Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 29 Nov 2010 11:47:59 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/29/t129103121785mjlf2eevcd099.htm/, Retrieved Fri, 01 Nov 2024 00:00:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=102858, Retrieved Fri, 01 Nov 2024 00:00:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact196
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
- R  D    [Multiple Regression] [W8-model neutraal] [2010-11-28 14:31:42] [48146708a479232c43a8f6e52fbf83b4]
-   PD      [Multiple Regression] [W8-multiple regre...] [2010-11-29 11:44:56] [48146708a479232c43a8f6e52fbf83b4]
-   PD          [Multiple Regression] [W8-multiple regre...] [2010-11-29 11:47:59] [6f3869f9d1e39c73f93153f1f7803f84] [Current]
Feedback Forum

Post a new message
Dataseries X:
0	593
0	590
0	580
0	574
0	573
0	573
0	620
0	626
0	620
0	588
0	566
0	557
0	561
0	549
0	532
0	526
0	511
0	499
0	555
0	565
0	542
0	527
0	510
0	514
0	517
0	508
0	493
0	490
0	469
0	478
1	528
1	534
1	518
1	506
1	502
1	516
1	528
1	533
1	536
1	537
1	524
1	536
1	587
1	597
1	581
1	564
1	558
0	575
0	580
0	575
0	563
0	552
0	537
0	545
0	601




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'George Udny Yule' @ 72.249.76.132







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 548.980793854033 -15.6216389244558X[t] + 13.7563540332907M1[t] + 9.10886683738792M2[t] -0.938620358514797M3[t] -5.78610755441745M4[t] -18.6335947503201M5[t] -15.0810819462229M6[t] + 40.1957586427657M7[t] + 43.2953585147247M8[t] + 28.197871318822M9[t] + 9.35038412291931M10[t] -2.74710307298338M11[t] -0.152512804097312t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  548.980793854033 -15.6216389244558X[t] +  13.7563540332907M1[t] +  9.10886683738792M2[t] -0.938620358514797M3[t] -5.78610755441745M4[t] -18.6335947503201M5[t] -15.0810819462229M6[t] +  40.1957586427657M7[t] +  43.2953585147247M8[t] +  28.197871318822M9[t] +  9.35038412291931M10[t] -2.74710307298338M11[t] -0.152512804097312t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  548.980793854033 -15.6216389244558X[t] +  13.7563540332907M1[t] +  9.10886683738792M2[t] -0.938620358514797M3[t] -5.78610755441745M4[t] -18.6335947503201M5[t] -15.0810819462229M6[t] +  40.1957586427657M7[t] +  43.2953585147247M8[t] +  28.197871318822M9[t] +  9.35038412291931M10[t] -2.74710307298338M11[t] -0.152512804097312t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 548.980793854033 -15.6216389244558X[t] + 13.7563540332907M1[t] + 9.10886683738792M2[t] -0.938620358514797M3[t] -5.78610755441745M4[t] -18.6335947503201M5[t] -15.0810819462229M6[t] + 40.1957586427657M7[t] + 43.2953585147247M8[t] + 28.197871318822M9[t] + 9.35038412291931M10[t] -2.74710307298338M11[t] -0.152512804097312t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)548.98079385403319.85426327.650500
X-15.621638924455812.263542-1.27380.2098980.104949
M113.756354033290723.6365910.5820.5637570.281879
M29.1088668373879223.618410.38570.7017360.350868
M3-0.93862035851479723.605222-0.03980.9684750.484237
M4-5.7861075544174523.597035-0.24520.8075210.403761
M5-18.633594750320123.593855-0.78980.4342090.217105
M6-15.081081946222923.595684-0.63910.5262830.263142
M740.195758642765723.6488671.69970.0967650.048383
M843.295358514724725.1710271.720.0929650.046482
M928.19787131882225.1342571.12190.2684370.134218
M109.3503841229193125.1021430.37250.7114440.355722
M11-2.7471030729833825.0747-0.10960.9132950.456648
