ROW]
[ROW][C]133[/C][C]2.9[/C][C]2.13494926173417[/C][C]0.765050738265833[/C][/ROW]
[ROW][C]134[/C][C]2.63[/C][C]2.06599826212596[/C][C]0.564001737874042[/C][/ROW]
[ROW][C]135[/C][C]2.67[/C][C]2.01959342550926[/C][C]0.650406574490738[/C][/ROW]
[ROW][C]136[/C][C]1.81[/C][C]2.00349627035881[/C][C]-0.193496270358812[/C][/ROW]
[ROW][C]137[/C][C]1.33[/C][C]2.0055812634981[/C][C]-0.675581263498101[/C][/ROW]
[ROW][C]138[/C][C]0.88[/C][C]1.97954491840346[/C][C]-1.09954491840346[/C][/ROW]
[ROW][C]139[/C][C]1.28[/C][C]2.02735423928972[/C][C]-0.747354239289718[/C][/ROW]
[ROW][C]140[/C][C]1.26[/C][C]1.98681995643166[/C][C]-0.726819956431655[/C][/ROW]
[ROW][C]141[/C][C]1.26[/C][C]2.1474710568088[/C][C]-0.887471056808798[/C][/ROW]
[ROW][C]142[/C][C]1.29[/C][C]2.06095416305738[/C][C]-0.770954163057385[/C][/ROW]
[ROW][C]143[/C][C]1.1[/C][C]2.07318479496312[/C][C]-0.973184794963116[/C][/ROW]
[ROW][C]144[/C][C]1.37[/C][C]2.04505243649005[/C][C]-0.675052436490045[/C][/ROW]
[ROW][C]145[/C][C]1.21[/C][C]2.17829807754703[/C][C]-0.968298077547034[/C][/ROW]
[ROW][C]146[/C][C]1.74[/C][C]2.07350113008024[/C][C]-0.333501130080236[/C][/ROW]
[ROW][C]147[/C][C]1.76[/C][C]1.93748142381705[/C][C]-0.177481423817052[/C][/ROW]
[ROW][C]148[/C][C]1.48[/C][C]1.79592345116151[/C][C]-0.315923451161514[/C][/ROW]
[ROW][C]149[/C][C]1.04[/C][C]1.86970034001800[/C][C]-0.829700340017996[/C][/ROW]
[ROW][C]150[/C][C]1.62[/C][C]1.91535589064055[/C][C]-0.295355890640551[/C][/ROW]
[ROW][C]151[/C][C]1.49[/C][C]1.89147331580961[/C][C]-0.401473315809607[/C][/ROW]
[ROW][C]152[/C][C]1.79[/C][C]1.86886200688085[/C][C]-0.0788620068808458[/C][/ROW]
[ROW][C]153[/C][C]1.8[/C][C]1.97574418547009[/C][C]-0.175744185470093[/C][/ROW]
[ROW][C]154[/C][C]1.58[/C][C]1.90715026564798[/C][C]-0.327150265647982[/C][/ROW]
[ROW][C]155[/C][C]1.86[/C][C]1.93730387148301[/C][C]-0.0773038714830098[/C][/ROW]
[ROW][C]156[/C][C]1.74[/C][C]1.98086340872713[/C][C]-0.240863408727131[/C][/ROW]
[ROW][C]157[/C][C]1.59[/C][C]2.06034012799622[/C][C]-0.470340127996224[/C][/ROW]
[ROW][C]158[/C][C]1.26[/C][C]1.99138912838802[/C][C]-0.73138912838802[/C][/ROW]
[ROW][C]159[/C][C]1.13[/C][C]1.89121536998343[/C][C]-0.761215369983435[/C][/ROW]
[ROW][C]160[/C][C]1.92[/C][C]1.82134929304509[/C][C]0.0986507069549115[/C][/ROW]
[ROW][C]161[/C][C]2.61[/C][C]1.78758833832578[/C][C]0.82241166167422[/C][/ROW]
[ROW][C]162[/C][C]2.26[/C][C]1.88701281073623[/C][C]0.372987189263769[/C][/ROW]
[ROW][C]163[/C][C]2.41[/C][C]1.89897618376388[/C][C]0.511023816236115[/C][/ROW]
[ROW][C]164[/C][C]2.26[/C][C]1.91221082269372[/C][C]0.347789177306283[/C][/ROW]
[ROW][C]165[/C][C]2.03[/C][C]2.03701597521226[/C][C]-0.00701597521226226[/C][/ROW]
[ROW][C]166[/C][C]2.86[/C][C]1.98634502931945[/C][C]0.873654970680553[/C][/ROW]
[ROW][C]167[/C][C]2.55[/C][C]1.99857566122518[/C][C]0.551424338774821[/C][/ROW]
[ROW][C]168[/C][C]2.27[/C][C]1.98836627668140[/C][C]0.281633723318596[/C][/ROW]
[ROW][C]169[/C][C]2.26[/C][C]2.10368894380910[/C][C]0.156311056190903[/C][/ROW]
[ROW][C]170[/C][C]2.57[/C][C]2.03473794420089[/C][C]0.535262055799107[/C][/ROW]
[ROW][C]171[/C][C]3.07[/C][C]1.95248715972560[/C][C]1.11751284027440[/C][/ROW]
[ROW][C]172[/C][C]2.76[/C][C]1.99015892636304[/C][C]0.769841073636957[/C][/ROW]
[ROW][C]173[/C][C]2.51[/C][C]2.01016689343163[/C][C]0.499833106568371[/C][/ROW]
[ROW][C]174[/C][C]2.87[/C][C]1.96620757440770[/C][C]0.903792425592304[/C][/ROW]
[ROW][C]175[/C][C]3.14[/C][C]2.03193986922324[/C][C]1.10806013077676[/C][/ROW]
[ROW][C]176[/C][C]3.11[/C][C]1.99140558636518[/C][C]1.11859441363482[/C][/ROW]
[ROW][C]177[/C][C]3.16[/C][C]2.09828776495443[/C][C]1.06171223504557[/C][/ROW]
[ROW][C]178[/C][C]2.47[/C][C]2.04761681906162[/C][C]0.422383180938384[/C][/ROW]
[ROW][C]179[/C][C]2.57[/C][C]2.05984745096735[/C][C]0.510152549032653[/C][/ROW]
[ROW][C]180[/C][C]2.89[/C][C]2.04963806642357[/C][C]0.840361933576427[/C][/ROW]
[ROW][C]181[/C][C]2.63[/C][C]2.12911478569267[/C][C]0.500885214307329[/C][/ROW]
[ROW][C]182[/C][C]2.38[/C][C]2.11393270787236[/C][C]0.266067292127643[/C][/ROW]
[ROW][C]183[/C][C]1.69[/C][C]2.15714274090215[/C][C]-0.46714274090215[/C][/ROW]
[ROW][C]184[/C][C]1.96[/C][C]2.06935369003451[/C][C]-0.109353690034508[/C][/ROW]
[ROW][C]185[/C][C]2.19[/C][C]2.0714386831738[/C][C]0.118561316826202[/C][/ROW]
[ROW][C]186[/C][C]1.87[/C][C]2.08124828593776[/C][C]-0.211248285937759[/C][/ROW]
[ROW][C]187[/C][C]1.6[/C][C]2.03944273717752[/C][C]-0.439442737177518[/C][/ROW]
[ROW][C]188[/C][C]1.63[/C][C]2.05267737610735[/C][C]-0.422677376107351[/C][/ROW]
[ROW][C]189[/C][C]1.22[/C][C]2.1774825286259[/C][C]-0.957482528625901[/C][/ROW]
[ROW][C]190[/C][C]1.21[/C][C]2.16265753059168[/C][C]-0.95265753059168[/C][/ROW]
[ROW][C]191[/C][C]1.49[/C][C]2.15696518856811[/C][C]-0.666965188568109[/C][/ROW]
[ROW][C]192[/C][C]1.64[/C][C]2.16467877795364[/C][C]-0.524678777953637[/C][/ROW]
[ROW][C]193[/C][C]1.66[/C][C]2.20830954936414[/C][C]-0.548309549364137[/C][/ROW]
[ROW][C]194[/C][C]1.77[/C][C]2.13935854975593[/C][C]-0.369358549755932[/C][/ROW]
[ROW][C]195[/C][C]1.82[/C][C]2.02126181742205[/C][C]-0.201261817422045[/C][/ROW]
[ROW][C]196[/C][C]1.78[/C][C]1.87970384476651[/C][C]-0.0997038447665063[/C][/ROW]
[ROW][C]197[/C][C]1.28[/C][C]1.84594289004720[/C][C]-0.565942890047203[/C][/ROW]
[ROW][C]198[/C][C]1.29[/C][C]1.83782951888186[/C][C]-0.547829518881863[/C][/ROW]
[ROW][C]199[/C][C]1.37[/C][C]1.81394694405092[/C][C]-0.443946944050924[/C][/ROW]
[ROW][C]200[/C][C]1.12[/C][C]1.75548968726356[/C][C]-0.635489687263563[/C][/ROW]
[ROW][C]201[/C][C]1.51[/C][C]1.86237186585281[/C][C]-0.352371865852812[/C][/ROW]
[ROW][C]202[/C][C]2.24[/C][C]1.86546984174789[/C][C]0.374530158252107[/C][/ROW]
[ROW][C]203[/C][C]2.94[/C][C]1.84185452579503[/C][C]1.09814547420497[/C][/ROW]
[ROW][C]204[/C][C]3.09[/C][C]1.92126001089774[/C][C]1.16873998910226[/C][/ROW]
[ROW][C]205[/C][C]3.46[/C][C]1.98281375623754[/C][C]1.47718624376246[/C][/ROW]
[ROW][C]206[/C][C]3.64[/C][C]2.05724654806372[/C][C]1.58275345193628[/C][/ROW]
[ROW][C]207[/C][C]4.39[/C][C]2.27968632038649[/C][C]2.11031367961351[/C][/ROW]
[ROW][C]208[/C][C]4.15[/C][C]2.28151213916533[/C][C]1.86848786083467[/C][/ROW]
[ROW][C]209[/C][C]5.21[/C][C]2.37321200195111[/C][C]2.83678799804889[/C][/ROW]
[ROW][C]210[/C][C]5.8[/C][C]2.34717565685648[/C][C]3.45282434314352[/C][/ROW]
[ROW][C]211[/C][C]5.91[/C][C]2.34121605595483[/C][C]3.56878394404517[/C][/ROW]
[ROW][C]212[/C][C]5.39[/C][C]2.39029664274326[/C][C]2.99970335725674[/C][/ROW]
[ROW][C]213[/C][C]5.46[/C][C]2.586793690979[/C][C]2.873206309021[/C][/ROW]
[ROW][C]214[/C][C]4.72[/C][C]2.51819977115688[/C][C]2.20180022884312[/C][/ROW]
[ROW][C]215[/C][C]3.14[/C][C]2.62004527270910[/C][C]0.519954727290896[/C][/ROW]
[ROW][C]216[/C][C]2.63[/C][C]2.60983588816533[/C][C]0.0201641118346695[/C][/ROW]
[ROW][C]217[/C][C]2.32[/C][C]2.68931260743443[/C][C]-0.369312607434429[/C][/ROW]
[ROW][C]218[/C][C]1.93[/C][C]2.60243863389692[/C][C]-0.672438633896922[/C][/ROW]
[ROW][C]219[/C][C]0.62[/C][C]2.52018784942163[/C][C]-1.90018784942163[/C][/ROW]
[ROW][C]220[/C][C]0.6[/C][C]2.41447582462469[/C][C]-1.81447582462469[/C][/ROW]
[ROW][C]221[/C][C]-0.37[/C][C]2.48825271348117[/C][C]-2.85825271348117[/C][/ROW]
[ROW][C]222[/C][C]-1.1[/C][C]2.55183123803303[/C][C]-3.65183123803303[/C][/ROW]
[ROW][C]223[/C][C]-1.68[/C][C]2.52794866320208[/C][C]-4.20794866320208[/C][/ROW]
[ROW][C]224[/C][C]-0.78[/C][C]2.57702924999051[/C][C]-3.35702924999051[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
13.882.088263662095741.79173633790426
23.982.180619427851191.79938057214881
33.292.152137565163811.13786243483619
42.882.297347175377040.582652824622961
53.222.245663246728430.974336753271567
63.622.255472849492401.36452715050760
73.822.141975405014961.67802459498504
83.542.11936409608621.42063590391380
92.532.280015196463340.249984803536656
102.222.26519019842912-0.0451901984291231
112.852.295343804264150.554656195735849
122.782.303057393649680.47694260635032
132.282.45422600863596-0.174226008635964
142.262.47488987867425-0.214889878674251
152.712.518099911704040.191900088295957
162.772.466156808694990.303843191305007
172.772.432395853975680.337604146024316
182.642.388436534951760.251563465048243
192.562.328708012262220.231291987737782
202.072.27025075547486-0.200250755474859
212.322.52051672549849-0.200516725498491
222.162.54153767532286-0.381537675322863
232.232.49999938544070-0.269999385440704
242.42.47186702696763-0.0718670269676341
252.842.515497798378130.324502201621867
262.772.536161668416420.233838331583582
272.932.435987910011830.494012089988174
282.912.473659676649270.436340323350734
292.692.493667643717850.196332356282147
302.382.53932319434041-0.159323194340413
312.582.515440619509470.0645593804905305
323.192.492829310580710.697170689419292
332.822.599711489169960.220288510830043
342.722.566963517206440.153036482793562
352.532.525425227324270.00457477267572591
362.72.497292868851200.202707131148797
372.422.54092364026171-0.120923640261707
