Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 21 Dec 2010 14:16:43 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/21/t12929423266l5f3fwdwtk7tv9.htm/, Retrieved Sun, 10 Nov 2024 19:44:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=113624, Retrieved Sun, 10 Nov 2024 19:44:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact154
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [MRLM 1] [2010-12-21 14:16:43] [6a374a3321fe5d3cfaebff7ea97302d4] [Current]
Feedback Forum

Post a new message
Dataseries X:
216.234	627	1,59
213.586	696	1,26
209.465	825	1,13
204.045	677	1,92
200.237	656	2,61
203.666	785	2,26
241.476	412	2,41
260.307	352	2,26
243.324	839	2,03
244.460	729	2,86
233.575	696	2,55
237.217	641	2,27
235.243	695	2,26
230.354	638	2,57
227.184	762	3,07
221.678	635	2,76
217.142	721	2,51
219.452	854	2,87
256.446	418	3,14
265.845	367	3,11
248.624	824	3,16
241.114	687	2,47
229.245	601	2,57
231.805	676	2,89
219.277	740	2,63
219.313	691	2,38
212.610	683	1,69
214.771	594	1,96
211.142	729	2,19
211.457	731	1,87
240.048	386	1,6
240.636	331	1,63
230.580	707	1,22
208.795	715	1,21
197.922	657	1,49
194.596	653	1,64
194.581	642	1,66
185.686	643	1,77
178.106	718	1,82
172.608	654	1,78
167.302	632	1,28
168.053	731	1,29
202.300	392	1,37
202.388	344	1,12
182.516	792	1,51
173.476	852	2,24
166.444	649	2,94
171.297	629	3,09
169.701	685	3,46
164.182	617	3,64
161.914	715	4,39
159.612	715	4,15
151.001	629	5,21
158.114	916	5,8
186.530	531	5,91
187.069	357	5,39
174.330	917	5,46
169.362	828	4,72
166.827	708	3,14
178.037	858	2,63
186.413	775	2,32
189.226	785	1,93
191.563	1006	0,62
188.906	789	0,6
186.005	734	-0,37
195.309	906	-1,1
223.532	532	-1,68
226.899	387	-0,78
214.126	991	-1,19
206.903	841	-0,97
204.442	892	-0,12
220.375	782	0,26




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ 72.249.76.132







Multiple Linear Regression - Estimated Regression Equation
werklozen[t] = + 260.190949372379 -0.0647261802161827faillissementen[t] -5.17543693747146inflatie[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
werklozen[t] =  +  260.190949372379 -0.0647261802161827faillissementen[t] -5.17543693747146inflatie[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]werklozen[t] =  +  260.190949372379 -0.0647261802161827faillissementen[t] -5.17543693747146inflatie[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
werklozen[t] = + 260.190949372379 -0.0647261802161827faillissementen[t] -5.17543693747146inflatie[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)260.19094937237914.56527417.863800
faillissementen-0.06472618021618270.019443-3.3290.0014010.000701
inflatie-5.175436937471461.955416-2.64670.0100610.00503

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 260.190949372379 & 14.565274 & 17.8638 & 0 & 0 \tabularnewline
faillissementen & -0.0647261802161827 & 0.019443 & -3.329 & 0.001401 & 0.000701 \tabularnewline
inflatie & -5.17543693747146 & 1.955416 & -2.6467 & 0.010061 & 0.00503 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]260.190949372379[/C][C]14.565274[/C][C]17.8638[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]faillissementen[/C][C]-0.0647261802161827[/C][C]0.019443[/C][C]-3.329[/C][C]0.001401[/C][C]0.000701[/C][/ROW]
[ROW][C]inflatie[/C][C]-5.17543693747146[/C][C]1.955416[/C][C]-2.6467[/C][C]0.010061[/C][C]0.00503[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)260.19094937237914.56527417.863800