t-0.1525128040973120.343777-0.44360.6596360.329818

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 548.980793854033 & 19.854263 & 27.6505 & 0 & 0 \tabularnewline
X & -15.6216389244558 & 12.263542 & -1.2738 & 0.209898 & 0.104949 \tabularnewline
M1 & 13.7563540332907 & 23.636591 & 0.582 & 0.563757 & 0.281879 \tabularnewline
M2 & 9.10886683738792 & 23.61841 & 0.3857 & 0.701736 & 0.350868 \tabularnewline
M3 & -0.938620358514797 & 23.605222 & -0.0398 & 0.968475 & 0.484237 \tabularnewline
M4 & -5.78610755441745 & 23.597035 & -0.2452 & 0.807521 & 0.403761 \tabularnewline
M5 & -18.6335947503201 & 23.593855 & -0.7898 & 0.434209 & 0.217105 \tabularnewline
M6 & -15.0810819462229 & 23.595684 & -0.6391 & 0.526283 & 0.263142 \tabularnewline
M7 & 40.1957586427657 & 23.648867 & 1.6997 & 0.096765 & 0.048383 \tabularnewline
M8 & 43.2953585147247 & 25.171027 & 1.72 & 0.092965 & 0.046482 \tabularnewline
M9 & 28.197871318822 & 25.134257 & 1.1219 & 0.268437 & 0.134218 \tabularnewline
M10 & 9.35038412291931 & 25.102143 & 0.3725 & 0.711444 & 0.355722 \tabularnewline
M11 & -2.74710307298338 & 25.0747 & -0.1096 & 0.913295 & 0.456648 \tabularnewline
t & -0.152512804097312 & 0.343777 & -0.4436 & 0.659636 & 0.329818 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]548.980793854033[/C][C]19.854263[/C][C]27.6505[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]-15.6216389244558[/C][C]12.263542[/C][C]-1.2738[/C][C]0.209898[/C][C]0.104949[/C][/ROW]
[ROW][C]M1[/C][C]13.7563540332907[/C][C]23.636591[/C][C]0.582[/C][C]0.563757[/C][C]0.281879[/C][/ROW]
[ROW][C]M2[/C][C]9.10886683738792[/C][C]23.61841[/C][C]0.3857[/C][C]0.701736[/C][C]0.350868[/C][/ROW]
[ROW][C]M3[/C][C]-0.938620358514797[/C][C]23.605222[/C][C]-0.0398[/C][C]0.968475[/C][C]0.484237[/C][/ROW]
[ROW][C]M4[/C][C]-5.78610755441745[/C][C]23.597035[/C][C]-0.2452[/C][C]0.807521[/C][C]0.403761[/C][/ROW]
[ROW][C]M5[/C][C]-18.6335947503201[/C][C]23.593855[/C][C]-0.7898[/C][C]0.434209[/C][C]0.217105[/C][/ROW]
[ROW][C]M6[/C][C]-15.0810819462229[/C][C]23.595684[/C][C]-0.6391[/C][C]0.526283[/C][C]0.263142[/C][/ROW]
[ROW][C]M7[/C][C]40.1957586427657[/C][C]23.648867[/C][C]1.6997[/C][C]0.096765[/C][C]0.048383[/C][/ROW]
[ROW][C]M8[/C][C]43.2953585147247[/C][C]25.171027[/C][C]1.72[/C][C]0.092965[/C][C]0.046482[/C][/ROW]
[ROW][C]M9[/C][C]28.197871318822[/C][C]25.134257[/C][C]1.1219[/C][C]0.268437[/C][C]0.134218[/C][/ROW]
[ROW][C]M10[/C][C]9.35038412291931[/C][C]25.102143[/C][C]0.3725[/C][C]0.711444[/C][C]0.355722[/C][/ROW]
[ROW][C]M11[/C][C]-2.74710307298338[/C][C]25.0747[/C][C]-0.1096[/C][C]0.913295[/C][C]0.456648[/C][/ROW]
[ROW][C]t[/C][C]-0.152512804097312[/C][C]0.343777[/C][C]-0.4436[/C][C]0.659636[/C][C]0.329818[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)548.98079385403319.85426327.650500
X-15.621638924455812.263542-1.27380.2098980.104949
M113.756354033290723.6365910.5820.5637570.281879
M29.1088668373879223.618410.38570.7017360.350868
M3-0.93862035851479723.605222-0.03980.9684750.484237
M4-5.7861075544174523.597035-0.24520.8075210.403761
M5-18.633594750320123.593855-0.78980.4342090.217105
M6-15.081081946222923.595684-0.63910.5262830.263142
M740.195758642765723.6488671.69970.0967650.048383
M843.295358514724725.1710271.720.0929650.046482
M928.19787131882225.1342571.12190.2684370.134218
M109.3503841229193125.1021430.37250.7114440.355722
M11-2.7471030729833825.0747-0.10960.9132950.456648