382.52.52574156244139-0.0257415624413933
392.312.4614137518954-0.151413751895402
402.412.48116254460354-0.071162544603544
412.562.411555642025640.148444357974358
422.762.367596323001710.392403676998291
432.712.289944826382870.420055173617126
442.442.285256491383410.15474350861659
452.462.46383056568985-0.0038305656898506
462.122.48485151551422-0.364851515514222
471.992.44331322563206-0.453313225632063
481.862.39725789322970-0.537257893229696
491.882.44088866464019-0.560888664640195
501.822.44362956074918-0.623629560749178
511.742.36137877627389-0.621378776273889
521.712.36320459505274-0.653204595052735
531.382.31152066640413-0.93152066640413
541.272.08833160808722-0.818331608087219
551.192.10029498111487-0.910294981114872
561.282.07768367218611-0.797683672186112
571.192.29210369435115-1.10210369435115
581.222.08012598309465-0.86012598309465
591.472.02066471928319-0.550664719283189
601.461.99253236081012-0.532532360810118
611.962.03616313222062-0.0761631322206229
621.882.18228781976399-0.30228781976399
632.032.15380595707659-0.123805957076591
642.042.15563177585544-0.115631775855437
651.92.10394784720683-0.203947847206832
661.82.0599885281829-0.259988528182898
671.922.00026000549336-0.0802600054933604
681.921.92387977477670-0.00387977477670409
691.972.01283897943666-0.0428389794366607
702.461.926322085685250.533677914314753
712.361.920629743661680.439370256338324
722.531.910420359117910.619579640882092
732.311.936128156599110.37387184340089
741.981.974715000566690.00528499943330803
751.461.92831016395000-0.468310163949996
761.261.87636706094095-0.616367060940947
771.581.84260610622164-0.262606106221639
781.741.8524157089856-0.112415708985600
791.891.864379082013250.0256209179867456
801.851.805921825225890.0440781747741052
811.621.89488102988585-0.274881029885851
821.31.80836413613444-0.508364136134438
831.421.78474882018157-0.364748820181570
841.151.7924624095671-0.642462409567099
850.421.83609318097760-1.41609318097760
860.741.96429489459167-1.22429489459167
871.021.93581303190427-0.91581303190427
881.511.95556182461241-0.445561824612412
891.861.92180086989311-0.0618008698931087
901.591.87784155086918-0.287841550869175
911.031.81811302817964-0.788113028179637
920.441.79550171925088-1.35550171925088
930.821.88446092391083-1.06446092391083
940.861.79794403015941-0.937944030159414
950.581.73848276634795-1.15848276634795
960.591.71035040787488-1.12035040787488
970.951.73605820535609-0.786058205356085
980.981.75672207539437-0.77672207539437
991.231.71031723877767-0.480317238777674
1001.171.89137279684950-0.721372796849498
1010.841.92930373784738-1.08930373784738
1020.741.95703631454064-1.21703631454064
1030.651.96899968756829-1.31899968756829
1040.911.96431135256883-1.05431135256883
1051.192.08911650508738-0.899116505087375
1061.32.11013745491175-0.810137454911752
1071.532.05067619110029-0.520676191100291
1081.942.00462085869792-0.0646208586979243
1091.792.03032865617913-0.240328656179127
1101.952.01514657835881-0.065146578358813
1112.261.950818767812820.309181232187179
1122.041.827183769086580.212816230913421
1132.161.757576866508680.402423133491323
1142.751.695694573555451.05430542644455
1152.791.618043076936611.17195692306339
1162.881.685046637654341.19495336234566
1173.361.881543685890081.47845631410992
1182.971.830872739997261.13912726000274
1193.11.807257424044391.29274257595561
1202.491.814971013429920.675028986570077
1212.21.858601784840420.341398215159578
1222.251.897188628808000.352811371191996
1232.091.832860818262010.257139181737988
1242.791.906378532758050.88362146724195
1253.141.998078395543821.14192160445618
1262.932.061656920095680.86834307990432
1272.652.091543267052630.558456732947368
1282.672.015163036335970.654836963664025
1292.262.175814136713120.0841858632868812
1302.352.089297242961710.260702757038295
1312.132.065681927008840.0643180729911573
1322.182.055472542465070.124527457534931
1332.92.134949261734170.765050738265833
1342.632.065998262125960.564001737874042
1352.672.019593425509260.650406574490738
1361.812.00349627035881-0.193496270358812
1371.332.0055812634981-0.675581263498101
1380.881.97954491840346-1.09954491840346
1391.282.02735423928972-0.747354239289718
1401.261.98681995643166-0.726819956431655
1411.262.1474710568088-0.887471056808798
1421.292.06095416305738-0.770954163057385
1431.12.07318479496312-0.973184794963116
1441.372.04505243649005-0.675052436490045
1451.212.17829807754703-0.968298077547034
1461.742.07350113008024-0.333501130080236
1471.761.93748142381705-0.177481423817052
1481.481.79592345116151-0.315923451161514
1491.041.86970034001800-0.829700340017996
1501.621.91535589064055-0.295355890640551
1511.491.89147331580961-0.401473315809607
1521.791.86886200688085-0.0788620068808458
1531.81.97574418547009-0.175744185470093
1541.581.90715026564798-0.327150265647982
1551.861.93730387148301-0.0773038714830098
1561.741.98086340872713-0.240863408727131
1571.592.06034012799622-0.470340127996224
1581.261.99138912838802-0.73138912838802
1591.131.89121536998343-0.761215369983435
1601.921.821349293045090.0986507069549115
1612.611.787588338325780.82241166167422
1622.261.887012810736230.372987189263769
1632.411.898976183763880.511023816236115
1642.261.912210822693720.347789177306283
1652.032.03701597521226-0.00701597521226226
1662.861.986345029319450.873654970680553
1672.551.998575661225180.551424338774821
1682.271.988366276681400.281633723318596
1692.262.103688943809100.156311056190903
1702.572.034737944200890.535262055799107
1713.071.952487159725601.11751284027440
1722.761.990158926363040.769841073636957
1732.512.010166893431630.499833106568371
1742.871.966207574407700.903792425592304
1753.142.031939869223241.10806013077676
1763.111.991405586365181.11859441363482
1773.162.098287764954431.06171223504557
1782.472.047616819061620.422383180938384
1792.572.059847450967350.510152549032653
1802.892.049638066423570.840361933576427
1812.632.129114785692670.500885214307329
1822.382.113932707872360.266067292127643
1831.692.15714274090215-0.46714274090215
1841.962.06935369003451-0.109353690034508
1852.192.07143868317380.118561316826202
1861.872.08124828593776-0.211248285937759
1871.62.03944273717752-0.439442737177518
1881.632.05267737610735-0.422677376107351
1891.222.1774825286259-0.957482528625901
1901.212.16265753059168-0.95265753059168
1911.492.15696518856811-0.666965188568109
1921.642.16467877795364-0.524678777953637
1931.662.20830954936414-0.548309549364137
1941.772.13935854975593-0.369358549755932
1951.822.02126181742205-0.201261817422045
1961.781.87970384476651-0.0997038447665063
1971.281.84594289004720-0.565942890047203
1981.291.83782951888186-0.547829518881863
1991.371.81394694405092-0.443946944050924
2001.121.75548968726356-0.635489687263563
2011.511.86237186585281-0.352371865852812
2022.241.865469841747890.374530158252107
2032.941.841854525795031.09814547420497
2043.091.921260010897741.16873998910226
2053.461.982813756237541.47718624376246
2063.642.057246548063721.58275345193628
2074.392.279686320386492.11031367961351
2084.152.281512139165331.86848786083467
2095.212.373212001951112.83678799804889
2105.82.347175656856483.45282434314352
2115.912.341216055954833.56878394404517
2125.392.390296642743262.99970335725674
2135.462.5867936909792.873206309021
2144.722.518199771156882.20180022884312
2153.142.620045272709100.519954727290896
2162.632.609835888165330.0201641118346695
2172.322.68931260743443-0.369312607434429
2181.932.60243863389692-0.672438633896922
2190.622.52018784942163-1.90018784942163
2200.62.41447582462469-1.81447582462469
221-0.372.48825271348117-2.85825271348117
222-1.12.55183123803303-3.65183123803303
223-1.682.52794866320208-4.20794866320208
224-0.782.57702924999051-3.35702924999051







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1055691615149260.2111383230298520.894430838485074
180.05831220610667940.1166244122133590.94168779389332
190.02940251401672720.05880502803345440.970597485983273
200.01848728597989370.03697457195978740.981512714020106
210.01409197603205250.0281839520641050.985908023967948
220.01234890363870070.02469780727740150.9876510963613
230.005341217355902180.01068243471180440.994658782644098
240.002455583331249410.004911166662498830.99754441666875
250.001922522979705220.003845045959410450.998077477020295
260.0008969970110730610.001793994022146120.999103002988927
270.0003756376925567520.0007512753851135030.999624362307443
280.0001570716034588440.0003141432069176880.999842928396541
295.85799754359013e-050.0001171599508718030.999941420024564
302.27264862028407e-054.54529724056813e-050.999977273513797
318.44764101096282e-061.68952820219256e-050.99999155235899
323.52649078479996e-057.05298156959992e-050.999964735092152
333.38566903511268e-056.77133807022536e-050.99996614330965
342.79890554237129e-055.59781108474258e-050.999972010944576
351.1448409369302e-052.2896818738604e-050.99998855159063
364.64761704384565e-069.2952340876913e-060.999995352382956