faillissementen-0.06472618021618270.019443-3.3290.0014010.000701
inflatie-5.175436937471461.955416-2.64670.0100610.00503







Multiple Linear Regression - Regression Statistics
Multiple R0.440580564404765
R-squared0.194111233731221
Adjusted R-squared0.170752139056764
F-TEST (value)8.30987829093725
F-TEST (DF numerator)2
F-TEST (DF denominator)69
p-value0.000584105125278511
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation25.5379050338095
Sum Squared Residuals45000.7369525952

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.440580564404765 \tabularnewline
R-squared & 0.194111233731221 \tabularnewline
Adjusted R-squared & 0.170752139056764 \tabularnewline
F-TEST (value) & 8.30987829093725 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 69 \tabularnewline
p-value & 0.000584105125278511 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 25.5379050338095 \tabularnewline
Sum Squared Residuals & 45000.7369525952 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.440580564404765[/C][/ROW]
[ROW][C]R-squared[/C][C]0.194111233731221[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.170752139056764[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]8.30987829093725[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]69[/C][/ROW]
[ROW][C]p-value[/C][C]0.000584105125278511[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]25.5379050338095[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]45000.7369525952[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.440580564404765
R-squared0.194111233731221
Adjusted R-squared0.170752139056764
F-TEST (value)8.30987829093725
F-TEST (DF numerator)2
F-TEST (DF denominator)69
p-value0.000584105125278511
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation25.5379050338095
Sum Squared Residuals45000.7369525952







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1216.234211.3786896462514.85531035374853
2213.586208.6204774007014.96552259929858
3209.465200.9436069546858.52139304531492
4204.045206.434486446078-2.38948644607773
5200.237204.222684743762-3.98568474376226
6203.666197.6844104239905.9815895760103
7241.476221.05096010400520.4250398959949
8260.307225.71084645759734.5961535424032
9243.324195.37954718793447.9444528120658
10244.46198.20381435361346.256185646387
11233.575201.94416375136331.6308362486368
12237.217206.95322600574530.2637739942547
13235.243203.50976664344631.7332333565539
14230.354205.59477346515224.7592265348476
15227.184194.9810086496132.20299135039
16221.678204.80561898768116.8723810123186
17217.142200.53302672345816.6089732765425
18219.452190.06128745721529.3907125427845
19256.446216.88453405835439.5614659416462
20265.845220.34083235750345.5041676424967
21248.624190.50219615183458.1218038481657
22241.114202.94073432830738.1732656716934
23229.245207.98964213315121.2553578668488
24231.805201.47903879694730.3259612030534
25219.277198.68217686685320.5948231331465
26219.313203.14761893181416.1653810681857
27212.61207.2364798603995.37352013960095
28214.771211.5997419265223.17125807347796
29211.142201.6713571017199.47064289828107
30211.457203.1980445612778.25895543872257
31240.048226.92594470897813.1220552910222
32240.636230.33062151274410.3053784872563
33230.58208.11550689582222.4644931041778
34208.795207.6494518234681.14554817653248
35197.922209.954447933514-12.0324479335141
36194.596209.437037113758-14.8410371137581
37194.581210.045516357387-15.4645163573867
38185.686209.411492114049-23.7254921140486