t-0.1525128040973120.343777-0.44360.6596360.329818







Multiple Linear Regression - Regression Statistics
Multiple R0.54768043660878
R-squared0.299953860643984
Adjusted R-squared0.0779880115798813
F-TEST (value)1.35135139891434
F-TEST (DF numerator)13
F-TEST (DF denominator)41
p-value0.224618905356963
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation35.1624898397931
Sum Squared Residuals50692.4283610756

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.54768043660878 \tabularnewline
R-squared & 0.299953860643984 \tabularnewline
Adjusted R-squared & 0.0779880115798813 \tabularnewline
F-TEST (value) & 1.35135139891434 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 41 \tabularnewline
p-value & 0.224618905356963 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 35.1624898397931 \tabularnewline
Sum Squared Residuals & 50692.4283610756 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.54768043660878[/C][/ROW]
[ROW][C]R-squared[/C][C]0.299953860643984[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.0779880115798813[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.35135139891434[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]41[/C][/ROW]
[ROW][C]p-value[/C][C]0.224618905356963[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]35.1624898397931[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]50692.4283610756[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.54768043660878
R-squared0.299953860643984
Adjusted R-squared0.0779880115798813
F-TEST (value)1.35135139891434
F-TEST (DF numerator)13
F-TEST (DF denominator)41
p-value0.224618905356963
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation35.1624898397931
Sum Squared Residuals50692.4283610756







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1593562.58463508322630.4153649167738
2590557.78463508322732.2153649167733
3580547.58463508322732.4153649167733
4574542.58463508322731.4153649167733
5573529.58463508322743.4153649167734
6573532.98463508322740.0153649167733
7620588.10896286811831.8910371318822
8626591.05604993597934.9439500640206
9620575.8060499359844.1939500640205
10588556.8060499359831.1939500640205
11566544.5560499359821.4439500640205
12557547.1506402048669.8493597951344
13561560.7544814340590.245518565940993
14549555.954481434059-6.95448143405888
15532545.754481434059-13.7544814340589
16526540.754481434059-14.7544814340589
17511527.754481434059-16.7544814340589
18499531.154481434059-32.1544814340589
19555586.27880921895-31.2788092189501
20565589.225896286812-24.2258962868118
21542573.975896286812-31.9758962868118
22527554.975896286812-27.9758962868118
23510542.725896286812-32.7258962868118
24514545.320486555698-31.3204865556978
25517558.924327784891-41.9243277848912
26508554.124327784891-46.1243277848912
27493543.924327784891-50.9243277848912
28490538.924327784891-48.9243277848912
29469525.924327784891-56.9243277848912
30478529.324327784891-51.3243277848911
31528568.827016645326-40.8270166453265
32534571.774103713188-37.7741037131882
33518556.524103713188-38.5241037131882
34506537.524103713188-31.5241037131882
35502525.274103713188-23.2741037131882
36516527.868693982074-11.8686939820743
37528541.472535211268-13.4725352112677
38533536.672535211268-3.67253521126758
39536526.4725352112689.52746478873243
40537521.47253521126815.5274647887324
41524508.47253521126815.5274647887324
42536511.87253521126824.1274647887324
