Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 09 Dec 2009 07:36:30 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/09/t12603695171m6vmoqjomz349c.htm/, Retrieved Fri, 01 Nov 2024 00:32:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=64972, Retrieved Fri, 01 Nov 2024 00:32:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact208
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RM D  [Multiple Regression] [Seatbelt] [2009-11-12 14:10:54] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [SHW WS7] [2009-11-20 12:32:24] [253127ae8da904b75450fbd69fe4eb21]
-    D      [Multiple Regression] [SHW paper] [2009-12-06 12:46:31] [253127ae8da904b75450fbd69fe4eb21]
-    D          [Multiple Regression] [SHW Paper] [2009-12-09 14:36:30] [b7e46d23597387652ca7420fdeb9acca] [Current]
Feedback Forum

Post a new message
Dataseries X:
7.5	0	8.3	8.8	8.9
7.2	0	7.5	8.3	8.8
7.4	0	7.2	7.5	8.3
8.8	0	7.4	7.2	7.5
9.3	0	8.8	7.4	7.2
9.3	0	9.3	8.8	7.4
8.7	0	9.3	9.3	8.8
8.2	0	8.7	9.3	9.3
8.3	0	8.2	8.7	9.3
8.5	0	8.3	8.2	8.7
8.6	0	8.5	8.3	8.2
8.5	0	8.6	8.5	8.3
8.2	0	8.5	8.6	8.5
8.1	0	8.2	8.5	8.6
7.9	0	8.1	8.2	8.5
8.6	0	7.9	8.1	8.2
8.7	0	8.6	7.9	8.1
8.7	0	8.7	8.6	7.9
8.5	0	8.7	8.7	8.6
8.4	0	8.5	8.7	8.7
8.5	0	8.4	8.5	8.7
8.7	0	8.5	8.4	8.5
8.7	0	8.7	8.5	8.4
8.6	0	8.7	8.7	8.5
8.5	0	8.6	8.7	8.7
8.3	0	8.5	8.6	8.7
8	0	8.3	8.5	8.6
8.2	0	8	8.3	8.5
8.1	0	8.2	8	8.3
8.1	0	8.1	8.2	8
8	0	8.1	8.1	8.2
7.9	0	8	8.1	8.1
7.9	0	7.9	8	8.1
8	0	7.9	7.9	8
8	0	8	7.9	7.9
7.9	0	8	8	7.9
8	0	7.9	8	8
7.7	0	8	7.9	8
7.2	0	7.7	8	7.9
7.5	0	7.2	7.7	8
7.3	0	7.5	7.2	7.7
7	0	7.3	7.5	7.2
7	0	7	7.3	7.5
7	0	7	7	7.3
7.2	0	7	7	7
7.3	1	7.2	7	7
7.1	1	7.3	7.2	7
6.8	1	7.1	7.3	7.2
6.4	1	6.8	7.1	7.3
6.1	1	6.4	6.8	7.1
6.5	1	6.1	6.4	6.8
7.7	1	6.5	6.1	6.4
7.9	1	7.7	6.5	6.1
7.5	1	7.9	7.7	6.5
6.9	1	7.5	7.9	7.7
6.6	1	6.9	7.5	7.9
6.9	1	6.6	6.9	7.5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 1.56514265470901 -0.0235758497816096X[t] + 1.68719399153885Y1[t] -1.29343276756586Y2[t] + 0.427683431917404Y3[t] -0.107427644430209M1[t] -0.102812179996442M2[t] -0.0659199587151479M3[t] + 0.652841864527273M4[t] -0.524351028227446M5[t] + 0.190058289082015M6[t] -0.0635255450432869M7[t] + 0.024688860327307M8[t] + 0.179878647393655M9[t] + 0.0186545225372861M10[t] -0.0493315602915095M11[t] -0.00590513855989933t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  1.56514265470901 -0.0235758497816096X[t] +  1.68719399153885Y1[t] -1.29343276756586Y2[t] +  0.427683431917404Y3[t] -0.107427644430209M1[t] -0.102812179996442M2[t] -0.0659199587151479M3[t] +  0.652841864527273M4[t] -0.524351028227446M5[t] +  0.190058289082015M6[t] -0.0635255450432869M7[t] +  0.024688860327307M8[t] +  0.179878647393655M9[t] +  0.0186545225372861M10[t] -0.0493315602915095M11[t] -0.00590513855989933t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  1.56514265470901 -0.0235758497816096X[t] +  1.68719399153885Y1[t] -1.29343276756586Y2[t] +  0.427683431917404Y3[t] -0.107427644430209M1[t] -0.102812179996442M2[t] -0.0659199587151479M3[t] +  0.652841864527273M4[t] -0.524351028227446M5[t] +  0.190058289082015M6[t] -0.0635255450432869M7[t] +  0.024688860327307M8[t] +  0.179878647393655M9[t] +  0.0186545225372861M10[t] -0.0493315602915095M11[t] -0.00590513855989933t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 1.56514265470901 -0.0235758497816096X[t] + 1.68719399153885Y1[t] -1.29343276756586Y2[t] + 0.427683431917404Y3[t] -0.107427644430209M1[t] -0.102812179996442M2[t] -0.0659199587151479M3[t] + 0.652841864527273M4[t] -0.524351028227446M5[t] + 0.190058289082015M6[t] -0.0635255450432869M7[t] + 0.024688860327307M8[t] + 0.179878647393655M9[t] + 0.0186545225372861M10[t] -0.0493315602915095M11[t] -0.00590513855989933t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1.565142654709010.6970482.24540.0303380.015169