39178.106204.298256750961-26.1922567509614
40172.608208.647749762296-36.0397497622959
41167.302212.659444195788-45.3574441957877
42168.053206.199797985011-38.1467979850109
43202.3227.727938123299-25.4279381232991
44202.388232.128654008044-29.7406540080437
45182.516201.11290486558-18.5969048655800
46173.476193.451265088255-19.9752650882549
47166.444202.96787381591-36.5238738159100
48171.297203.486081879613-32.1890818796129
49169.701197.946504120642-28.2455041206422
50164.182201.416305726598-37.2343057265978
51161.914191.191562362308-29.2775623623083
52159.612192.433667227301-32.8216672273014
53151.001192.514155572173-41.5131555721734
54158.114170.884234057021-12.7702340570208
55186.53195.234515377129-8.70451537712928
56187.069209.188097942230-22.1190979422302
57174.33172.5791564355451.75084356445511
58169.362182.169609808514-12.8076098085141
59166.827198.113941795661-31.2869417956609
60178.037191.044487601344-13.0074876013439
61186.413198.021146009903-11.6081460099032
62189.226199.392304613355-10.1663046133553
63191.563191.867641173666-0.304641173666517
64188.906206.016731019328-17.1107310193276
65186.005214.596844760565-28.5918447605649
66195.309207.242010727736-11.9330107277357
67223.532234.451355552321-10.9193555523215
68226.899239.178758439944-12.2797584399436
69214.126202.20607473373311.9199252662674
70206.903210.776405639916-3.87340563991628
71204.442203.0762490520401.36575094795980
72220.375208.22946283958112.1455371604188

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 216.234 & 211.378689646251 & 4.85531035374853 \tabularnewline
2 & 213.586 & 208.620477400701 & 4.96552259929858 \tabularnewline
3 & 209.465 & 200.943606954685 & 8.52139304531492 \tabularnewline
4 & 204.045 & 206.434486446078 & -2.38948644607773 \tabularnewline
5 & 200.237 & 204.222684743762 & -3.98568474376226 \tabularnewline
6 & 203.666 & 197.684410423990 & 5.9815895760103 \tabularnewline
7 & 241.476 & 221.050960104005 & 20.4250398959949 \tabularnewline
8 & 260.307 & 225.710846457597 & 34.5961535424032 \tabularnewline
9 & 243.324 & 195.379547187934 & 47.9444528120658 \tabularnewline
10 & 244.46 & 198.203814353613 & 46.256185646387 \tabularnewline
11 & 233.575 & 201.944163751363 & 31.6308362486368 \tabularnewline
12 & 237.217 & 206.953226005745 & 30.2637739942547 \tabularnewline
13 & 235.243 & 203.509766643446 & 31.7332333565539 \tabularnewline
14 & 230.354 & 205.594773465152 & 24.7592265348476 \tabularnewline
15 & 227.184 & 194.98100864961 & 32.20299135039 \tabularnewline
16 & 221.678 & 204.805618987681 & 16.8723810123186 \tabularnewline
17 & 217.142 & 200.533026723458 & 16.6089732765425 \tabularnewline
18 & 219.452 & 190.061287457215 & 29.3907125427845 \tabularnewline
19 & 256.446 & 216.884534058354 & 39.5614659416462 \tabularnewline
20 & 265.845 & 220.340832357503 & 45.5041676424967 \tabularnewline
21 & 248.624 & 190.502196151834 & 58.1218038481657 \tabularnewline
22 & 241.114 & 202.940734328307 & 38.1732656716934 \tabularnewline
23 & 229.245 & 207.989642133151 & 21.2553578668488 \tabularnewline
24 & 231.805 & 201.479038796947 & 30.3259612030534 \tabularnewline
25 & 219.277 & 198.682176866853 & 20.5948231331465 \tabularnewline
26 & 219.313 & 203.147618931814 & 16.1653810681857 \tabularnewline
27 & 212.61 & 207.236479860399 & 5.37352013960095 \tabularnewline
28 & 214.771 & 211.599741926522 & 3.17125807347796 \tabularnewline
29 & 211.142 & 201.671357101719 & 9.47064289828107 \tabularnewline