372.71666113619686e-065.43332227239371e-060.999997283338864
381.66632083897859e-063.33264167795719e-060.99999833367916
391.32958304833509e-062.65916609667017e-060.999998670416952
406.65412812802654e-071.33082562560531e-060.999999334587187
413.09328146785560e-076.18656293571119e-070.999999690671853
421.30548614817264e-072.61097229634527e-070.999999869451385
436.06131650654585e-081.21226330130917e-070.999999939386835
443.09919078898864e-086.19838157797728e-080.999999969008092
451.19737900412192e-082.39475800824385e-080.99999998802621
464.41998024589396e-098.83996049178792e-090.99999999558002
472.09520721737462e-094.19041443474924e-090.999999997904793
481.50044632037613e-093.00089264075227e-090.999999998499554
491.09958605447830e-092.19917210895661e-090.999999998900414
508.95715942187337e-101.79143188437467e-090.999999999104284
516.9246695786768e-101.38493391573536e-090.999999999307533
524.42573908266205e-108.8514781653241e-100.999999999557426
536.50414549481049e-101.30082909896210e-090.999999999349585
541.02781036956121e-092.05562073912242e-090.99999999897219
551.40015266211776e-092.80030532423553e-090.999999998599847
569.2537831103017e-101.85075662206034e-090.999999999074622
574.53294894538617e-109.06589789077234e-100.999999999546705
581.83054463894812e-103.66108927789624e-100.999999999816946
597.71256933508241e-111.54251386701648e-100.999999999922874
603.06808424460704e-116.13616848921409e-110.999999999969319
611.94788377984282e-113.89576755968565e-110.999999999980521
629.15826709799255e-121.83165341959851e-110.999999999990842
635.80364021499214e-121.16072804299843e-110.999999999994196
643.97694921272862e-127.95389842545724e-120.999999999996023
652.03388368837039e-124.06776737674078e-120.999999999997966
668.74671210972071e-131.74934242194414e-120.999999999999125
674.09047105278113e-138.18094210556227e-130.99999999999959
682.04529359709146e-134.09058719418291e-130.999999999999795
691.6300845607625e-133.260169121525e-130.999999999999837
709.06840849910715e-131.81368169982143e-120.999999999999093
711.43575146826882e-122.87150293653763e-120.999999999998564
722.86025089291462e-125.72050178582923e-120.99999999999714
732.02028555369731e-124.04057110739463e-120.99999999999798
748.98465435341542e-131.79693087068308e-120.999999999999102
754.08004635386087e-138.16009270772174e-130.999999999999592
762.23052207106661e-134.46104414213321e-130.999999999999777
778.86418511474694e-141.77283702294939e-130.999999999999911
783.58091840827335e-147.16183681654671e-140.999999999999964
791.58688494174678e-143.17376988349356e-140.999999999999984
806.91703500979581e-151.38340700195916e-140.999999999999993
812.7036105022098e-155.4072210044196e-150.999999999999997
821.04795676226988e-152.09591352453975e-150.999999999999999
833.92244174883461e-167.84488349766922e-161
841.89663061228806e-163.79326122457612e-161
858.64932013690124e-161.72986402738025e-151
868.20501202783818e-161.64100240556764e-151
873.71957175675032e-167.43914351350065e-161
881.56721488441748e-163.13442976883497e-161
891.06497629006968e-162.12995258013937e-161
904.53575303915952e-179.07150607831905e-171
912.10432033356265e-174.2086406671253e-171
923.21357703021077e-176.42715406042154e-171
931.64207347390141e-173.28414694780283e-171
947.49490765405992e-181.49898153081198e-171
955.76392312817392e-181.15278462563478e-171
964.32495854429692e-188.64991708859383e-181
971.9095245127049e-183.8190490254098e-181
988.27711203092661e-191.65542240618532e-181
993.54871195198804e-197.09742390397608e-191
1001.47819861262597e-192.95639722525193e-191
1016.564851408498e-201.3129702816996e-191
1023.17933675240047e-206.35867350480094e-201
1031.68533087448815e-203.3706617489763e-201
1047.49855194606341e-211.49971038921268e-201
1055.47402683644425e-211.09480536728885e-201
1065.76531840203866e-211.15306368040773e-201
1077.9775186200676e-211.59550372401352e-201
1083.32336665762621e-206.64673331525243e-201
1095.62777153427498e-201.12555430685500e-191
1101.29737272154566e-192.59474544309132e-191
1117.54369234855256e-191.50873846971051e-181
1121.67435343832858e-183.34870687665716e-181
1134.34583498138839e-188.69166996277678e-181
1148.61213357610963e-171.72242671522193e-161
1151.22820020556069e-152.45640041112138e-150.999999999999999
1161.91386527010659e-143.82773054021318e-140.99999999999998
1171.15777325290436e-122.31554650580871e-120.999999999998842
1181.03481182033721e-112.06962364067442e-110.999999999989652
1197.90332009277555e-111.58066401855511e-100.999999999920967
1201.15437078057088e-102.30874156114175e-100.999999999884563
1219.8991249595998e-111.97982499191996e-100.999999999901009
1228.52955733418688e-111.70591146683738e-100.999999999914704
1236.05131734654685e-111.21026346930937e-100.999999999939487
1241.12011198651809e-102.24022397303618e-100.999999999887989
1253.4844639607776e-106.9689279215552e-100.999999999651554
1265.79856088169844e-101.15971217633969e-090.999999999420144
1275.80597418529365e-101.16119483705873e-090.999999999419403
1286.15396830002977e-101.23079366000595e-090.999999999384603
1293.86802678010283e-107.73605356020565e-100.999999999613197
1302.73892944694178e-105.47785889388356e-100.999999999726107
1311.58457997720567e-103.16915995441134e-100.999999999841542
1329.32529492271335e-111.86505898454267e-100.999999999906747
1331.05320783396260e-102.10641566792521e-100.999999999894679
1348.79011687102461e-111.75802337420492e-100.999999999912099
1357.9849320328525e-111.5969864065705e-100.99999999992015
1364.13566461597519e-118.27132923195039e-110.999999999958643
1372.43237537234584e-114.86475074469168e-110.999999999975676
1382.11854265504617e-114.23708531009234e-110.999999999978815
1391.27111846628271e-112.54223693256541e-110.999999999987289
1407.35736066219996e-121.47147213243999e-110.999999999992643
1414.57653813975035e-129.1530762795007e-120.999999999995423
1422.68570021000332e-125.37140042000663e-120.999999999997314
1431.85912374984060e-123.71824749968121e-120.99999999999814
1441.02876961776939e-122.05753923553878e-120.999999999998971
1456.85955555623753e-131.37191111124751e-120.999999999999314
1463.29798457299554e-136.59596914599107e-130.99999999999967
1471.55437306353259e-133.10874612706519e-130.999999999999845
1487.56711091522304e-141.51342218304461e-130.999999999999924
1494.99946304889092e-149.99892609778184e-140.99999999999995
1502.35382980071706e-144.70765960143413e-140.999999999999976
1511.12642514907938e-142.25285029815877e-140.999999999999989
1525.22321100614032e-151.04464220122806e-140.999999999999995
1532.84827008446185e-155.6965401689237e-150.999999999999997
1541.67220448921215e-153.34440897842429e-150.999999999999998
1558.80613367648499e-161.76122673529700e-151
1564.5397890548242e-169.0795781096484e-161
1572.43719737426711e-164.87439474853422e-161
1581.71635745751694e-163.43271491503389e-161
1591.25849240836846e-162.51698481673692e-161
1606.3297963575885e-171.26595927151770e-161
1615.72267608762334e-171.14453521752467e-161
1623.06660738576770e-176.13321477153539e-171
1631.78498621153908e-173.56997242307817e-171
1648.93874038715898e-181.78774807743180e-171
1655.37496917779563e-181.07499383555913e-171
1665.73710680388486e-181.14742136077697e-171
1673.66881974775862e-187.33763949551724e-181
1681.92721223264974e-183.85442446529948e-181
1699.173480123934e-191.83469602478680e-181
1705.0799312621858e-191.01598625243716e-181
1715.49666840435996e-191.09933368087199e-181
1723.36860987149096e-196.73721974298193e-191
1731.51562482778953e-193.03124965557907e-191
1741.03699673771848e-192.07399347543696e-191
1751.00573774369087e-192.01147548738174e-191
1769.88556134672596e-201.97711226934519e-191
1778.06198328374075e-201.61239665674815e-191
1783.36460386354377e-206.72920772708754e-201
1791.36669474994476e-202.73338949988952e-201
1807.21257540233168e-211.44251508046634e-201
1812.71214626866744e-215.42429253733489e-211
1829.07824035514116e-221.81564807102823e-211
1833.92826012831211e-227.85652025662422e-221
1841.28890602551098e-222.57781205102195e-221
1853.93173388011845e-237.86346776023689e-231
1861.27381881558634e-232.54763763117268e-231
1874.73428924244326e-249.46857848488651e-241
1881.74050712048236e-243.48101424096473e-241
1895.43234818385883e-241.08646963677177e-231
1904.37040665714175e-238.74081331428349e-231
1912.30210142941914e-224.60420285883828e-221
1922.18953563241501e-214.37907126483001e-211
1931.89572250623896e-193.79144501247791e-191
1941.88521690660393e-163.77043381320785e-161
1951.9219719249649e-143.8439438499298e-140.99999999999998
1961.01045020935834e-122.02090041871667e-120.99999999999899
1973.76972645864679e-117.53945291729358e-110.999999999962303
1982.55865874322735e-095.1173174864547e-090.999999997441341
1994.37581582106050e-078.75163164212101e-070.999999562418418
2006.91675890738798e-050.0001383351781477600.999930832410926
2010.001634947215779250.003269894431558500.99836505278422
2020.03873247392480210.07746494784960420.961267526075198
2030.02515255763877450.05030511527754910.974847442361225