43587566.99686299615920.0031370038412
44597569.9439500640227.0560499359795
45581554.6939500640226.3060499359795
46564535.6939500640228.3060499359795
47558523.4439500640234.5560499359795
48575541.66017925736233.3398207426376
49580555.26402048655624.7359795134442
50575550.46402048655624.5359795134443
51563540.26402048655622.7359795134443
52552535.26402048655616.7359795134443
53537522.26402048655614.7359795134443
54545525.66402048655619.3359795134443
55601580.78834827144720.2116517285532

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 593 & 562.584635083226 & 30.4153649167738 \tabularnewline
2 & 590 & 557.784635083227 & 32.2153649167733 \tabularnewline
3 & 580 & 547.584635083227 & 32.4153649167733 \tabularnewline
4 & 574 & 542.584635083227 & 31.4153649167733 \tabularnewline
5 & 573 & 529.584635083227 & 43.4153649167734 \tabularnewline
6 & 573 & 532.984635083227 & 40.0153649167733 \tabularnewline
7 & 620 & 588.108962868118 & 31.8910371318822 \tabularnewline
8 & 626 & 591.056049935979 & 34.9439500640206 \tabularnewline
9 & 620 & 575.80604993598 & 44.1939500640205 \tabularnewline
10 & 588 & 556.80604993598 & 31.1939500640205 \tabularnewline
11 & 566 & 544.55604993598 & 21.4439500640205 \tabularnewline
12 & 557 & 547.150640204866 & 9.8493597951344 \tabularnewline
13 & 561 & 560.754481434059 & 0.245518565940993 \tabularnewline
14 & 549 & 555.954481434059 & -6.95448143405888 \tabularnewline
15 & 532 & 545.754481434059 & -13.7544814340589 \tabularnewline
16 & 526 & 540.754481434059 & -14.7544814340589 \tabularnewline
17 & 511 & 527.754481434059 & -16.7544814340589 \tabularnewline
18 & 499 & 531.154481434059 & -32.1544814340589 \tabularnewline
19 & 555 & 586.27880921895 & -31.2788092189501 \tabularnewline
20 & 565 & 589.225896286812 & -24.2258962868118 \tabularnewline
21 & 542 & 573.975896286812 & -31.9758962868118 \tabularnewline
22 & 527 & 554.975896286812 & -27.9758962868118 \tabularnewline
23 & 510 & 542.725896286812 & -32.7258962868118 \tabularnewline
24 & 514 & 545.320486555698 & -31.3204865556978 \tabularnewline
25 & 517 & 558.924327784891 & -41.9243277848912 \tabularnewline
26 & 508 & 554.124327784891 & -46.1243277848912 \tabularnewline
27 & 493 & 543.924327784891 & -50.9243277848912 \tabularnewline
28 & 490 & 538.924327784891 & -48.9243277848912 \tabularnewline
29 & 469 & 525.924327784891 & -56.9243277848912 \tabularnewline
30 & 478 & 529.324327784891 & -51.3243277848911 \tabularnewline
31 & 528 & 568.827016645326 & -40.8270166453265 \tabularnewline
32 & 534 & 571.774103713188 & -37.7741037131882 \tabularnewline
33 & 518 & 556.524103713188 & -38.5241037131882 \tabularnewline
34 & 506 & 537.524103713188 & -31.5241037131882 \tabularnewline
35 & 502 & 525.274103713188 & -23.2741037131882 \tabularnewline
36 & 516 & 527.868693982074 & -11.8686939820743 \tabularnewline
37 & 528 & 541.472535211268 & -13.4725352112677 \tabularnewline
38 & 533 & 536.672535211268 & -3.67253521126758 \tabularnewline
39 & 536 & 526.472535211268 & 9.52746478873243 \tabularnewline
40 & 537 & 521.472535211268 & 15.5274647887324 \tabularnewline
41 & 524 & 508.472535211268 & 15.5274647887324 \tabularnewline
42 & 536 & 511.872535211268 & 24.1274647887324 \tabularnewline
43 & 587 & 566.996862996159 & 20.0031370038412 \tabularnewline
44 & 597 & 569.94395006402 & 27.0560499359795 \tabularnewline
45 & 581 & 554.69395006402 & 26.3060499359795 \tabularnewline
46 & 564 & 535.69395006402 & 28.3060499359795 \tabularnewline