X-0.02357584978160960.09254-0.25480.800210.400105
Y11.687193991538850.14383611.7300
Y2-1.293432767565860.225728-5.731e-061e-06
Y30.4276834319174040.1484152.88170.0063320.003166
M1-0.1074276444302090.11756-0.91380.3662910.183146
M2-0.1028121799964420.121311-0.84750.4017530.200876
M3-0.06591995871514790.124228-0.53060.5986040.299302
M40.6528418645272730.124995.22326e-063e-06
M5-0.5243510282274460.159282-3.2920.0020850.001043
M60.1900582890820150.1395631.36180.1808780.090439
M7-0.06352554504328690.116041-0.54740.5871170.293559
M80.0246888603273070.1193730.20680.8371980.418599
M90.1798786473936550.1234321.45730.1528370.076418
M100.01865452253728610.131590.14180.8879790.44399
M11-0.04933156029150950.123996-0.39780.6928580.346429
t-0.005905138559899330.002615-2.25820.0294590.014729

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 1.56514265470901 & 0.697048 & 2.2454 & 0.030338 & 0.015169 \tabularnewline
X & -0.0235758497816096 & 0.09254 & -0.2548 & 0.80021 & 0.400105 \tabularnewline
Y1 & 1.68719399153885 & 0.143836 & 11.73 & 0 & 0 \tabularnewline
Y2 & -1.29343276756586 & 0.225728 & -5.73 & 1e-06 & 1e-06 \tabularnewline
Y3 & 0.427683431917404 & 0.148415 & 2.8817 & 0.006332 & 0.003166 \tabularnewline
M1 & -0.107427644430209 & 0.11756 & -0.9138 & 0.366291 & 0.183146 \tabularnewline
M2 & -0.102812179996442 & 0.121311 & -0.8475 & 0.401753 & 0.200876 \tabularnewline
M3 & -0.0659199587151479 & 0.124228 & -0.5306 & 0.598604 & 0.299302 \tabularnewline
M4 & 0.652841864527273 & 0.12499 & 5.2232 & 6e-06 & 3e-06 \tabularnewline
M5 & -0.524351028227446 & 0.159282 & -3.292 & 0.002085 & 0.001043 \tabularnewline
M6 & 0.190058289082015 & 0.139563 & 1.3618 & 0.180878 & 0.090439 \tabularnewline
M7 & -0.0635255450432869 & 0.116041 & -0.5474 & 0.587117 & 0.293559 \tabularnewline
M8 & 0.024688860327307 & 0.119373 & 0.2068 & 0.837198 & 0.418599 \tabularnewline
M9 & 0.179878647393655 & 0.123432 & 1.4573 & 0.152837 & 0.076418 \tabularnewline
M10 & 0.0186545225372861 & 0.13159 & 0.1418 & 0.887979 & 0.44399 \tabularnewline
M11 & -0.0493315602915095 & 0.123996 & -0.3978 & 0.692858 & 0.346429 \tabularnewline
t & -0.00590513855989933 & 0.002615 & -2.2582 & 0.029459 & 0.014729 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]1.56514265470901[/C][C]0.697048[/C][C]2.2454[/C][C]0.030338[/C][C]0.015169[/C][/ROW]
[ROW][C]X[/C][C]-0.0235758497816096[/C][C]0.09254[/C][C]-0.2548[/C][C]0.80021[/C][C]0.400105[/C][/ROW]
[ROW][C]Y1[/C][C]1.68719399153885[/C][C]0.143836[/C][C]11.73[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Y2[/C][C]-1.29343276756586[/C][C]0.225728[/C][C]-5.73[/C][C]1e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]Y3[/C][C]0.427683431917404[/C][C]0.148415[/C][C]2.8817[/C][C]0.006332[/C][C]0.003166[/C][/ROW]
[ROW][C]M1[/C][C]-0.107427644430209[/C][C]0.11756[/C][C]-0.9138[/C][C]0.366291[/C][C]0.183146[/C][/ROW]
[ROW][C]M2[/C][C]-0.102812179996442[/C][C]0.121311[/C][C]-0.8475[/C][C]0.401753[/C][C]0.200876[/C][/ROW]
[ROW][C]M3[/C][C]-0.0659199587151479[/C][C]0.124228[/C][C]-0.5306[/C][C]0.598604[/C][C]0.299302[/C][/ROW]
[ROW][C]M4[/C][C]0.652841864527273[/C][C]0.12499[/C][C]5.2232[/C][C]6e-06[/C][C]3e-06[/C][/ROW]
[ROW][C]M5[/C][C]-0.524351028227446[/C][C]0.159282[/C][C]-3.292[/C][C]0.002085[/C][C]0.001043[/C][/ROW]
[ROW][C]M6[/C][C]0.190058289082015[/C][C]0.139563[/C][C]1.3618[/C][C]0.180878[/C][C]0.090439[/C][/ROW]
[ROW][C]M7[/C][C]-0.0635255450432869[/C][C]0.116041[/C][C]-0.5474[/C][C]0.587117[/C][C]0.293559[/C][/ROW]