2040.01658335047201290.03316670094402570.983416649527987
2050.01005632568751200.02011265137502410.989943674312488
2060.01153689937544330.02307379875088650.988463100624557
2070.2273868817221050.4547737634442110.772613118277895

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.105569161514926 & 0.211138323029852 & 0.894430838485074 \tabularnewline
18 & 0.0583122061066794 & 0.116624412213359 & 0.94168779389332 \tabularnewline
19 & 0.0294025140167272 & 0.0588050280334544 & 0.970597485983273 \tabularnewline
20 & 0.0184872859798937 & 0.0369745719597874 & 0.981512714020106 \tabularnewline
21 & 0.0140919760320525 & 0.028183952064105 & 0.985908023967948 \tabularnewline
22 & 0.0123489036387007 & 0.0246978072774015 & 0.9876510963613 \tabularnewline
23 & 0.00534121735590218 & 0.0106824347118044 & 0.994658782644098 \tabularnewline
24 & 0.00245558333124941 & 0.00491116666249883 & 0.99754441666875 \tabularnewline
25 & 0.00192252297970522 & 0.00384504595941045 & 0.998077477020295 \tabularnewline
26 & 0.000896997011073061 & 0.00179399402214612 & 0.999103002988927 \tabularnewline
27 & 0.000375637692556752 & 0.000751275385113503 & 0.999624362307443 \tabularnewline
28 & 0.000157071603458844 & 0.000314143206917688 & 0.999842928396541 \tabularnewline
29 & 5.85799754359013e-05 & 0.000117159950871803 & 0.999941420024564 \tabularnewline
30 & 2.27264862028407e-05 & 4.54529724056813e-05 & 0.999977273513797 \tabularnewline
31 & 8.44764101096282e-06 & 1.68952820219256e-05 & 0.99999155235899 \tabularnewline
32 & 3.52649078479996e-05 & 7.05298156959992e-05 & 0.999964735092152 \tabularnewline
33 & 3.38566903511268e-05 & 6.77133807022536e-05 & 0.99996614330965 \tabularnewline
34 & 2.79890554237129e-05 & 5.59781108474258e-05 & 0.999972010944576 \tabularnewline
35 & 1.1448409369302e-05 & 2.2896818738604e-05 & 0.99998855159063 \tabularnewline
36 & 4.64761704384565e-06 & 9.2952340876913e-06 & 0.999995352382956 \tabularnewline
37 & 2.71666113619686e-06 & 5.43332227239371e-06 & 0.999997283338864 \tabularnewline
38 & 1.66632083897859e-06 & 3.33264167795719e-06 & 0.99999833367916 \tabularnewline
39 & 1.32958304833509e-06 & 2.65916609667017e-06 & 0.999998670416952 \tabularnewline
40 & 6.65412812802654e-07 & 1.33082562560531e-06 & 0.999999334587187 \tabularnewline
41 & 3.09328146785560e-07 & 6.18656293571119e-07 & 0.999999690671853 \tabularnewline
42 & 1.30548614817264e-07 & 2.61097229634527e-07 & 0.999999869451385 \tabularnewline
43 & 6.06131650654585e-08 & 1.21226330130917e-07 & 0.999999939386835 \tabularnewline
44 & 3.09919078898864e-08 & 6.19838157797728e-08 & 0.999999969008092 \tabularnewline
45 & 1.19737900412192e-08 & 2.39475800824385e-08 & 0.99999998802621 \tabularnewline
46 & 4.41998024589396e-09 & 8.83996049178792e-09 & 0.99999999558002 \tabularnewline
47 & 2.09520721737462e-09 & 4.19041443474924e-09 & 0.999999997904793 \tabularnewline
48 & 1.50044632037613e-09 & 3.00089264075227e-09 & 0.999999998499554 \tabularnewline
49 & 1.09958605447830e-09 & 2.19917210895661e-09 & 0.999999998900414 \tabularnewline
50 & 8.95715942187337e-10 & 1.79143188437467e-09 & 0.999999999104284 \tabularnewline
51 & 6.9246695786768e-10 & 1.38493391573536e-09 & 0.999999999307533 \tabularnewline
52 & 4.42573908266205e-10 & 8.8514781653241e-10 & 0.999999999557426 \tabularnewline
53 & 6.50414549481049e-10 & 1.30082909896210e-09 & 0.999999999349585 \tabularnewline
54 & 1.02781036956121e-09 & 2.05562073912242e-09 & 0.99999999897219 \tabularnewline
55 & 1.40015266211776e-09 & 2.80030532423553e-09 & 0.999999998599847 \tabularnewline
56 & 9.2537831103017e-10 & 1.85075662206034e-09 & 0.999999999074622 \tabularnewline
57 & 4.53294894538617e-10 & 9.06589789077234e-10 & 0.999999999546705 \tabularnewline
58 & 1.83054463894812e-10 & 3.66108927789624e-10 & 0.999999999816946 \tabularnewline
59 & 7.71256933508241e-11 & 1.54251386701648e-10 & 0.999999999922874 \tabularnewline
60 & 3.06808424460704e-11 & 6.13616848921409e-11 & 0.999999999969319 \tabularnewline
61 & 1.94788377984282e-11 & 3.89576755968565e-11 & 0.999999999980521 \tabularnewline
62 & 9.15826709799255e-12 & 1.83165341959851e-11 & 0.999999999990842 \tabularnewline
63 & 5.80364021499214e-12 & 1.16072804299843e-11 & 0.999999999994196 \tabularnewline
64 & 3.97694921272862e-12 & 7.95389842545724e-12 & 0.999999999996023 \tabularnewline
65 & 2.03388368837039e-12 & 4.06776737674078e-12 & 0.999999999997966 \tabularnewline
66 & 8.74671210972071e-13 & 1.74934242194414e-12 & 0.999999999999125 \tabularnewline
67 & 4.09047105278113e-13 & 8.18094210556227e-13 & 0.99999999999959 \tabularnewline
68 & 2.04529359709146e-13 & 4.09058719418291e-13 & 0.999999999999795 \tabularnewline
69 & 1.6300845607625e-13 & 3.260169121525e-13 & 0.999999999999837 \tabularnewline
70 & 9.06840849910715e-13 & 1.81368169982143e-12 & 0.999999999999093 \tabularnewline
71 & 1.43575146826882e-12 & 2.87150293653763e-12 & 0.999999999998564 \tabularnewline
72 & 2.86025089291462e-12 & 5.72050178582923e-12 & 0.99999999999714 \tabularnewline
73 & 2.02028555369731e-12 & 4.04057110739463e-12 & 0.99999999999798 \tabularnewline
74 & 8.98465435341542e-13 & 1.79693087068308e-12 & 0.999999999999102 \tabularnewline
75 & 4.08004635386087e-13 & 8.16009270772174e-13 & 0.999999999999592 \tabularnewline
76 & 2.23052207106661e-13 & 4.46104414213321e-13 & 0.999999999999777 \tabularnewline
77 & 8.86418511474694e-14 & 1.77283702294939e-13 & 0.999999999999911 \tabularnewline
78 & 3.58091840827335e-14 & 7.16183681654671e-14 & 0.999999999999964 \tabularnewline
79 & 1.58688494174678e-14 & 3.17376988349356e-14 & 0.999999999999984 \tabularnewline
80 & 6.91703500979581e-15 & 1.38340700195916e-14 & 0.999999999999993 \tabularnewline
81 & 2.7036105022098e-15 & 5.4072210044196e-15 & 0.999999999999997 \tabularnewline
82 & 1.04795676226988e-15 & 2.09591352453975e-15 & 0.999999999999999 \tabularnewline
83 & 3.92244174883461e-16 & 7.84488349766922e-16 & 1 \tabularnewline
84 & 1.89663061228806e-16 & 3.79326122457612e-16 & 1 \tabularnewline
85 & 8.64932013690124e-16 & 1.72986402738025e-15 & 1 \tabularnewline
86 & 8.20501202783818e-16 & 1.64100240556764e-15 & 1 \tabularnewline
87 & 3.71957175675032e-16 & 7.43914351350065e-16 & 1 \tabularnewline
88 & 1.56721488441748e-16 & 3.13442976883497e-16 & 1 \tabularnewline
89 & 1.06497629006968e-16 & 2.12995258013937e-16 & 1 \tabularnewline
90 & 4.53575303915952e-17 & 9.07150607831905e-17 & 1 \tabularnewline
91 & 2.10432033356265e-17 & 4.2086406671253e-17 & 1 \tabularnewline
92 & 3.21357703021077e-17 & 6.42715406042154e-17 & 1 \tabularnewline
93 & 1.64207347390141e-17 & 3.28414694780283e-17 & 1 \tabularnewline
94 & 7.49490765405992e-18 & 1.49898153081198e-17 & 1 \tabularnewline
95 & 5.76392312817392e-18 & 1.15278462563478e-17 & 1 \tabularnewline
96 & 4.32495854429692e-18 & 8.64991708859383e-18 & 1 \tabularnewline
97 & 1.9095245127049e-18 & 3.8190490254098e-18 & 1 \tabularnewline
98 & 8.27711203092661e-19 & 1.65542240618532e-18 & 1 \tabularnewline
99 & 3.54871195198804e-19 & 7.09742390397608e-19 & 1 \tabularnewline
100 & 1.47819861262597e-19 & 2.95639722525193e-19 & 1 \tabularnewline
101 & 6.564851408498e-20 & 1.3129702816996e-19 & 1 \tabularnewline
102 & 3.17933675240047e-20 & 6.35867350480094e-20 & 1 \tabularnewline
103 & 1.68533087448815e-20 & 3.3706617489763e-20 & 1 \tabularnewline
104 & 7.49855194606341e-21 & 1.49971038921268e-20 & 1 \tabularnewline
105 & 5.47402683644425e-21 & 1.09480536728885e-20 & 1 \tabularnewline
106 & 5.76531840203866e-21 & 1.15306368040773e-20 & 1 \tabularnewline
107 & 7.9775186200676e-21 & 1.59550372401352e-20 & 1 \tabularnewline
108 & 3.32336665762621e-20 & 6.64673331525243e-20 & 1 \tabularnewline
109 & 5.62777153427498e-20 & 1.12555430685500e-19 & 1 \tabularnewline
110 & 1.29737272154566e-19 & 2.59474544309132e-19 & 1 \tabularnewline
111 & 7.54369234855256e-19 & 1.50873846971051e-18 & 1 \tabularnewline
112 & 1.67435343832858e-18 & 3.34870687665716e-18 & 1 \tabularnewline
113 & 4.34583498138839e-18 & 8.69166996277678e-18 & 1 \tabularnewline
114 & 8.61213357610963e-17 & 1.72242671522193e-16 & 1 \tabularnewline
115 & 1.22820020556069e-15 & 2.45640041112138e-15 & 0.999999999999999 \tabularnewline
116 & 1.91386527010659e-14 & 3.82773054021318e-14 & 0.99999999999998 \tabularnewline
117 & 1.15777325290436e-12 & 2.31554650580871e-12 & 0.999999999998842 \tabularnewline
118 & 1.03481182033721e-11 & 2.06962364067442e-11 & 0.999999999989652 \tabularnewline
119 & 7.90332009277555e-11 & 1.58066401855511e-10 & 0.999999999920967 \tabularnewline
120 & 1.15437078057088e-10 & 2.30874156114175e-10 & 0.999999999884563 \tabularnewline
121 & 9.8991249595998e-11 & 1.97982499191996e-10 & 0.999999999901009 \tabularnewline
122 & 8.52955733418688e-11 & 1.70591146683738e-10 & 0.999999999914704 \tabularnewline
123 & 6.05131734654685e-11 & 1.21026346930937e-10 & 0.999999999939487 \tabularnewline
124 & 1.12011198651809e-10 & 2.24022397303618e-10 & 0.999999999887989 \tabularnewline