47 & 558 & 523.44395006402 & 34.5560499359795 \tabularnewline
48 & 575 & 541.660179257362 & 33.3398207426376 \tabularnewline
49 & 580 & 555.264020486556 & 24.7359795134442 \tabularnewline
50 & 575 & 550.464020486556 & 24.5359795134443 \tabularnewline
51 & 563 & 540.264020486556 & 22.7359795134443 \tabularnewline
52 & 552 & 535.264020486556 & 16.7359795134443 \tabularnewline
53 & 537 & 522.264020486556 & 14.7359795134443 \tabularnewline
54 & 545 & 525.664020486556 & 19.3359795134443 \tabularnewline
55 & 601 & 580.788348271447 & 20.2116517285532 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]593[/C][C]562.584635083226[/C][C]30.4153649167738[/C][/ROW]
[ROW][C]2[/C][C]590[/C][C]557.784635083227[/C][C]32.2153649167733[/C][/ROW]
[ROW][C]3[/C][C]580[/C][C]547.584635083227[/C][C]32.4153649167733[/C][/ROW]
[ROW][C]4[/C][C]574[/C][C]542.584635083227[/C][C]31.4153649167733[/C][/ROW]
[ROW][C]5[/C][C]573[/C][C]529.584635083227[/C][C]43.4153649167734[/C][/ROW]
[ROW][C]6[/C][C]573[/C][C]532.984635083227[/C][C]40.0153649167733[/C][/ROW]
[ROW][C]7[/C][C]620[/C][C]588.108962868118[/C][C]31.8910371318822[/C][/ROW]
[ROW][C]8[/C][C]626[/C][C]591.056049935979[/C][C]34.9439500640206[/C][/ROW]
[ROW][C]9[/C][C]620[/C][C]575.80604993598[/C][C]44.1939500640205[/C][/ROW]
[ROW][C]10[/C][C]588[/C][C]556.80604993598[/C][C]31.1939500640205[/C][/ROW]
[ROW][C]11[/C][C]566[/C][C]544.55604993598[/C][C]21.4439500640205[/C][/ROW]
[ROW][C]12[/C][C]557[/C][C]547.150640204866[/C][C]9.8493597951344[/C][/ROW]
[ROW][C]13[/C][C]561[/C][C]560.754481434059[/C][C]0.245518565940993[/C][/ROW]
[ROW][C]14[/C][C]549[/C][C]555.954481434059[/C][C]-6.95448143405888[/C][/ROW]
[ROW][C]15[/C][C]532[/C][C]545.754481434059[/C][C]-13.7544814340589[/C][/ROW]
[ROW][C]16[/C][C]526[/C][C]540.754481434059[/C][C]-14.7544814340589[/C][/ROW]
[ROW][C]17[/C][C]511[/C][C]527.754481434059[/C][C]-16.7544814340589[/C][/ROW]
[ROW][C]18[/C][C]499[/C][C]531.154481434059[/C][C]-32.1544814340589[/C][/ROW]
[ROW][C]19[/C][C]555[/C][C]586.27880921895[/C][C]-31.2788092189501[/C][/ROW]
[ROW][C]20[/C][C]565[/C][C]589.225896286812[/C][C]-24.2258962868118[/C][/ROW]
[ROW][C]21[/C][C]542[/C][C]573.975896286812[/C][C]-31.9758962868118[/C][/ROW]
[ROW][C]22[/C][C]527[/C][C]554.975896286812[/C][C]-27.9758962868118[/C][/ROW]
[ROW][C]23[/C][C]510[/C][C]542.725896286812[/C][C]-32.7258962868118[/C][/ROW]
[ROW][C]24[/C][C]514[/C][C]545.320486555698[/C][C]-31.3204865556978[/C][/ROW]
[ROW][C]25[/C][C]517[/C][C]558.924327784891[/C][C]-41.9243277848912[/C][/ROW]
[ROW][C]26[/C][C]508[/C][C]554.124327784891[/C][C]-46.1243277848912[/C][/ROW]
[ROW][C]27[/C][C]493[/C][C]543.924327784891[/C][C]-50.9243277848912[/C][/ROW]
[ROW][C]28[/C][C]490[/C][C]538.924327784891[/C][C]-48.9243277848912[/C][/ROW]
[ROW][C]29[/C][C]469[/C][C]525.924327784891[/C][C]-56.9243277848912[/C][/ROW]
[ROW][C]30[/C][C]478[/C][C]529.324327784891[/C][C]-51.3243277848911[/C][/ROW]
[ROW][C]31[/C][C]528[/C][C]568.827016645326[/C][C]-40.8270166453265[/C][/ROW]
[ROW][C]32[/C][C]534[/C][C]571.774103713188[/C][C]-37.7741037131882[/C][/ROW]
[ROW][C]33[/C][C]518[/C][C]556.524103713188[/C][C]-38.5241037131882[/C][/ROW]
[ROW][C]34[/C][C]506[/C][C]537.524103713188[/C][C]-31.5241037131882[/C][/ROW]
[ROW][C]35[/C][C]502[/C][C]525.274103713188[/C][C]-23.2741037131882[/C][/ROW]
[ROW][C]36[/C][C]516[/C][C]527.868693982074[/C][C]-11.8686939820743[/C][/ROW]