[ROW][C]M8[/C][C]0.024688860327307[/C][C]0.119373[/C][C]0.2068[/C][C]0.837198[/C][C]0.418599[/C][/ROW]
[ROW][C]M9[/C][C]0.179878647393655[/C][C]0.123432[/C][C]1.4573[/C][C]0.152837[/C][C]0.076418[/C][/ROW]
[ROW][C]M10[/C][C]0.0186545225372861[/C][C]0.13159[/C][C]0.1418[/C][C]0.887979[/C][C]0.44399[/C][/ROW]
[ROW][C]M11[/C][C]-0.0493315602915095[/C][C]0.123996[/C][C]-0.3978[/C][C]0.692858[/C][C]0.346429[/C][/ROW]
[ROW][C]t[/C][C]-0.00590513855989933[/C][C]0.002615[/C][C]-2.2582[/C][C]0.029459[/C][C]0.014729[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1.565142654709010.6970482.24540.0303380.015169
X-0.02357584978160960.09254-0.25480.800210.400105
Y11.687193991538850.14383611.7300
Y2-1.293432767565860.225728-5.731e-061e-06
Y30.4276834319174040.1484152.88170.0063320.003166
M1-0.1074276444302090.11756-0.91380.3662910.183146
M2-0.1028121799964420.121311-0.84750.4017530.200876
M3-0.06591995871514790.124228-0.53060.5986040.299302
M40.6528418645272730.124995.22326e-063e-06
M5-0.5243510282274460.159282-3.2920.0020850.001043
M60.1900582890820150.1395631.36180.1808780.090439
M7-0.06352554504328690.116041-0.54740.5871170.293559
M80.0246888603273070.1193730.20680.8371980.418599
M90.1798786473936550.1234321.45730.1528370.076418
M100.01865452253728610.131590.14180.8879790.44399
M11-0.04933156029150950.123996-0.39780.6928580.346429
t-0.005905138559899330.002615-2.25820.0294590.014729







Multiple Linear Regression - Regression Statistics
Multiple R0.980473640173153
R-squared0.961328559074393
Adjusted R-squared0.94585998270415
F-TEST (value)62.1471902820818
F-TEST (DF numerator)16
F-TEST (DF denominator)40
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.17190528237177
Sum Squared Residuals1.18205704429272

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.980473640173153 \tabularnewline
R-squared & 0.961328559074393 \tabularnewline
Adjusted R-squared & 0.94585998270415 \tabularnewline
F-TEST (value) & 62.1471902820818 \tabularnewline
F-TEST (DF numerator) & 16 \tabularnewline
F-TEST (DF denominator) & 40 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.17190528237177 \tabularnewline
Sum Squared Residuals & 1.18205704429272 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.980473640173153[/C][/ROW]
[ROW][C]R-squared[/C][C]0.961328559074393[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.94585998270415[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]62.1471902820818[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]16[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]40[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.17190528237177[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1.18205704429272[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.980473640173153
R-squared0.961328559074393
Adjusted R-squared0.94585998270415
F-TEST (value)62.1471902820818
F-TEST (DF numerator)16
F-TEST (DF denominator)40
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.17190528237177
Sum Squared Residuals1.18205704429272







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
17.57.87969419097671-0.379694190976713
27.27.132597364210660.0674026357893358
37.47.47833074756439-0.07833074756439
48.88.574509315290520.225490684709479
59.39.3664912890419-0.0664912890418988
69.39.193323275352160.106676724647840
78.78.8858747235684-0.185874723568395
88.28.169709311414480.0302906885855227
98.38.251456624691020.0485433753089818
108.58.64315308506113-0.143153085061126
118.68.563515669264910.0364843307350891
128.58.55974327982898-0.0597432798289745
138.28.23388450731188-0.0338845073118772