125 & 3.4844639607776e-10 & 6.9689279215552e-10 & 0.999999999651554 \tabularnewline
126 & 5.79856088169844e-10 & 1.15971217633969e-09 & 0.999999999420144 \tabularnewline
127 & 5.80597418529365e-10 & 1.16119483705873e-09 & 0.999999999419403 \tabularnewline
128 & 6.15396830002977e-10 & 1.23079366000595e-09 & 0.999999999384603 \tabularnewline
129 & 3.86802678010283e-10 & 7.73605356020565e-10 & 0.999999999613197 \tabularnewline
130 & 2.73892944694178e-10 & 5.47785889388356e-10 & 0.999999999726107 \tabularnewline
131 & 1.58457997720567e-10 & 3.16915995441134e-10 & 0.999999999841542 \tabularnewline
132 & 9.32529492271335e-11 & 1.86505898454267e-10 & 0.999999999906747 \tabularnewline
133 & 1.05320783396260e-10 & 2.10641566792521e-10 & 0.999999999894679 \tabularnewline
134 & 8.79011687102461e-11 & 1.75802337420492e-10 & 0.999999999912099 \tabularnewline
135 & 7.9849320328525e-11 & 1.5969864065705e-10 & 0.99999999992015 \tabularnewline
136 & 4.13566461597519e-11 & 8.27132923195039e-11 & 0.999999999958643 \tabularnewline
137 & 2.43237537234584e-11 & 4.86475074469168e-11 & 0.999999999975676 \tabularnewline
138 & 2.11854265504617e-11 & 4.23708531009234e-11 & 0.999999999978815 \tabularnewline
139 & 1.27111846628271e-11 & 2.54223693256541e-11 & 0.999999999987289 \tabularnewline
140 & 7.35736066219996e-12 & 1.47147213243999e-11 & 0.999999999992643 \tabularnewline
141 & 4.57653813975035e-12 & 9.1530762795007e-12 & 0.999999999995423 \tabularnewline
142 & 2.68570021000332e-12 & 5.37140042000663e-12 & 0.999999999997314 \tabularnewline
143 & 1.85912374984060e-12 & 3.71824749968121e-12 & 0.99999999999814 \tabularnewline
144 & 1.02876961776939e-12 & 2.05753923553878e-12 & 0.999999999998971 \tabularnewline
145 & 6.85955555623753e-13 & 1.37191111124751e-12 & 0.999999999999314 \tabularnewline
146 & 3.29798457299554e-13 & 6.59596914599107e-13 & 0.99999999999967 \tabularnewline
147 & 1.55437306353259e-13 & 3.10874612706519e-13 & 0.999999999999845 \tabularnewline
148 & 7.56711091522304e-14 & 1.51342218304461e-13 & 0.999999999999924 \tabularnewline
149 & 4.99946304889092e-14 & 9.99892609778184e-14 & 0.99999999999995 \tabularnewline
150 & 2.35382980071706e-14 & 4.70765960143413e-14 & 0.999999999999976 \tabularnewline
151 & 1.12642514907938e-14 & 2.25285029815877e-14 & 0.999999999999989 \tabularnewline
152 & 5.22321100614032e-15 & 1.04464220122806e-14 & 0.999999999999995 \tabularnewline
153 & 2.84827008446185e-15 & 5.6965401689237e-15 & 0.999999999999997 \tabularnewline
154 & 1.67220448921215e-15 & 3.34440897842429e-15 & 0.999999999999998 \tabularnewline
155 & 8.80613367648499e-16 & 1.76122673529700e-15 & 1 \tabularnewline
156 & 4.5397890548242e-16 & 9.0795781096484e-16 & 1 \tabularnewline
157 & 2.43719737426711e-16 & 4.87439474853422e-16 & 1 \tabularnewline
158 & 1.71635745751694e-16 & 3.43271491503389e-16 & 1 \tabularnewline
159 & 1.25849240836846e-16 & 2.51698481673692e-16 & 1 \tabularnewline
160 & 6.3297963575885e-17 & 1.26595927151770e-16 & 1 \tabularnewline
161 & 5.72267608762334e-17 & 1.14453521752467e-16 & 1 \tabularnewline
162 & 3.06660738576770e-17 & 6.13321477153539e-17 & 1 \tabularnewline
163 & 1.78498621153908e-17 & 3.56997242307817e-17 & 1 \tabularnewline
164 & 8.93874038715898e-18 & 1.78774807743180e-17 & 1 \tabularnewline
165 & 5.37496917779563e-18 & 1.07499383555913e-17 & 1 \tabularnewline
166 & 5.73710680388486e-18 & 1.14742136077697e-17 & 1 \tabularnewline
167 & 3.66881974775862e-18 & 7.33763949551724e-18 & 1 \tabularnewline
168 & 1.92721223264974e-18 & 3.85442446529948e-18 & 1 \tabularnewline
169 & 9.173480123934e-19 & 1.83469602478680e-18 & 1 \tabularnewline
170 & 5.0799312621858e-19 & 1.01598625243716e-18 & 1 \tabularnewline
171 & 5.49666840435996e-19 & 1.09933368087199e-18 & 1 \tabularnewline
172 & 3.36860987149096e-19 & 6.73721974298193e-19 & 1 \tabularnewline
173 & 1.51562482778953e-19 & 3.03124965557907e-19 & 1 \tabularnewline
174 & 1.03699673771848e-19 & 2.07399347543696e-19 & 1 \tabularnewline
175 & 1.00573774369087e-19 & 2.01147548738174e-19 & 1 \tabularnewline
176 & 9.88556134672596e-20 & 1.97711226934519e-19 & 1 \tabularnewline
177 & 8.06198328374075e-20 & 1.61239665674815e-19 & 1 \tabularnewline
178 & 3.36460386354377e-20 & 6.72920772708754e-20 & 1 \tabularnewline
179 & 1.36669474994476e-20 & 2.73338949988952e-20 & 1 \tabularnewline
180 & 7.21257540233168e-21 & 1.44251508046634e-20 & 1 \tabularnewline
181 & 2.71214626866744e-21 & 5.42429253733489e-21 & 1 \tabularnewline
182 & 9.07824035514116e-22 & 1.81564807102823e-21 & 1 \tabularnewline
183 & 3.92826012831211e-22 & 7.85652025662422e-22 & 1 \tabularnewline
184 & 1.28890602551098e-22 & 2.57781205102195e-22 & 1 \tabularnewline
185 & 3.93173388011845e-23 & 7.86346776023689e-23 & 1 \tabularnewline
186 & 1.27381881558634e-23 & 2.54763763117268e-23 & 1 \tabularnewline
187 & 4.73428924244326e-24 & 9.46857848488651e-24 & 1 \tabularnewline
188 & 1.74050712048236e-24 & 3.48101424096473e-24 & 1 \tabularnewline
189 & 5.43234818385883e-24 & 1.08646963677177e-23 & 1 \tabularnewline
190 & 4.37040665714175e-23 & 8.74081331428349e-23 & 1 \tabularnewline
191 & 2.30210142941914e-22 & 4.60420285883828e-22 & 1 \tabularnewline
192 & 2.18953563241501e-21 & 4.37907126483001e-21 & 1 \tabularnewline
193 & 1.89572250623896e-19 & 3.79144501247791e-19 & 1 \tabularnewline
194 & 1.88521690660393e-16 & 3.77043381320785e-16 & 1 \tabularnewline
195 & 1.9219719249649e-14 & 3.8439438499298e-14 & 0.99999999999998 \tabularnewline
196 & 1.01045020935834e-12 & 2.02090041871667e-12 & 0.99999999999899 \tabularnewline
197 & 3.76972645864679e-11 & 7.53945291729358e-11 & 0.999999999962303 \tabularnewline
198 & 2.55865874322735e-09 & 5.1173174864547e-09 & 0.999999997441341 \tabularnewline
199 & 4.37581582106050e-07 & 8.75163164212101e-07 & 0.999999562418418 \tabularnewline
200 & 6.91675890738798e-05 & 0.000138335178147760 & 0.999930832410926 \tabularnewline
201 & 0.00163494721577925 & 0.00326989443155850 & 0.99836505278422 \tabularnewline
202 & 0.0387324739248021 & 0.0774649478496042 & 0.961267526075198 \tabularnewline
203 & 0.0251525576387745 & 0.0503051152775491 & 0.974847442361225 \tabularnewline
204 & 0.0165833504720129 & 0.0331667009440257 & 0.983416649527987 \tabularnewline
205 & 0.0100563256875120 & 0.0201126513750241 & 0.989943674312488 \tabularnewline
206 & 0.0115368993754433 & 0.0230737987508865 & 0.988463100624557 \tabularnewline
207 & 0.227386881722105 & 0.454773763444211 & 0.772613118277895 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.105569161514926[/C][C]0.211138323029852[/C][C]0.894430838485074[/C][/ROW]
[ROW][C]18[/C][C]0.0583122061066794[/C][C]0.116624412213359[/C][C]0.94168779389332[/C][/ROW]
[ROW][C]19[/C][C]0.0294025140167272[/C][C]0.0588050280334544[/C][C]0.970597485983273[/C][/ROW]
[ROW][C]20[/C][C]0.0184872859798937[/C][C]0.0369745719597874[/C][C]0.981512714020106[/C][/ROW]
[ROW][C]21[/C][C]0.0140919760320525[/C][C]0.028183952064105[/C][C]0.985908023967948[/C][/ROW]
[ROW][C]22[/C][C]0.0123489036387007[/C][C]0.0246978072774015[/C][C]0.9876510963613[/C][/ROW]
[ROW][C]23[/C][C]0.00534121735590218[/C][C]0.0106824347118044[/C][C]0.994658782644098[/C][/ROW]
[ROW][C]24[/C][C]0.00245558333124941[/C][C]0.00491116666249883[/C][C]0.99754441666875[/C][/ROW]
[ROW][C]25[/C][C]0.00192252297970522[/C][C]0.00384504595941045[/C][C]0.998077477020295[/C][/ROW]
[ROW][C]26[/C][C]0.000896997011073061[/C][C]0.00179399402214612[/C][C]0.999103002988927[/C][/ROW]
[ROW][C]27[/C][C]0.000375637692556752[/C][C]0.000751275385113503[/C][C]0.999624362307443[/C][/ROW]
[ROW][C]28[/C][C]0.000157071603458844[/C][C]0.000314143206917688[/C][C]0.999842928396541[/C][/ROW]
[ROW][C]29[/C][C]5.85799754359013e-05[/C][C]0.000117159950871803[/C][C]0.999941420024564[/C][/ROW]
[ROW][C]30[/C][C]2.27264862028407e-05[/C][C]4.54529724056813e-05[/C][C]0.999977273513797[/C][/ROW]
[ROW][C]31[/C][C]8.44764101096282e-06[/C][C]1.68952820219256e-05[/C][C]0.99999155235899[/C][/ROW]
[ROW][C]32[/C][C]3.52649078479996e-05[/C][C]7.05298156959992e-05[/C][C]0.999964735092152[/C][/ROW]
[ROW][C]33[/C][C]3.38566903511268e-05[/C][C]6.77133807022536e-05[/C][C]0.99996614330965[/C][/ROW]
[ROW][C]34[/C][C]2.79890554237129e-05[/C][C]5.59781108474258e-05[/C][C]0.999972010944576[/C][/ROW]
[ROW][C]35[/C][C]1.1448409369302e-05[/C][C]2.2896818738604e-05[/C][C]0.99998855159063[/C][/ROW]
[ROW][C]36[/C][C]4.64761704384565e-06[/C][C]9.2952340876913e-06[/C][C]0.999995352382956[/C][/ROW]
[ROW][C]37[/C][C]2.71666113619686e-06[/C][C]5.43332227239371e-06[/C][C]0.999997283338864[/C][/ROW]
[ROW][C]38[/C][C]1.66632083897859e-06[/C][C]3.33264167795719e-06[/C][C]0.99999833367916[/C][/ROW]
[ROW][C]39[/C][C]1.32958304833509e-06[/C][C]2.65916609667017e-06[/C][C]0.999998670416952[/C][/ROW]
[ROW][C]40[/C][C]6.65412812802654e-07[/C][C]1.33082562560531e-06[/C][C]0.999999334587187[/C][/ROW]
[ROW][C]41[/C][C]3.09328146785560e-07[/C][C]6.18656293571119e-07[/C][C]0.999999690671853[/C][/ROW]