30 & 211.457 & 203.198044561277 & 8.25895543872257 \tabularnewline
31 & 240.048 & 226.925944708978 & 13.1220552910222 \tabularnewline
32 & 240.636 & 230.330621512744 & 10.3053784872563 \tabularnewline
33 & 230.58 & 208.115506895822 & 22.4644931041778 \tabularnewline
34 & 208.795 & 207.649451823468 & 1.14554817653248 \tabularnewline
35 & 197.922 & 209.954447933514 & -12.0324479335141 \tabularnewline
36 & 194.596 & 209.437037113758 & -14.8410371137581 \tabularnewline
37 & 194.581 & 210.045516357387 & -15.4645163573867 \tabularnewline
38 & 185.686 & 209.411492114049 & -23.7254921140486 \tabularnewline
39 & 178.106 & 204.298256750961 & -26.1922567509614 \tabularnewline
40 & 172.608 & 208.647749762296 & -36.0397497622959 \tabularnewline
41 & 167.302 & 212.659444195788 & -45.3574441957877 \tabularnewline
42 & 168.053 & 206.199797985011 & -38.1467979850109 \tabularnewline
43 & 202.3 & 227.727938123299 & -25.4279381232991 \tabularnewline
44 & 202.388 & 232.128654008044 & -29.7406540080437 \tabularnewline
45 & 182.516 & 201.11290486558 & -18.5969048655800 \tabularnewline
46 & 173.476 & 193.451265088255 & -19.9752650882549 \tabularnewline
47 & 166.444 & 202.96787381591 & -36.5238738159100 \tabularnewline
48 & 171.297 & 203.486081879613 & -32.1890818796129 \tabularnewline
49 & 169.701 & 197.946504120642 & -28.2455041206422 \tabularnewline
50 & 164.182 & 201.416305726598 & -37.2343057265978 \tabularnewline
51 & 161.914 & 191.191562362308 & -29.2775623623083 \tabularnewline
52 & 159.612 & 192.433667227301 & -32.8216672273014 \tabularnewline
53 & 151.001 & 192.514155572173 & -41.5131555721734 \tabularnewline
54 & 158.114 & 170.884234057021 & -12.7702340570208 \tabularnewline
55 & 186.53 & 195.234515377129 & -8.70451537712928 \tabularnewline
56 & 187.069 & 209.188097942230 & -22.1190979422302 \tabularnewline
57 & 174.33 & 172.579156435545 & 1.75084356445511 \tabularnewline
58 & 169.362 & 182.169609808514 & -12.8076098085141 \tabularnewline
59 & 166.827 & 198.113941795661 & -31.2869417956609 \tabularnewline
60 & 178.037 & 191.044487601344 & -13.0074876013439 \tabularnewline
61 & 186.413 & 198.021146009903 & -11.6081460099032 \tabularnewline
62 & 189.226 & 199.392304613355 & -10.1663046133553 \tabularnewline
63 & 191.563 & 191.867641173666 & -0.304641173666517 \tabularnewline
64 & 188.906 & 206.016731019328 & -17.1107310193276 \tabularnewline
65 & 186.005 & 214.596844760565 & -28.5918447605649 \tabularnewline
66 & 195.309 & 207.242010727736 & -11.9330107277357 \tabularnewline
67 & 223.532 & 234.451355552321 & -10.9193555523215 \tabularnewline
68 & 226.899 & 239.178758439944 & -12.2797584399436 \tabularnewline
69 & 214.126 & 202.206074733733 & 11.9199252662674 \tabularnewline
70 & 206.903 & 210.776405639916 & -3.87340563991628 \tabularnewline
71 & 204.442 & 203.076249052040 & 1.36575094795980 \tabularnewline
72 & 220.375 & 208.229462839581 & 12.1455371604188 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]216.234[/C][C]211.378689646251[/C][C]4.85531035374853[/C][/ROW]
[ROW][C]2[/C][C]213.586[/C][C]208.620477400701[/C][C]4.96552259929858[/C][/ROW]
[ROW][C]3[/C][C]209.465[/C][C]200.943606954685[/C][C]8.52139304531492[/C][/ROW]
[ROW][C]4[/C][C]204.045[/C][C]206.434486446078[/C][C]-2.38948644607773[/C][/ROW]
[ROW][C]5[/C][C]200.237[/C][C]204.222684743762[/C][C]-3.98568474376226[/C][/ROW]
[ROW][C]6[/C][C]203.666[/C][C]197.684410423990[/C][C]5.9815895760103[/C][/ROW]