[ROW][C]37[/C][C]528[/C][C]541.472535211268[/C][C]-13.4725352112677[/C][/ROW]
[ROW][C]38[/C][C]533[/C][C]536.672535211268[/C][C]-3.67253521126758[/C][/ROW]
[ROW][C]39[/C][C]536[/C][C]526.472535211268[/C][C]9.52746478873243[/C][/ROW]
[ROW][C]40[/C][C]537[/C][C]521.472535211268[/C][C]15.5274647887324[/C][/ROW]
[ROW][C]41[/C][C]524[/C][C]508.472535211268[/C][C]15.5274647887324[/C][/ROW]
[ROW][C]42[/C][C]536[/C][C]511.872535211268[/C][C]24.1274647887324[/C][/ROW]
[ROW][C]43[/C][C]587[/C][C]566.996862996159[/C][C]20.0031370038412[/C][/ROW]
[ROW][C]44[/C][C]597[/C][C]569.94395006402[/C][C]27.0560499359795[/C][/ROW]
[ROW][C]45[/C][C]581[/C][C]554.69395006402[/C][C]26.3060499359795[/C][/ROW]
[ROW][C]46[/C][C]564[/C][C]535.69395006402[/C][C]28.3060499359795[/C][/ROW]
[ROW][C]47[/C][C]558[/C][C]523.44395006402[/C][C]34.5560499359795[/C][/ROW]
[ROW][C]48[/C][C]575[/C][C]541.660179257362[/C][C]33.3398207426376[/C][/ROW]
[ROW][C]49[/C][C]580[/C][C]555.264020486556[/C][C]24.7359795134442[/C][/ROW]
[ROW][C]50[/C][C]575[/C][C]550.464020486556[/C][C]24.5359795134443[/C][/ROW]
[ROW][C]51[/C][C]563[/C][C]540.264020486556[/C][C]22.7359795134443[/C][/ROW]
[ROW][C]52[/C][C]552[/C][C]535.264020486556[/C][C]16.7359795134443[/C][/ROW]
[ROW][C]53[/C][C]537[/C][C]522.264020486556[/C][C]14.7359795134443[/C][/ROW]
[ROW][C]54[/C][C]545[/C][C]525.664020486556[/C][C]19.3359795134443[/C][/ROW]
[ROW][C]55[/C][C]601[/C][C]580.788348271447[/C][C]20.2116517285532[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1593562.58463508322630.4153649167738
2590557.78463508322732.2153649167733
3580547.58463508322732.4153649167733
4574542.58463508322731.4153649167733
5573529.58463508322743.4153649167734
6573532.98463508322740.0153649167733
7620588.10896286811831.8910371318822
8626591.05604993597934.9439500640206
9620575.8060499359844.1939500640205
10588556.8060499359831.1939500640205
11566544.5560499359821.4439500640205
12557547.1506402048669.8493597951344
13561560.7544814340590.245518565940993
14549555.954481434059-6.95448143405888
15532545.754481434059-13.7544814340589
16526540.754481434059-14.7544814340589
17511527.754481434059-16.7544814340589
18499531.154481434059-32.1544814340589
19555586.27880921895-31.2788092189501
20565589.225896286812-24.2258962868118
21542573.975896286812-31.9758962868118
22527554.975896286812-27.9758962868118
23510542.725896286812-32.7258962868118
24514545.320486555698-31.3204865556978
25517558.924327784891-41.9243277848912
26508554.124327784891-46.1243277848912
27493543.924327784891-50.9243277848912
28490538.924327784891-48.9243277848912
29469525.924327784891-56.9243277848912
30478529.324327784891-51.3243277848911
31528568.827016645326-40.8270166453265
32534571.774103713188-37.7741037131882
33518556.524103713188-38.5241037131882
34506537.524103713188-31.5241037131882
35502525.274103713188-23.2741037131882
36516527.868693982074-11.8686939820743
37528541.472535211268-13.4725352112677
38533536.672535211268-3.67253521126758
39536526.4725352112689.52746478873243
40537521.47253521126815.5274647887324
41524508.47253521126815.5274647887324
42536511.87253521126824.1274647887324
43587566.99686299615920.0031370038412
44597569.9439500640227.0560499359795
45581554.6939500640226.3060499359795
46564535.6939500640228.3060499359795
47558523.4439500640234.5560499359795
48575541.66017925736233.3398207426376
49580555.26402048655624.7359795134442
50575550.46402048655624.5359795134443
51563540.26402048655622.7359795134443