[ROW][C]42[/C][C]1.30548614817264e-07[/C][C]2.61097229634527e-07[/C][C]0.999999869451385[/C][/ROW]
[ROW][C]43[/C][C]6.06131650654585e-08[/C][C]1.21226330130917e-07[/C][C]0.999999939386835[/C][/ROW]
[ROW][C]44[/C][C]3.09919078898864e-08[/C][C]6.19838157797728e-08[/C][C]0.999999969008092[/C][/ROW]
[ROW][C]45[/C][C]1.19737900412192e-08[/C][C]2.39475800824385e-08[/C][C]0.99999998802621[/C][/ROW]
[ROW][C]46[/C][C]4.41998024589396e-09[/C][C]8.83996049178792e-09[/C][C]0.99999999558002[/C][/ROW]
[ROW][C]47[/C][C]2.09520721737462e-09[/C][C]4.19041443474924e-09[/C][C]0.999999997904793[/C][/ROW]
[ROW][C]48[/C][C]1.50044632037613e-09[/C][C]3.00089264075227e-09[/C][C]0.999999998499554[/C][/ROW]
[ROW][C]49[/C][C]1.09958605447830e-09[/C][C]2.19917210895661e-09[/C][C]0.999999998900414[/C][/ROW]
[ROW][C]50[/C][C]8.95715942187337e-10[/C][C]1.79143188437467e-09[/C][C]0.999999999104284[/C][/ROW]
[ROW][C]51[/C][C]6.9246695786768e-10[/C][C]1.38493391573536e-09[/C][C]0.999999999307533[/C][/ROW]
[ROW][C]52[/C][C]4.42573908266205e-10[/C][C]8.8514781653241e-10[/C][C]0.999999999557426[/C][/ROW]
[ROW][C]53[/C][C]6.50414549481049e-10[/C][C]1.30082909896210e-09[/C][C]0.999999999349585[/C][/ROW]
[ROW][C]54[/C][C]1.02781036956121e-09[/C][C]2.05562073912242e-09[/C][C]0.99999999897219[/C][/ROW]
[ROW][C]55[/C][C]1.40015266211776e-09[/C][C]2.80030532423553e-09[/C][C]0.999999998599847[/C][/ROW]
[ROW][C]56[/C][C]9.2537831103017e-10[/C][C]1.85075662206034e-09[/C][C]0.999999999074622[/C][/ROW]
[ROW][C]57[/C][C]4.53294894538617e-10[/C][C]9.06589789077234e-10[/C][C]0.999999999546705[/C][/ROW]
[ROW][C]58[/C][C]1.83054463894812e-10[/C][C]3.66108927789624e-10[/C][C]0.999999999816946[/C][/ROW]
[ROW][C]59[/C][C]7.71256933508241e-11[/C][C]1.54251386701648e-10[/C][C]0.999999999922874[/C][/ROW]
[ROW][C]60[/C][C]3.06808424460704e-11[/C][C]6.13616848921409e-11[/C][C]0.999999999969319[/C][/ROW]
[ROW][C]61[/C][C]1.94788377984282e-11[/C][C]3.89576755968565e-11[/C][C]0.999999999980521[/C][/ROW]
[ROW][C]62[/C][C]9.15826709799255e-12[/C][C]1.83165341959851e-11[/C][C]0.999999999990842[/C][/ROW]
[ROW][C]63[/C][C]5.80364021499214e-12[/C][C]1.16072804299843e-11[/C][C]0.999999999994196[/C][/ROW]
[ROW][C]64[/C][C]3.97694921272862e-12[/C][C]7.95389842545724e-12[/C][C]0.999999999996023[/C][/ROW]
[ROW][C]65[/C][C]2.03388368837039e-12[/C][C]4.06776737674078e-12[/C][C]0.999999999997966[/C][/ROW]
[ROW][C]66[/C][C]8.74671210972071e-13[/C][C]1.74934242194414e-12[/C][C]0.999999999999125[/C][/ROW]
[ROW][C]67[/C][C]4.09047105278113e-13[/C][C]8.18094210556227e-13[/C][C]0.99999999999959[/C][/ROW]
[ROW][C]68[/C][C]2.04529359709146e-13[/C][C]4.09058719418291e-13[/C][C]0.999999999999795[/C][/ROW]
[ROW][C]69[/C][C]1.6300845607625e-13[/C][C]3.260169121525e-13[/C][C]0.999999999999837[/C][/ROW]
[ROW][C]70[/C][C]9.06840849910715e-13[/C][C]1.81368169982143e-12[/C][C]0.999999999999093[/C][/ROW]
[ROW][C]71[/C][C]1.43575146826882e-12[/C][C]2.87150293653763e-12[/C][C]0.999999999998564[/C][/ROW]
[ROW][C]72[/C][C]2.86025089291462e-12[/C][C]5.72050178582923e-12[/C][C]0.99999999999714[/C][/ROW]
[ROW][C]73[/C][C]2.02028555369731e-12[/C][C]4.04057110739463e-12[/C][C]0.99999999999798[/C][/ROW]
[ROW][C]74[/C][C]8.98465435341542e-13[/C][C]1.79693087068308e-12[/C][C]0.999999999999102[/C][/ROW]
[ROW][C]75[/C][C]4.08004635386087e-13[/C][C]8.16009270772174e-13[/C][C]0.999999999999592[/C][/ROW]
[ROW][C]76[/C][C]2.23052207106661e-13[/C][C]4.46104414213321e-13[/C][C]0.999999999999777[/C][/ROW]
[ROW][C]77[/C][C]8.86418511474694e-14[/C][C]1.77283702294939e-13[/C][C]0.999999999999911[/C][/ROW]
[ROW][C]78[/C][C]3.58091840827335e-14[/C][C]7.16183681654671e-14[/C][C]0.999999999999964[/C][/ROW]
[ROW][C]79[/C][C]1.58688494174678e-14[/C][C]3.17376988349356e-14[/C][C]0.999999999999984[/C][/ROW]
[ROW][C]80[/C][C]6.91703500979581e-15[/C][C]1.38340700195916e-14[/C][C]0.999999999999993[/C][/ROW]
[ROW][C]81[/C][C]2.7036105022098e-15[/C][C]5.4072210044196e-15[/C][C]0.999999999999997[/C][/ROW]
[ROW][C]82[/C][C]1.04795676226988e-15[/C][C]2.09591352453975e-15[/C][C]0.999999999999999[/C][/ROW]
[ROW][C]83[/C][C]3.92244174883461e-16[/C][C]7.84488349766922e-16[/C][C]1[/C][/ROW]
[ROW][C]84[/C][C]1.89663061228806e-16[/C][C]3.79326122457612e-16[/C][C]1[/C][/ROW]
[ROW][C]85[/C][C]8.64932013690124e-16[/C][C]1.72986402738025e-15[/C][C]1[/C][/ROW]
[ROW][C]86[/C][C]8.20501202783818e-16[/C][C]1.64100240556764e-15[/C][C]1[/C][/ROW]
[ROW][C]87[/C][C]3.71957175675032e-16[/C][C]7.43914351350065e-16[/C][C]1[/C][/ROW]
[ROW][C]88[/C][C]1.56721488441748e-16[/C][C]3.13442976883497e-16[/C][C]1[/C][/ROW]
[ROW][C]89[/C][C]1.06497629006968e-16[/C][C]2.12995258013937e-16[/C][C]1[/C][/ROW]
[ROW][C]90[/C][C]4.53575303915952e-17[/C][C]9.07150607831905e-17[/C][C]1[/C][/ROW]
[ROW][C]91[/C][C]2.10432033356265e-17[/C][C]4.2086406671253e-17[/C][C]1[/C][/ROW]
[ROW][C]92[/C][C]3.21357703021077e-17[/C][C]6.42715406042154e-17[/C][C]1[/C][/ROW]
[ROW][C]93[/C][C]1.64207347390141e-17[/C][C]3.28414694780283e-17[/C][C]1[/C][/ROW]
[ROW][C]94[/C][C]7.49490765405992e-18[/C][C]1.49898153081198e-17[/C][C]1[/C][/ROW]
[ROW][C]95[/C][C]5.76392312817392e-18[/C][C]1.15278462563478e-17[/C][C]1[/C][/ROW]
[ROW][C]96[/C][C]4.32495854429692e-18[/C][C]8.64991708859383e-18[/C][C]1[/C][/ROW]
[ROW][C]97[/C][C]1.9095245127049e-18[/C][C]3.8190490254098e-18[/C][C]1[/C][/ROW]
[ROW][C]98[/C][C]8.27711203092661e-19[/C][C]1.65542240618532e-18[/C][C]1[/C][/ROW]
[ROW][C]99[/C][C]3.54871195198804e-19[/C][C]7.09742390397608e-19[/C][C]1[/C][/ROW]
[ROW][C]100[/C][C]1.47819861262597e-19[/C][C]2.95639722525193e-19[/C][C]1[/C][/ROW]
[ROW][C]101[/C][C]6.564851408498e-20[/C][C]1.3129702816996e-19[/C][C]1[/C][/ROW]
[ROW][C]102[/C][C]3.17933675240047e-20[/C][C]6.35867350480094e-20[/C][C]1[/C][/ROW]
[ROW][C]103[/C][C]1.68533087448815e-20[/C][C]3.3706617489763e-20[/C][C]1[/C][/ROW]
[ROW][C]104[/C][C]7.49855194606341e-21[/C][C]1.49971038921268e-20[/C][C]1[/C][/ROW]
[ROW][C]105[/C][C]5.47402683644425e-21[/C][C]1.09480536728885e-20[/C][C]1[/C][/ROW]
[ROW][C]106[/C][C]5.76531840203866e-21[/C][C]1.15306368040773e-20[/C][C]1[/C][/ROW]
[ROW][C]107[/C][C]7.9775186200676e-21[/C][C]1.59550372401352e-20[/C][C]1[/C][/ROW]
[ROW][C]108[/C][C]3.32336665762621e-20[/C][C]6.64673331525243e-20[/C][C]1[/C][/ROW]
[ROW][C]109[/C][C]5.62777153427498e-20[/C][C]1.12555430685500e-19[/C][C]1[/C][/ROW]
[ROW][C]110[/C][C]1.29737272154566e-19[/C][C]2.59474544309132e-19[/C][C]1[/C][/ROW]
[ROW][C]111[/C][C]7.54369234855256e-19[/C][C]1.50873846971051e-18[/C][C]1[/C][/ROW]
[ROW][C]112[/C][C]1.67435343832858e-18[/C][C]3.34870687665716e-18[/C][C]1[/C][/ROW]
[ROW][C]113[/C][C]4.34583498138839e-18[/C][C]8.69166996277678e-18[/C][C]1[/C][/ROW]
[ROW][C]114[/C][C]8.61213357610963e-17[/C][C]1.72242671522193e-16[/C][C]1[/C][/ROW]
[ROW][C]115[/C][C]1.22820020556069e-15[/C][C]2.45640041112138e-15[/C][C]0.999999999999999[/C][/ROW]
[ROW][C]116[/C][C]1.91386527010659e-14[/C][C]3.82773054021318e-14[/C][C]0.99999999999998[/C][/ROW]
[ROW][C]117[/C][C]1.15777325290436e-12[/C][C]2.31554650580871e-12[/C][C]0.999999999998842[/C][/ROW]
[ROW][C]118[/C][C]1.03481182033721e-11[/C][C]2.06962364067442e-11[/C][C]0.999999999989652[/C][/ROW]
[ROW][C]119[/C][C]7.90332009277555e-11[/C][C]1.58066401855511e-10[/C][C]0.999999999920967[/C][/ROW]
[ROW][C]120[/C][C]1.15437078057088e-10[/C][C]2.30874156114175e-10[/C][C]0.999999999884563[/C][/ROW]
[ROW][C]121[/C][C]9.8991249595998e-11[/C][C]1.97982499191996e-10[/C][C]0.999999999901009[/C][/ROW]
[ROW][C]122[/C][C]8.52955733418688e-11[/C][C]1.70591146683738e-10[/C][C]0.999999999914704[/C][/ROW]
[ROW][C]123[/C][C]6.05131734654685e-11[/C][C]1.21026346930937e-10[/C][C]0.999999999939487[/C][/ROW]
[ROW][C]124[/C][C]1.12011198651809e-10[/C][C]2.24022397303618e-10[/C][C]0.999999999887989[/C][/ROW]
[ROW][C]125[/C][C]3.4844639607776e-10[/C][C]6.9689279215552e-10[/C][C]0.999999999651554[/C][/ROW]
[ROW][C]126[/C][C]5.79856088169844e-10[/C][C]1.15971217633969e-09[/C][C]0.999999999420144[/C][/ROW]
[ROW][C]127[/C][C]5.80597418529365e-10[/C][C]1.16119483705873e-09[/C][C]0.999999999419403[/C][/ROW]
[ROW][C]128[/C][C]6.15396830002977e-10[/C][C]1.23079366000595e-09[/C][C]0.999999999384603[/C][/ROW]
[ROW][C]129[/C][C]3.86802678010283e-10[/C][C]7.73605356020565e-10[/C][C]0.999999999613197[/C][/ROW]
[ROW][C]130[/C][C]2.73892944694178e-10[/C][C]5.47785889388356e-10[/C][C]0.999999999726107[/C][/ROW]
[ROW][C]131[/C][C]1.58457997720567e-10[/C][C]3.16915995441134e-10[/C][C]0.999999999841542[/C][/ROW]
[ROW][C]132[/C][C]9.32529492271335e-11[/C][C]1.86505898454267e-10[/C][C]0.999999999906747[/C][/ROW]
[ROW][C]133[/C][C]1.05320783396260e-10[/C][C]2.10641566792521e-10[/C][C]0.999999999894679[/C][/ROW]
[ROW][C]134[/C][C]8.79011687102461e-11[/C][C]1.75802337420492e-10[/C][C]0.999999999912099[/C][/ROW]
[ROW][C]135[/C][C]7.9849320328525e-11[/C][C]1.5969864065705e-10[/C][C]0.99999999992015[/C][/ROW]
[ROW][C]136[/C][C]4.13566461597519e-11[/C][C]8.27132923195039e-11[/C][C]0.999999999958643[/C][/ROW]