148.17.898548255672410.201451744327586
157.98.10607742631794-0.206077426317943
168.68.482533559874060.117466440125940
178.78.696389532958070.00361046704193212
188.78.582673487181930.117326512818069
198.58.493219640082330.00678035991767395
208.48.2808584517770.119141548223009
218.58.52011025464273-0.0201102546427272
228.78.565506980753450.134493019246550
238.78.65694293772420.0430570622758021
248.68.484451149134380.115548850865624
258.58.287935653373860.212064346626136
268.38.247269856850430.0527301431495681
2788.0273930748289-0.0273930748289036
288.28.4500097723712-0.250009772371200
298.17.906843683250630.193156316749370
308.18.059636879757910.0403631202420859
3188.01502787021278-0.0150278702127787
327.97.885849394677850.0141506053221519
337.97.995757920787-0.0957579207869978
3487.915203590935580.0847964090644246
3587.967263425509030.0327365744909750
367.97.881346570484050.0186534295159510
3787.64206273153180.357937268468203
387.77.93883573331614-0.238835733316135
397.27.29155299862755-0.0915529986275479
407.57.59161086100214-0.0916108610021422
417.37.43308238135689-0.133082381356889
4277.20227621557022-0.20227621557022
4376.823620628511760.176379371488243
4477.20842303920873-0.208423039208729
457.27.22940265813996-0.0294026581399568
467.37.37613634324985-0.076136343249849
477.17.21227796750187-0.112277967501866
486.86.8744590005526-0.0744590005526006
496.46.55642291680575-0.156422916805749
506.16.18274878995036-0.0827487899503555
516.56.096645752661220.403354247338784
527.77.70133649146208-0.00133649146207714
537.97.897193113392510.00280688660748551
547.57.56209014213777-0.0620901421377743
556.96.882257137624740.0177428623752568
566.66.555159802921950.0448401970780459
576.96.80327254173930.0967274582606998

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 7.5 & 7.87969419097671 & -0.379694190976713 \tabularnewline
2 & 7.2 & 7.13259736421066 & 0.0674026357893358 \tabularnewline
3 & 7.4 & 7.47833074756439 & -0.07833074756439 \tabularnewline
4 & 8.8 & 8.57450931529052 & 0.225490684709479 \tabularnewline
5 & 9.3 & 9.3664912890419 & -0.0664912890418988 \tabularnewline
6 & 9.3 & 9.19332327535216 & 0.106676724647840 \tabularnewline
7 & 8.7 & 8.8858747235684 & -0.185874723568395 \tabularnewline
8 & 8.2 & 8.16970931141448 & 0.0302906885855227 \tabularnewline
9 & 8.3 & 8.25145662469102 & 0.0485433753089818 \tabularnewline
10 & 8.5 & 8.64315308506113 & -0.143153085061126 \tabularnewline
11 & 8.6 & 8.56351566926491 & 0.0364843307350891 \tabularnewline
12 & 8.5 & 8.55974327982898 & -0.0597432798289745 \tabularnewline
13 & 8.2 & 8.23388450731188 & -0.0338845073118772 \tabularnewline
14 & 8.1 & 7.89854825567241 & 0.201451744327586 \tabularnewline
15 & 7.9 & 8.10607742631794 & -0.206077426317943 \tabularnewline
16 & 8.6 & 8.48253355987406 & 0.117466440125940 \tabularnewline
17 & 8.7 & 8.69638953295807 & 0.00361046704193212 \tabularnewline
18 & 8.7 & 8.58267348718193 & 0.117326512818069 \tabularnewline
19 & 8.5 & 8.49321964008233 & 0.00678035991767395 \tabularnewline
20 & 8.4 & 8.280858451777 & 0.119141548223009 \tabularnewline
21 & 8.5 & 8.52011025464273 & -0.0201102546427272 \tabularnewline
22 & 8.7 & 8.56550698075345 & 0.134493019246550 \tabularnewline
23 & 8.7 & 8.6569429377242 & 0.0430570622758021 \tabularnewline
24 & 8.6 & 8.48445114913438 & 0.115548850865624 \tabularnewline
25 & 8.5 & 8.28793565337386 & 0.212064346626136 \tabularnewline
26 & 8.3 & 8.24726985685043 & 0.0527301431495681 \tabularnewline
27 & 8 & 8.0273930748289 & -0.0273930748289036 \tabularnewline
28 & 8.2 & 8.4500097723712 & -0.250009772371200 \tabularnewline