52552535.26402048655616.7359795134443
53537522.26402048655614.7359795134443
54545525.66402048655619.3359795134443
55601580.78834827144720.2116517285532







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1277397250146870.2554794500293740.872260274985313
180.2110519948381560.4221039896763130.788948005161843
190.1709881088256530.3419762176513060.829011891174347
200.1295382040563320.2590764081126630.870461795943668
210.1884792657513110.3769585315026220.811520734248689
220.1860892271591760.3721784543183530.813910772840824
230.1827678259721790.3655356519443580.817232174027821
240.2010922886058610.4021845772117220.798907711394139
250.3208520562321290.6417041124642580.679147943767871
260.3545719622300700.7091439244601390.64542803776993
270.3168486048097560.6336972096195120.683151395190244
280.3206662395272230.6413324790544460.679333760472777
290.2775740725080150.555148145016030.722425927491985
300.4187518669609460.8375037339218910.581248133039054
310.3272340950015570.6544681900031140.672765904998443
320.2327897081553630.4655794163107260.767210291844637
330.1566901398492390.3133802796984790.84330986015076
340.1027366105496240.2054732210992480.897263389450376
350.08894527540299980.1778905508060000.911054724597
360.3121248162518820.6242496325037630.687875183748118
370.7024240841808660.5951518316382670.297575915819134
380.9400745728809670.1198508542380650.0599254271190326

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.127739725014687 & 0.255479450029374 & 0.872260274985313 \tabularnewline
18 & 0.211051994838156 & 0.422103989676313 & 0.788948005161843 \tabularnewline
19 & 0.170988108825653 & 0.341976217651306 & 0.829011891174347 \tabularnewline
20 & 0.129538204056332 & 0.259076408112663 & 0.870461795943668 \tabularnewline
21 & 0.188479265751311 & 0.376958531502622 & 0.811520734248689 \tabularnewline
22 & 0.186089227159176 & 0.372178454318353 & 0.813910772840824 \tabularnewline
23 & 0.182767825972179 & 0.365535651944358 & 0.817232174027821 \tabularnewline
24 & 0.201092288605861 & 0.402184577211722 & 0.798907711394139 \tabularnewline
25 & 0.320852056232129 & 0.641704112464258 & 0.679147943767871 \tabularnewline
26 & 0.354571962230070 & 0.709143924460139 & 0.64542803776993 \tabularnewline
27 & 0.316848604809756 & 0.633697209619512 & 0.683151395190244 \tabularnewline
28 & 0.320666239527223 & 0.641332479054446 & 0.679333760472777 \tabularnewline
29 & 0.277574072508015 & 0.55514814501603 & 0.722425927491985 \tabularnewline
30 & 0.418751866960946 & 0.837503733921891 & 0.581248133039054 \tabularnewline
31 & 0.327234095001557 & 0.654468190003114 & 0.672765904998443 \tabularnewline
32 & 0.232789708155363 & 0.465579416310726 & 0.767210291844637 \tabularnewline
33 & 0.156690139849239 & 0.313380279698479 & 0.84330986015076 \tabularnewline
34 & 0.102736610549624 & 0.205473221099248 & 0.897263389450376 \tabularnewline
35 & 0.0889452754029998 & 0.177890550806000 & 0.911054724597 \tabularnewline
36 & 0.312124816251882 & 0.624249632503763 & 0.687875183748118 \tabularnewline
37 & 0.702424084180866 & 0.595151831638267 & 0.297575915819134 \tabularnewline
38 & 0.940074572880967 & 0.119850854238065 & 0.0599254271190326 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.127739725014687[/C][C]0.255479450029374[/C][C]0.872260274985313[/C][/ROW]
[ROW][C]18[/C][C]0.211051994838156[/C][C]0.422103989676313[/C][C]0.788948005161843[/C][/ROW]