[ROW][C]137[/C][C]2.43237537234584e-11[/C][C]4.86475074469168e-11[/C][C]0.999999999975676[/C][/ROW]
[ROW][C]138[/C][C]2.11854265504617e-11[/C][C]4.23708531009234e-11[/C][C]0.999999999978815[/C][/ROW]
[ROW][C]139[/C][C]1.27111846628271e-11[/C][C]2.54223693256541e-11[/C][C]0.999999999987289[/C][/ROW]
[ROW][C]140[/C][C]7.35736066219996e-12[/C][C]1.47147213243999e-11[/C][C]0.999999999992643[/C][/ROW]
[ROW][C]141[/C][C]4.57653813975035e-12[/C][C]9.1530762795007e-12[/C][C]0.999999999995423[/C][/ROW]
[ROW][C]142[/C][C]2.68570021000332e-12[/C][C]5.37140042000663e-12[/C][C]0.999999999997314[/C][/ROW]
[ROW][C]143[/C][C]1.85912374984060e-12[/C][C]3.71824749968121e-12[/C][C]0.99999999999814[/C][/ROW]
[ROW][C]144[/C][C]1.02876961776939e-12[/C][C]2.05753923553878e-12[/C][C]0.999999999998971[/C][/ROW]
[ROW][C]145[/C][C]6.85955555623753e-13[/C][C]1.37191111124751e-12[/C][C]0.999999999999314[/C][/ROW]
[ROW][C]146[/C][C]3.29798457299554e-13[/C][C]6.59596914599107e-13[/C][C]0.99999999999967[/C][/ROW]
[ROW][C]147[/C][C]1.55437306353259e-13[/C][C]3.10874612706519e-13[/C][C]0.999999999999845[/C][/ROW]
[ROW][C]148[/C][C]7.56711091522304e-14[/C][C]1.51342218304461e-13[/C][C]0.999999999999924[/C][/ROW]
[ROW][C]149[/C][C]4.99946304889092e-14[/C][C]9.99892609778184e-14[/C][C]0.99999999999995[/C][/ROW]
[ROW][C]150[/C][C]2.35382980071706e-14[/C][C]4.70765960143413e-14[/C][C]0.999999999999976[/C][/ROW]
[ROW][C]151[/C][C]1.12642514907938e-14[/C][C]2.25285029815877e-14[/C][C]0.999999999999989[/C][/ROW]
[ROW][C]152[/C][C]5.22321100614032e-15[/C][C]1.04464220122806e-14[/C][C]0.999999999999995[/C][/ROW]
[ROW][C]153[/C][C]2.84827008446185e-15[/C][C]5.6965401689237e-15[/C][C]0.999999999999997[/C][/ROW]
[ROW][C]154[/C][C]1.67220448921215e-15[/C][C]3.34440897842429e-15[/C][C]0.999999999999998[/C][/ROW]
[ROW][C]155[/C][C]8.80613367648499e-16[/C][C]1.76122673529700e-15[/C][C]1[/C][/ROW]
[ROW][C]156[/C][C]4.5397890548242e-16[/C][C]9.0795781096484e-16[/C][C]1[/C][/ROW]
[ROW][C]157[/C][C]2.43719737426711e-16[/C][C]4.87439474853422e-16[/C][C]1[/C][/ROW]
[ROW][C]158[/C][C]1.71635745751694e-16[/C][C]3.43271491503389e-16[/C][C]1[/C][/ROW]
[ROW][C]159[/C][C]1.25849240836846e-16[/C][C]2.51698481673692e-16[/C][C]1[/C][/ROW]
[ROW][C]160[/C][C]6.3297963575885e-17[/C][C]1.26595927151770e-16[/C][C]1[/C][/ROW]
[ROW][C]161[/C][C]5.72267608762334e-17[/C][C]1.14453521752467e-16[/C][C]1[/C][/ROW]
[ROW][C]162[/C][C]3.06660738576770e-17[/C][C]6.13321477153539e-17[/C][C]1[/C][/ROW]
[ROW][C]163[/C][C]1.78498621153908e-17[/C][C]3.56997242307817e-17[/C][C]1[/C][/ROW]
[ROW][C]164[/C][C]8.93874038715898e-18[/C][C]1.78774807743180e-17[/C][C]1[/C][/ROW]
[ROW][C]165[/C][C]5.37496917779563e-18[/C][C]1.07499383555913e-17[/C][C]1[/C][/ROW]
[ROW][C]166[/C][C]5.73710680388486e-18[/C][C]1.14742136077697e-17[/C][C]1[/C][/ROW]
[ROW][C]167[/C][C]3.66881974775862e-18[/C][C]7.33763949551724e-18[/C][C]1[/C][/ROW]
[ROW][C]168[/C][C]1.92721223264974e-18[/C][C]3.85442446529948e-18[/C][C]1[/C][/ROW]
[ROW][C]169[/C][C]9.173480123934e-19[/C][C]1.83469602478680e-18[/C][C]1[/C][/ROW]
[ROW][C]170[/C][C]5.0799312621858e-19[/C][C]1.01598625243716e-18[/C][C]1[/C][/ROW]
[ROW][C]171[/C][C]5.49666840435996e-19[/C][C]1.09933368087199e-18[/C][C]1[/C][/ROW]
[ROW][C]172[/C][C]3.36860987149096e-19[/C][C]6.73721974298193e-19[/C][C]1[/C][/ROW]
[ROW][C]173[/C][C]1.51562482778953e-19[/C][C]3.03124965557907e-19[/C][C]1[/C][/ROW]
[ROW][C]174[/C][C]1.03699673771848e-19[/C][C]2.07399347543696e-19[/C][C]1[/C][/ROW]
[ROW][C]175[/C][C]1.00573774369087e-19[/C][C]2.01147548738174e-19[/C][C]1[/C][/ROW]
[ROW][C]176[/C][C]9.88556134672596e-20[/C][C]1.97711226934519e-19[/C][C]1[/C][/ROW]
[ROW][C]177[/C][C]8.06198328374075e-20[/C][C]1.61239665674815e-19[/C][C]1[/C][/ROW]
[ROW][C]178[/C][C]3.36460386354377e-20[/C][C]6.72920772708754e-20[/C][C]1[/C][/ROW]
[ROW][C]179[/C][C]1.36669474994476e-20[/C][C]2.73338949988952e-20[/C][C]1[/C][/ROW]
[ROW][C]180[/C][C]7.21257540233168e-21[/C][C]1.44251508046634e-20[/C][C]1[/C][/ROW]
[ROW][C]181[/C][C]2.71214626866744e-21[/C][C]5.42429253733489e-21[/C][C]1[/C][/ROW]
[ROW][C]182[/C][C]9.07824035514116e-22[/C][C]1.81564807102823e-21[/C][C]1[/C][/ROW]
[ROW][C]183[/C][C]3.92826012831211e-22[/C][C]7.85652025662422e-22[/C][C]1[/C][/ROW]
[ROW][C]184[/C][C]1.28890602551098e-22[/C][C]2.57781205102195e-22[/C][C]1[/C][/ROW]
[ROW][C]185[/C][C]3.93173388011845e-23[/C][C]7.86346776023689e-23[/C][C]1[/C][/ROW]
[ROW][C]186[/C][C]1.27381881558634e-23[/C][C]2.54763763117268e-23[/C][C]1[/C][/ROW]
[ROW][C]187[/C][C]4.73428924244326e-24[/C][C]9.46857848488651e-24[/C][C]1[/C][/ROW]
[ROW][C]188[/C][C]1.74050712048236e-24[/C][C]3.48101424096473e-24[/C][C]1[/C][/ROW]
[ROW][C]189[/C][C]5.43234818385883e-24[/C][C]1.08646963677177e-23[/C][C]1[/C][/ROW]
[ROW][C]190[/C][C]4.37040665714175e-23[/C][C]8.74081331428349e-23[/C][C]1[/C][/ROW]
[ROW][C]191[/C][C]2.30210142941914e-22[/C][C]4.60420285883828e-22[/C][C]1[/C][/ROW]
[ROW][C]192[/C][C]2.18953563241501e-21[/C][C]4.37907126483001e-21[/C][C]1[/C][/ROW]
[ROW][C]193[/C][C]1.89572250623896e-19[/C][C]3.79144501247791e-19[/C][C]1[/C][/ROW]
[ROW][C]194[/C][C]1.88521690660393e-16[/C][C]3.77043381320785e-16[/C][C]1[/C][/ROW]
[ROW][C]195[/C][C]1.9219719249649e-14[/C][C]3.8439438499298e-14[/C][C]0.99999999999998[/C][/ROW]
[ROW][C]196[/C][C]1.01045020935834e-12[/C][C]2.02090041871667e-12[/C][C]0.99999999999899[/C][/ROW]
[ROW][C]197[/C][C]3.76972645864679e-11[/C][C]7.53945291729358e-11[/C][C]0.999999999962303[/C][/ROW]
[ROW][C]198[/C][C]2.55865874322735e-09[/C][C]5.1173174864547e-09[/C][C]0.999999997441341[/C][/ROW]
[ROW][C]199[/C][C]4.37581582106050e-07[/C][C]8.75163164212101e-07[/C][C]0.999999562418418[/C][/ROW]
[ROW][C]200[/C][C]6.91675890738798e-05[/C][C]0.000138335178147760[/C][C]0.999930832410926[/C][/ROW]
[ROW][C]201[/C][C]0.00163494721577925[/C][C]0.00326989443155850[/C][C]0.99836505278422[/C][/ROW]
[ROW][C]202[/C][C]0.0387324739248021[/C][C]0.0774649478496042[/C][C]0.961267526075198[/C][/ROW]
[ROW][C]203[/C][C]0.0251525576387745[/C][C]0.0503051152775491[/C][C]0.974847442361225[/C][/ROW]
[ROW][C]204[/C][C]0.0165833504720129[/C][C]0.0331667009440257[/C][C]0.983416649527987[/C][/ROW]
[ROW][C]205[/C][C]0.0100563256875120[/C][C]0.0201126513750241[/C][C]0.989943674312488[/C][/ROW]
[ROW][C]206[/C][C]0.0115368993754433[/C][C]0.0230737987508865[/C][C]0.988463100624557[/C][/ROW]
[ROW][C]207[/C][C]0.227386881722105[/C][C]0.454773763444211[/C][C]0.772613118277895[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1055691615149260.2111383230298520.894430838485074
180.05831220610667940.1166244122133590.94168779389332
190.02940251401672720.05880502803345440.970597485983273
200.01848728597989370.03697457195978740.981512714020106
210.01409197603205250.0281839520641050.985908023967948
220.01234890363870070.02469780727740150.9876510963613
230.005341217355902180.01068243471180440.994658782644098
240.002455583331249410.004911166662498830.99754441666875
250.001922522979705220.003845045959410450.998077477020295
260.0008969970110730610.001793994022146120.999103002988927
270.0003756376925567520.0007512753851135030.999624362307443
280.0001570716034588440.0003141432069176880.999842928396541
295.85799754359013e-050.0001171599508718030.999941420024564
302.27264862028407e-054.54529724056813e-050.999977273513797
318.44764101096282e-061.68952820219256e-050.99999155235899
323.52649078479996e-057.05298156959992e-050.999964735092152
333.38566903511268e-056.77133807022536e-050.99996614330965
342.79890554237129e-055.59781108474258e-050.999972010944576
351.1448409369302e-052.2896818738604e-050.99998855159063
364.64761704384565e-069.2952340876913e-060.999995352382956
372.71666113619686e-065.43332227239371e-060.999997283338864
381.66632083897859e-063.33264167795719e-060.99999833367916
391.32958304833509e-062.65916609667017e-060.999998670416952
406.65412812802654e-071.33082562560531e-060.999999334587187
413.09328146785560e-076.18656293571119e-070.999999690671853
421.30548614817264e-072.61097229634527e-070.999999869451385
436.06131650654585e-081.21226330130917e-070.999999939386835
443.09919078898864e-086.19838157797728e-080.999999969008092
451.19737900412192e-082.39475800824385e-080.99999998802621
464.41998024589396e-098.83996049178792e-090.99999999558002
472.09520721737462e-094.19041443474924e-090.999999997904793
481.50044632037613e-093.00089264075227e-090.999999998499554
491.09958605447830e-092.19917210895661e-090.999999998900414
508.95715942187337e-101.79143188437467e-090.999999999104284
516.9246695786768e-101.38493391573536e-090.999999999307533
524.42573908266205e-108.8514781653241e-100.999999999557426
536.50414549481049e-101.30082909896210e-090.999999999349585
541.02781036956121e-092.05562073912242e-090.99999999897219
551.40015266211776e-092.80030532423553e-090.999999998599847
569.2537831103017e-101.85075662206034e-090.999999999074622
574.53294894538617e-109.06589789077234e-100.999999999546705