29 & 8.1 & 7.90684368325063 & 0.193156316749370 \tabularnewline
30 & 8.1 & 8.05963687975791 & 0.0403631202420859 \tabularnewline
31 & 8 & 8.01502787021278 & -0.0150278702127787 \tabularnewline
32 & 7.9 & 7.88584939467785 & 0.0141506053221519 \tabularnewline
33 & 7.9 & 7.995757920787 & -0.0957579207869978 \tabularnewline
34 & 8 & 7.91520359093558 & 0.0847964090644246 \tabularnewline
35 & 8 & 7.96726342550903 & 0.0327365744909750 \tabularnewline
36 & 7.9 & 7.88134657048405 & 0.0186534295159510 \tabularnewline
37 & 8 & 7.6420627315318 & 0.357937268468203 \tabularnewline
38 & 7.7 & 7.93883573331614 & -0.238835733316135 \tabularnewline
39 & 7.2 & 7.29155299862755 & -0.0915529986275479 \tabularnewline
40 & 7.5 & 7.59161086100214 & -0.0916108610021422 \tabularnewline
41 & 7.3 & 7.43308238135689 & -0.133082381356889 \tabularnewline
42 & 7 & 7.20227621557022 & -0.20227621557022 \tabularnewline
43 & 7 & 6.82362062851176 & 0.176379371488243 \tabularnewline
44 & 7 & 7.20842303920873 & -0.208423039208729 \tabularnewline
45 & 7.2 & 7.22940265813996 & -0.0294026581399568 \tabularnewline
46 & 7.3 & 7.37613634324985 & -0.076136343249849 \tabularnewline
47 & 7.1 & 7.21227796750187 & -0.112277967501866 \tabularnewline
48 & 6.8 & 6.8744590005526 & -0.0744590005526006 \tabularnewline
49 & 6.4 & 6.55642291680575 & -0.156422916805749 \tabularnewline
50 & 6.1 & 6.18274878995036 & -0.0827487899503555 \tabularnewline
51 & 6.5 & 6.09664575266122 & 0.403354247338784 \tabularnewline
52 & 7.7 & 7.70133649146208 & -0.00133649146207714 \tabularnewline
53 & 7.9 & 7.89719311339251 & 0.00280688660748551 \tabularnewline
54 & 7.5 & 7.56209014213777 & -0.0620901421377743 \tabularnewline
55 & 6.9 & 6.88225713762474 & 0.0177428623752568 \tabularnewline
56 & 6.6 & 6.55515980292195 & 0.0448401970780459 \tabularnewline
57 & 6.9 & 6.8032725417393 & 0.0967274582606998 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]7.5[/C][C]7.87969419097671[/C][C]-0.379694190976713[/C][/ROW]
[ROW][C]2[/C][C]7.2[/C][C]7.13259736421066[/C][C]0.0674026357893358[/C][/ROW]
[ROW][C]3[/C][C]7.4[/C][C]7.47833074756439[/C][C]-0.07833074756439[/C][/ROW]
[ROW][C]4[/C][C]8.8[/C][C]8.57450931529052[/C][C]0.225490684709479[/C][/ROW]
[ROW][C]5[/C][C]9.3[/C][C]9.3664912890419[/C][C]-0.0664912890418988[/C][/ROW]
[ROW][C]6[/C][C]9.3[/C][C]9.19332327535216[/C][C]0.106676724647840[/C][/ROW]
[ROW][C]7[/C][C]8.7[/C][C]8.8858747235684[/C][C]-0.185874723568395[/C][/ROW]
[ROW][C]8[/C][C]8.2[/C][C]8.16970931141448[/C][C]0.0302906885855227[/C][/ROW]
[ROW][C]9[/C][C]8.3[/C][C]8.25145662469102[/C][C]0.0485433753089818[/C][/ROW]
[ROW][C]10[/C][C]8.5[/C][C]8.64315308506113[/C][C]-0.143153085061126[/C][/ROW]
[ROW][C]11[/C][C]8.6[/C][C]8.56351566926491[/C][C]0.0364843307350891[/C][/ROW]
[ROW][C]12[/C][C]8.5[/C][C]8.55974327982898[/C][C]-0.0597432798289745[/C][/ROW]
[ROW][C]13[/C][C]8.2[/C][C]8.23388450731188[/C][C]-0.0338845073118772[/C][/ROW]
[ROW][C]14[/C][C]8.1[/C][C]7.89854825567241[/C][C]0.201451744327586[/C][/ROW]
[ROW][C]15[/C][C]7.9[/C][C]8.10607742631794[/C][C]-0.206077426317943[/C][/ROW]
[ROW][C]16[/C][C]8.6[/C][C]8.48253355987406[/C][C]0.117466440125940[/C][/ROW]
[ROW][C]17[/C][C]8.7[/C][C]8.69638953295807[/C][C]0.00361046704193212[/C][/ROW]
[ROW][C]18[/C][C]8.7[/C][C]8.58267348718193[/C][C]0.117326512818069[/C][/ROW]
[ROW][C]19[/C][C]8.5[/C][C]8.49321964008233[/C][C]0.00678035991767395[/C][/ROW]
[ROW][C]20[/C][C]8.4[/C][C]8.280858451777[/C][C]0.119141548223009[/C][/ROW]
[ROW][C]21[/C][C]8.5[/C][C]8.52011025464273[/C][C]-0.0201102546427272[/C][/ROW]
[ROW][C]22[/C][C]8.7[/C][C]8.56550698075345[/C][C]0.134493019246550[/C][/ROW]