[ROW][C]19[/C][C]0.170988108825653[/C][C]0.341976217651306[/C][C]0.829011891174347[/C][/ROW]
[ROW][C]20[/C][C]0.129538204056332[/C][C]0.259076408112663[/C][C]0.870461795943668[/C][/ROW]
[ROW][C]21[/C][C]0.188479265751311[/C][C]0.376958531502622[/C][C]0.811520734248689[/C][/ROW]
[ROW][C]22[/C][C]0.186089227159176[/C][C]0.372178454318353[/C][C]0.813910772840824[/C][/ROW]
[ROW][C]23[/C][C]0.182767825972179[/C][C]0.365535651944358[/C][C]0.817232174027821[/C][/ROW]
[ROW][C]24[/C][C]0.201092288605861[/C][C]0.402184577211722[/C][C]0.798907711394139[/C][/ROW]
[ROW][C]25[/C][C]0.320852056232129[/C][C]0.641704112464258[/C][C]0.679147943767871[/C][/ROW]
[ROW][C]26[/C][C]0.354571962230070[/C][C]0.709143924460139[/C][C]0.64542803776993[/C][/ROW]
[ROW][C]27[/C][C]0.316848604809756[/C][C]0.633697209619512[/C][C]0.683151395190244[/C][/ROW]
[ROW][C]28[/C][C]0.320666239527223[/C][C]0.641332479054446[/C][C]0.679333760472777[/C][/ROW]
[ROW][C]29[/C][C]0.277574072508015[/C][C]0.55514814501603[/C][C]0.722425927491985[/C][/ROW]
[ROW][C]30[/C][C]0.418751866960946[/C][C]0.837503733921891[/C][C]0.581248133039054[/C][/ROW]
[ROW][C]31[/C][C]0.327234095001557[/C][C]0.654468190003114[/C][C]0.672765904998443[/C][/ROW]
[ROW][C]32[/C][C]0.232789708155363[/C][C]0.465579416310726[/C][C]0.767210291844637[/C][/ROW]
[ROW][C]33[/C][C]0.156690139849239[/C][C]0.313380279698479[/C][C]0.84330986015076[/C][/ROW]
[ROW][C]34[/C][C]0.102736610549624[/C][C]0.205473221099248[/C][C]0.897263389450376[/C][/ROW]
[ROW][C]35[/C][C]0.0889452754029998[/C][C]0.177890550806000[/C][C]0.911054724597[/C][/ROW]
[ROW][C]36[/C][C]0.312124816251882[/C][C]0.624249632503763[/C][C]0.687875183748118[/C][/ROW]
[ROW][C]37[/C][C]0.702424084180866[/C][C]0.595151831638267[/C][C]0.297575915819134[/C][/ROW]
[ROW][C]38[/C][C]0.940074572880967[/C][C]0.119850854238065[/C][C]0.0599254271190326[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1277397250146870.2554794500293740.872260274985313
180.2110519948381560.4221039896763130.788948005161843
190.1709881088256530.3419762176513060.829011891174347
200.1295382040563320.2590764081126630.870461795943668
210.1884792657513110.3769585315026220.811520734248689
220.1860892271591760.3721784543183530.813910772840824
230.1827678259721790.3655356519443580.817232174027821
240.2010922886058610.4021845772117220.798907711394139
250.3208520562321290.6417041124642580.679147943767871
260.3545719622300700.7091439244601390.64542803776993
270.3168486048097560.6336972096195120.683151395190244
280.3206662395272230.6413324790544460.679333760472777
290.2775740725080150.555148145016030.722425927491985
300.4187518669609460.8375037339218910.581248133039054
310.3272340950015570.6544681900031140.672765904998443
320.2327897081553630.4655794163107260.767210291844637
330.1566901398492390.3133802796984790.84330986015076
340.1027366105496240.2054732210992480.897263389450376
350.08894527540299980.1778905508060000.911054724597
360.3121248162518820.6242496325037630.687875183748118
370.7024240841808660.5951518316382670.297575915819134
380.9400745728809670.1198508542380650.0599254271190326







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=102858&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=102858&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=102858&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
par1 = 2 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 2 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}