581.83054463894812e-103.66108927789624e-100.999999999816946
597.71256933508241e-111.54251386701648e-100.999999999922874
603.06808424460704e-116.13616848921409e-110.999999999969319
611.94788377984282e-113.89576755968565e-110.999999999980521
629.15826709799255e-121.83165341959851e-110.999999999990842
635.80364021499214e-121.16072804299843e-110.999999999994196
643.97694921272862e-127.95389842545724e-120.999999999996023
652.03388368837039e-124.06776737674078e-120.999999999997966
668.74671210972071e-131.74934242194414e-120.999999999999125
674.09047105278113e-138.18094210556227e-130.99999999999959
682.04529359709146e-134.09058719418291e-130.999999999999795
691.6300845607625e-133.260169121525e-130.999999999999837
709.06840849910715e-131.81368169982143e-120.999999999999093
711.43575146826882e-122.87150293653763e-120.999999999998564
722.86025089291462e-125.72050178582923e-120.99999999999714
732.02028555369731e-124.04057110739463e-120.99999999999798
748.98465435341542e-131.79693087068308e-120.999999999999102
754.08004635386087e-138.16009270772174e-130.999999999999592
762.23052207106661e-134.46104414213321e-130.999999999999777
778.86418511474694e-141.77283702294939e-130.999999999999911
783.58091840827335e-147.16183681654671e-140.999999999999964
791.58688494174678e-143.17376988349356e-140.999999999999984
806.91703500979581e-151.38340700195916e-140.999999999999993
812.7036105022098e-155.4072210044196e-150.999999999999997
821.04795676226988e-152.09591352453975e-150.999999999999999
833.92244174883461e-167.84488349766922e-161
841.89663061228806e-163.79326122457612e-161
858.64932013690124e-161.72986402738025e-151
868.20501202783818e-161.64100240556764e-151
873.71957175675032e-167.43914351350065e-161
881.56721488441748e-163.13442976883497e-161
891.06497629006968e-162.12995258013937e-161
904.53575303915952e-179.07150607831905e-171
912.10432033356265e-174.2086406671253e-171
923.21357703021077e-176.42715406042154e-171
931.64207347390141e-173.28414694780283e-171
947.49490765405992e-181.49898153081198e-171
955.76392312817392e-181.15278462563478e-171
964.32495854429692e-188.64991708859383e-181
971.9095245127049e-183.8190490254098e-181
988.27711203092661e-191.65542240618532e-181
993.54871195198804e-197.09742390397608e-191
1001.47819861262597e-192.95639722525193e-191
1016.564851408498e-201.3129702816996e-191
1023.17933675240047e-206.35867350480094e-201
1031.68533087448815e-203.3706617489763e-201
1047.49855194606341e-211.49971038921268e-201
1055.47402683644425e-211.09480536728885e-201
1065.76531840203866e-211.15306368040773e-201
1077.9775186200676e-211.59550372401352e-201
1083.32336665762621e-206.64673331525243e-201
1095.62777153427498e-201.12555430685500e-191
1101.29737272154566e-192.59474544309132e-191
1117.54369234855256e-191.50873846971051e-181
1121.67435343832858e-183.34870687665716e-181
1134.34583498138839e-188.69166996277678e-181
1148.61213357610963e-171.72242671522193e-161
1151.22820020556069e-152.45640041112138e-150.999999999999999
1161.91386527010659e-143.82773054021318e-140.99999999999998
1171.15777325290436e-122.31554650580871e-120.999999999998842
1181.03481182033721e-112.06962364067442e-110.999999999989652
1197.90332009277555e-111.58066401855511e-100.999999999920967
1201.15437078057088e-102.30874156114175e-100.999999999884563
1219.8991249595998e-111.97982499191996e-100.999999999901009
1228.52955733418688e-111.70591146683738e-100.999999999914704
1236.05131734654685e-111.21026346930937e-100.999999999939487
1241.12011198651809e-102.24022397303618e-100.999999999887989
1253.4844639607776e-106.9689279215552e-100.999999999651554
1265.79856088169844e-101.15971217633969e-090.999999999420144
1275.80597418529365e-101.16119483705873e-090.999999999419403
1286.15396830002977e-101.23079366000595e-090.999999999384603
1293.86802678010283e-107.73605356020565e-100.999999999613197
1302.73892944694178e-105.47785889388356e-100.999999999726107
1311.58457997720567e-103.16915995441134e-100.999999999841542
1329.32529492271335e-111.86505898454267e-100.999999999906747
1331.05320783396260e-102.10641566792521e-100.999999999894679
1348.79011687102461e-111.75802337420492e-100.999999999912099
1357.9849320328525e-111.5969864065705e-100.99999999992015
1364.13566461597519e-118.27132923195039e-110.999999999958643
1372.43237537234584e-114.86475074469168e-110.999999999975676
1382.11854265504617e-114.23708531009234e-110.999999999978815
1391.27111846628271e-112.54223693256541e-110.999999999987289
1407.35736066219996e-121.47147213243999e-110.999999999992643
1414.57653813975035e-129.1530762795007e-120.999999999995423
1422.68570021000332e-125.37140042000663e-120.999999999997314
1431.85912374984060e-123.71824749968121e-120.99999999999814
1441.02876961776939e-122.05753923553878e-120.999999999998971
1456.85955555623753e-131.37191111124751e-120.999999999999314
1463.29798457299554e-136.59596914599107e-130.99999999999967
1471.55437306353259e-133.10874612706519e-130.999999999999845
1487.56711091522304e-141.51342218304461e-130.999999999999924
1494.99946304889092e-149.99892609778184e-140.99999999999995
1502.35382980071706e-144.70765960143413e-140.999999999999976
1511.12642514907938e-142.25285029815877e-140.999999999999989
1525.22321100614032e-151.04464220122806e-140.999999999999995
1532.84827008446185e-155.6965401689237e-150.999999999999997
1541.67220448921215e-153.34440897842429e-150.999999999999998
1558.80613367648499e-161.76122673529700e-151
1564.5397890548242e-169.0795781096484e-161
1572.43719737426711e-164.87439474853422e-161
1581.71635745751694e-163.43271491503389e-161
1591.25849240836846e-162.51698481673692e-161
1606.3297963575885e-171.26595927151770e-161
1615.72267608762334e-171.14453521752467e-161
1623.06660738576770e-176.13321477153539e-171
1631.78498621153908e-173.56997242307817e-171
1648.93874038715898e-181.78774807743180e-171
1655.37496917779563e-181.07499383555913e-171
1665.73710680388486e-181.14742136077697e-171
1673.66881974775862e-187.33763949551724e-181
1681.92721223264974e-183.85442446529948e-181
1699.173480123934e-191.83469602478680e-181
1705.0799312621858e-191.01598625243716e-181
1715.49666840435996e-191.09933368087199e-181
1723.36860987149096e-196.73721974298193e-191
1731.51562482778953e-193.03124965557907e-191
1741.03699673771848e-192.07399347543696e-191
1751.00573774369087e-192.01147548738174e-191
1769.88556134672596e-201.97711226934519e-191
1778.06198328374075e-201.61239665674815e-191
1783.36460386354377e-206.72920772708754e-201
1791.36669474994476e-202.73338949988952e-201
1807.21257540233168e-211.44251508046634e-201
1812.71214626866744e-215.42429253733489e-211
1829.07824035514116e-221.81564807102823e-211
1833.92826012831211e-227.85652025662422e-221
1841.28890602551098e-222.57781205102195e-221
1853.93173388011845e-237.86346776023689e-231
1861.27381881558634e-232.54763763117268e-231
1874.73428924244326e-249.46857848488651e-241
1881.74050712048236e-243.48101424096473e-241
1895.43234818385883e-241.08646963677177e-231
1904.37040665714175e-238.74081331428349e-231
1912.30210142941914e-224.60420285883828e-221
1922.18953563241501e-214.37907126483001e-211
1931.89572250623896e-193.79144501247791e-191
1941.88521690660393e-163.77043381320785e-161
1951.9219719249649e-143.8439438499298e-140.99999999999998
1961.01045020935834e-122.02090041871667e-120.99999999999899
1973.76972645864679e-117.53945291729358e-110.999999999962303
1982.55865874322735e-095.1173174864547e-090.999999997441341
1994.37581582106050e-078.75163164212101e-070.999999562418418
2006.91675890738798e-050.0001383351781477600.999930832410926
2010.001634947215779250.003269894431558500.99836505278422
2020.03873247392480210.07746494784960420.961267526075198
2030.02515255763877450.05030511527754910.974847442361225
2040.01658335047201290.03316670094402570.983416649527987
2050.01005632568751200.02011265137502410.989943674312488
2060.01153689937544330.02307379875088650.988463100624557
2070.2273868817221050.4547737634442110.772613118277895







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1780.931937172774869NOK
5% type I error level1850.968586387434555NOK
10% type I error level1880.984293193717278NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 178 & 0.931937172774869 & NOK \tabularnewline
5% type I error level & 185 & 0.968586387434555 & NOK \tabularnewline
10% type I error level & 188 & 0.984293193717278 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57582&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]178[/C][C]0.931937172774869[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]185[/C][C]0.968586387434555[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]188[/C][C]0.984293193717278[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57582&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57582&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1780.931937172774869NOK
5% type I error level1850.968586387434555NOK
10% type I error level1880.984293193717278NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}