[ROW][C]23[/C][C]8.7[/C][C]8.6569429377242[/C][C]0.0430570622758021[/C][/ROW]
[ROW][C]24[/C][C]8.6[/C][C]8.48445114913438[/C][C]0.115548850865624[/C][/ROW]
[ROW][C]25[/C][C]8.5[/C][C]8.28793565337386[/C][C]0.212064346626136[/C][/ROW]
[ROW][C]26[/C][C]8.3[/C][C]8.24726985685043[/C][C]0.0527301431495681[/C][/ROW]
[ROW][C]27[/C][C]8[/C][C]8.0273930748289[/C][C]-0.0273930748289036[/C][/ROW]
[ROW][C]28[/C][C]8.2[/C][C]8.4500097723712[/C][C]-0.250009772371200[/C][/ROW]
[ROW][C]29[/C][C]8.1[/C][C]7.90684368325063[/C][C]0.193156316749370[/C][/ROW]
[ROW][C]30[/C][C]8.1[/C][C]8.05963687975791[/C][C]0.0403631202420859[/C][/ROW]
[ROW][C]31[/C][C]8[/C][C]8.01502787021278[/C][C]-0.0150278702127787[/C][/ROW]
[ROW][C]32[/C][C]7.9[/C][C]7.88584939467785[/C][C]0.0141506053221519[/C][/ROW]
[ROW][C]33[/C][C]7.9[/C][C]7.995757920787[/C][C]-0.0957579207869978[/C][/ROW]
[ROW][C]34[/C][C]8[/C][C]7.91520359093558[/C][C]0.0847964090644246[/C][/ROW]
[ROW][C]35[/C][C]8[/C][C]7.96726342550903[/C][C]0.0327365744909750[/C][/ROW]
[ROW][C]36[/C][C]7.9[/C][C]7.88134657048405[/C][C]0.0186534295159510[/C][/ROW]
[ROW][C]37[/C][C]8[/C][C]7.6420627315318[/C][C]0.357937268468203[/C][/ROW]
[ROW][C]38[/C][C]7.7[/C][C]7.93883573331614[/C][C]-0.238835733316135[/C][/ROW]
[ROW][C]39[/C][C]7.2[/C][C]7.29155299862755[/C][C]-0.0915529986275479[/C][/ROW]
[ROW][C]40[/C][C]7.5[/C][C]7.59161086100214[/C][C]-0.0916108610021422[/C][/ROW]
[ROW][C]41[/C][C]7.3[/C][C]7.43308238135689[/C][C]-0.133082381356889[/C][/ROW]
[ROW][C]42[/C][C]7[/C][C]7.20227621557022[/C][C]-0.20227621557022[/C][/ROW]
[ROW][C]43[/C][C]7[/C][C]6.82362062851176[/C][C]0.176379371488243[/C][/ROW]
[ROW][C]44[/C][C]7[/C][C]7.20842303920873[/C][C]-0.208423039208729[/C][/ROW]
[ROW][C]45[/C][C]7.2[/C][C]7.22940265813996[/C][C]-0.0294026581399568[/C][/ROW]
[ROW][C]46[/C][C]7.3[/C][C]7.37613634324985[/C][C]-0.076136343249849[/C][/ROW]
[ROW][C]47[/C][C]7.1[/C][C]7.21227796750187[/C][C]-0.112277967501866[/C][/ROW]
[ROW][C]48[/C][C]6.8[/C][C]6.8744590005526[/C][C]-0.0744590005526006[/C][/ROW]
[ROW][C]49[/C][C]6.4[/C][C]6.55642291680575[/C][C]-0.156422916805749[/C][/ROW]
[ROW][C]50[/C][C]6.1[/C][C]6.18274878995036[/C][C]-0.0827487899503555[/C][/ROW]
[ROW][C]51[/C][C]6.5[/C][C]6.09664575266122[/C][C]0.403354247338784[/C][/ROW]
[ROW][C]52[/C][C]7.7[/C][C]7.70133649146208[/C][C]-0.00133649146207714[/C][/ROW]
[ROW][C]53[/C][C]7.9[/C][C]7.89719311339251[/C][C]0.00280688660748551[/C][/ROW]
[ROW][C]54[/C][C]7.5[/C][C]7.56209014213777[/C][C]-0.0620901421377743[/C][/ROW]
[ROW][C]55[/C][C]6.9[/C][C]6.88225713762474[/C][C]0.0177428623752568[/C][/ROW]
[ROW][C]56[/C][C]6.6[/C][C]6.55515980292195[/C][C]0.0448401970780459[/C][/ROW]
[ROW][C]57[/C][C]6.9[/C][C]6.8032725417393[/C][C]0.0967274582606998[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
17.57.87969419097671-0.379694190976713
27.27.132597364210660.0674026357893358
37.47.47833074756439-0.07833074756439
48.88.574509315290520.225490684709479
59.39.3664912890419-0.0664912890418988
69.39.193323275352160.106676724647840
78.78.8858747235684-0.185874723568395
88.28.169709311414480.0302906885855227
98.38.251456624691020.0485433753089818
108.58.64315308506113-0.143153085061126
118.68.563515669264910.0364843307350891
128.58.55974327982898-0.0597432798289745
138.28.23388450731188-0.0338845073118772
148.17.898548255672410.201451744327586
157.98.10607742631794-0.206077426317943
168.68.482533559874060.117466440125940
178.78.696389532958070.00361046704193212
188.78.582673487181930.117326512818069
198.58.493219640082330.00678035991767395
208.48.2808584517770.119141548223009
218.58.52011025464273-0.0201102546427272
228.78.565506980753450.134493019246550
238.78.65694293772420.0430570622758021
248.68.484451149134380.115548850865624
258.58.287935653373860.212064346626136
268.38.247269856850430.0527301431495681
2788.0273930748289-0.0273930748289036
288.28.4500097723712-0.250009772371200
298.17.906843683250630.193156316749370
308.18.059636879757910.0403631202420859
3188.01502787021278-0.0150278702127787
327.97.885849394677850.0141506053221519
337.97.995757920787-0.0957579207869978
3487.915203590935580.0847964090644246
3587.967263425509030.0327365744909750
367.97.881346570484050.0186534295159510
3787.64206273153180.357937268468203
387.77.93883573331614-0.238835733316135
397.27.29155299862755-0.0915529986275479
407.57.59161086100214-0.0916108610021422
417.37.43308238135689-0.133082381356889
4277.20227621557022-0.20227621557022
4376.823620628511760.176379371488243
4477.20842303920873-0.208423039208729
457.27.22940265813996-0.0294026581399568
467.37.37613634324985-0.076136343249849
477.17.21227796750187-0.112277967501866
486.86.8744590005526-0.0744590005526006
496.46.55642291680575-0.156422916805749
506.16.18274878995036-0.0827487899503555
516.56.096645752661220.403354247338784
527.77.70133649146208-0.00133649146207714
537.97.897193113392510.00280688660748551
547.57.56209014213777-0.0620901421377743
556.96.882257137624740.0177428623752568
566.66.555159802921950.0448401970780459
576.96.80327254173930.0967274582606998







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
200.3429197174526190.6858394349052370.657080282547381
210.2701298715257520.5402597430515030.729870128474248
220.2862930398426890.5725860796853780.713706960157311
230.1729876304630520.3459752609261030.827012369536948
240.1162145662251580.2324291324503160.883785433774842
250.1608776192893400.3217552385786800.83912238071066
260.1678672441961560.3357344883923120.832132755803844
270.1121759229310040.2243518458620090.887824077068996
280.294315038981790.588630077963580.70568496101821
290.2484046163969940.4968092327939880.751595383603006
300.2205831753583960.4411663507167910.779416824641604
310.1916743973105470.3833487946210930.808325602689453
320.1993861193705950.3987722387411910.800613880629405
330.1536616965853000.3073233931705990.8463383034147
340.1059939944879290.2119879889758580.894006005512071
350.06573203437536330.1314640687507270.934267965624637
360.03561538092285380.07123076184570760.964384619077146
370.4522624460307760.9045248920615530.547737553969224

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
20 & 0.342919717452619 & 0.685839434905237 & 0.657080282547381 \tabularnewline
21 & 0.270129871525752 & 0.540259743051503 & 0.729870128474248 \tabularnewline
22 & 0.286293039842689 & 0.572586079685378 & 0.713706960157311 \tabularnewline
23 & 0.172987630463052 & 0.345975260926103 & 0.827012369536948 \tabularnewline
24 & 0.116214566225158 & 0.232429132450316 & 0.883785433774842 \tabularnewline
25 & 0.160877619289340 & 0.321755238578680 & 0.83912238071066 \tabularnewline
26 & 0.167867244196156 & 0.335734488392312 & 0.832132755803844 \tabularnewline
27 & 0.112175922931004 & 0.224351845862009 & 0.887824077068996 \tabularnewline
28 & 0.29431503898179 & 0.58863007796358 & 0.70568496101821 \tabularnewline
29 & 0.248404616396994 & 0.496809232793988 & 0.751595383603006 \tabularnewline
30 & 0.220583175358396 & 0.441166350716791 & 0.779416824641604 \tabularnewline
31 & 0.191674397310547 & 0.383348794621093 & 0.808325602689453 \tabularnewline
32 & 0.199386119370595 & 0.398772238741191 & 0.800613880629405 \tabularnewline
33 & 0.153661696585300 & 0.307323393170599 & 0.8463383034147 \tabularnewline
34 & 0.105993994487929 & 0.211987988975858 & 0.894006005512071 \tabularnewline
35 & 0.0657320343753633 & 0.131464068750727 & 0.934267965624637 \tabularnewline
36 & 0.0356153809228538 & 0.0712307618457076 & 0.964384619077146 \tabularnewline
37 & 0.452262446030776 & 0.904524892061553 & 0.547737553969224 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]20[/C][C]0.342919717452619[/C][C]0.685839434905237[/C][C]0.657080282547381[/C][/ROW]
[ROW][C]21[/C][C]0.270129871525752[/C][C]0.540259743051503[/C][C]0.729870128474248[/C][/ROW]
[ROW][C]22[/C][C]0.286293039842689[/C][C]0.572586079685378[/C][C]0.713706960157311[/C][/ROW]
[ROW][C]23[/C][C]0.172987630463052[/C][C]0.345975260926103[/C][C]0.827012369536948[/C][/ROW]
[ROW][C]24[/C][C]0.116214566225158[/C][C]0.232429132450316[/C][C]0.883785433774842[/C][/ROW]
[ROW][C]25[/C][C]0.160877619289340[/C][C]0.321755238578680[/C][C]0.83912238071066[/C][/ROW]
[ROW][C]26[/C][C]0.167867244196156[/C][C]0.335734488392312[/C][C]0.832132755803844[/C][/ROW]
[ROW][C]27[/C][C]0.112175922931004[/C][C]0.224351845862009[/C][C]0.887824077068996[/C][/ROW]
[ROW][C]28[/C][C]0.29431503898179[/C][C]0.58863007796358[/C][C]0.70568496101821[/C][/ROW]
[ROW][C]29[/C][C]0.248404616396994[/C][C]0.496809232793988[/C][C]0.751595383603006[/C][/ROW]
[ROW][C]30[/C][C]0.220583175358396[/C][C]0.441166350716791[/C][C]0.779416824641604[/C][/ROW]
[ROW][C]31[/C][C]0.191674397310547[/C][C]0.383348794621093[/C][C]0.808325602689453[/C][/ROW]
[ROW][C]32[/C][C]0.199386119370595[/C][C]0.398772238741191[/C][C]0.800613880629405[/C][/ROW]
[ROW][C]33[/C][C]0.153661696585300[/C][C]0.307323393170599[/C][C]0.8463383034147[/C][/ROW]
[ROW][C]34[/C][C]0.105993994487929[/C][C]0.211987988975858[/C][C]0.894006005512071[/C][/ROW]
[ROW][C]35[/C][C]0.0657320343753633[/C][C]0.131464068750727[/C][C]0.934267965624637[/C][/ROW]
[ROW][C]36[/C][C]0.0356153809228538[/C][C]0.0712307618457076[/C][C]0.964384619077146[/C][/ROW]
[ROW][C]37[/C][C]0.452262446030776[/C][C]0.904524892061553[/C][C]0.547737553969224[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
200.3429197174526190.6858394349052370.657080282547381
210.2701298715257520.5402597430515030.729870128474248
220.2862930398426890.5725860796853780.713706960157311
230.1729876304630520.3459752609261030.827012369536948
240.1162145662251580.2324291324503160.883785433774842
250.1608776192893400.3217552385786800.83912238071066
260.1678672441961560.3357344883923120.832132755803844
270.1121759229310040.2243518458620090.887824077068996
280.294315038981790.588630077963580.70568496101821
290.2484046163969940.4968092327939880.751595383603006
300.2205831753583960.4411663507167910.779416824641604
310.1916743973105470.3833487946210930.808325602689453
320.1993861193705950.3987722387411910.800613880629405
330.1536616965853000.3073233931705990.8463383034147
340.1059939944879290.2119879889758580.894006005512071
350.06573203437536330.1314640687507270.934267965624637
360.03561538092285380.07123076184570760.964384619077146
370.4522624460307760.9045248920615530.547737553969224







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level10.0555555555555556OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 1 & 0.0555555555555556 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=64972&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]1[/C][C]0.0555555555555556[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=64972&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=64972&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level10.0555555555555556OK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}