[ROW][C]7[/C][C]241.476[/C][C]221.050960104005[/C][C]20.4250398959949[/C][/ROW]
[ROW][C]8[/C][C]260.307[/C][C]225.710846457597[/C][C]34.5961535424032[/C][/ROW]
[ROW][C]9[/C][C]243.324[/C][C]195.379547187934[/C][C]47.9444528120658[/C][/ROW]
[ROW][C]10[/C][C]244.46[/C][C]198.203814353613[/C][C]46.256185646387[/C][/ROW]
[ROW][C]11[/C][C]233.575[/C][C]201.944163751363[/C][C]31.6308362486368[/C][/ROW]
[ROW][C]12[/C][C]237.217[/C][C]206.953226005745[/C][C]30.2637739942547[/C][/ROW]
[ROW][C]13[/C][C]235.243[/C][C]203.509766643446[/C][C]31.7332333565539[/C][/ROW]
[ROW][C]14[/C][C]230.354[/C][C]205.594773465152[/C][C]24.7592265348476[/C][/ROW]
[ROW][C]15[/C][C]227.184[/C][C]194.98100864961[/C][C]32.20299135039[/C][/ROW]
[ROW][C]16[/C][C]221.678[/C][C]204.805618987681[/C][C]16.8723810123186[/C][/ROW]
[ROW][C]17[/C][C]217.142[/C][C]200.533026723458[/C][C]16.6089732765425[/C][/ROW]
[ROW][C]18[/C][C]219.452[/C][C]190.061287457215[/C][C]29.3907125427845[/C][/ROW]
[ROW][C]19[/C][C]256.446[/C][C]216.884534058354[/C][C]39.5614659416462[/C][/ROW]
[ROW][C]20[/C][C]265.845[/C][C]220.340832357503[/C][C]45.5041676424967[/C][/ROW]
[ROW][C]21[/C][C]248.624[/C][C]190.502196151834[/C][C]58.1218038481657[/C][/ROW]
[ROW][C]22[/C][C]241.114[/C][C]202.940734328307[/C][C]38.1732656716934[/C][/ROW]
[ROW][C]23[/C][C]229.245[/C][C]207.989642133151[/C][C]21.2553578668488[/C][/ROW]
[ROW][C]24[/C][C]231.805[/C][C]201.479038796947[/C][C]30.3259612030534[/C][/ROW]
[ROW][C]25[/C][C]219.277[/C][C]198.682176866853[/C][C]20.5948231331465[/C][/ROW]
[ROW][C]26[/C][C]219.313[/C][C]203.147618931814[/C][C]16.1653810681857[/C][/ROW]
[ROW][C]27[/C][C]212.61[/C][C]207.236479860399[/C][C]5.37352013960095[/C][/ROW]
[ROW][C]28[/C][C]214.771[/C][C]211.599741926522[/C][C]3.17125807347796[/C][/ROW]
[ROW][C]29[/C][C]211.142[/C][C]201.671357101719[/C][C]9.47064289828107[/C][/ROW]
[ROW][C]30[/C][C]211.457[/C][C]203.198044561277[/C][C]8.25895543872257[/C][/ROW]
[ROW][C]31[/C][C]240.048[/C][C]226.925944708978[/C][C]13.1220552910222[/C][/ROW]
[ROW][C]32[/C][C]240.636[/C][C]230.330621512744[/C][C]10.3053784872563[/C][/ROW]
[ROW][C]33[/C][C]230.58[/C][C]208.115506895822[/C][C]22.4644931041778[/C][/ROW]
[ROW][C]34[/C][C]208.795[/C][C]207.649451823468[/C][C]1.14554817653248[/C][/ROW]
[ROW][C]35[/C][C]197.922[/C][C]209.954447933514[/C][C]-12.0324479335141[/C][/ROW]
[ROW][C]36[/C][C]194.596[/C][C]209.437037113758[/C][C]-14.8410371137581[/C][/ROW]
[ROW][C]37[/C][C]194.581[/C][C]210.045516357387[/C][C]-15.4645163573867[/C][/ROW]
[ROW][C]38[/C][C]185.686[/C][C]209.411492114049[/C][C]-23.7254921140486[/C][/ROW]
[ROW][C]39[/C][C]178.106[/C][C]204.298256750961[/C][C]-26.1922567509614[/C][/ROW]
[ROW][C]40[/C][C]172.608[/C][C]208.647749762296[/C][C]-36.0397497622959[/C][/ROW]
[ROW][C]41[/C][C]167.302[/C][C]212.659444195788[/C][C]-45.3574441957877[/C][/ROW]
[ROW][C]42[/C][C]168.053[/C][C]206.199797985011[/C][C]-38.1467979850109[/C][/ROW]
[ROW][C]43[/C][C]202.3[/C][C]227.727938123299[/C][C]-25.4279381232991[/C][/ROW]
[ROW][C]44[/C][C]202.388[/C][C]232.128654008044[/C][C]-29.7406540080437[/C][/ROW]
[ROW][C]45[/C][C]182.516[/C][C]201.11290486558[/C][C]-18.5969048655800[/C][/ROW]
[ROW][C]46[/C][C]173.476[/C][C]193.451265088255[/C][C]-19.9752650882549[/C][/ROW]
[ROW][C]47[/C][C]166.444[/C][C]202.96787381591[/C][C]-36.5238738159100[/C][/ROW]
[ROW][C]48[/C][C]171.297[/C][C]203.486081879613[/C][C]-32.1890818796129[/C][/ROW]
[ROW][C]49[/C][C]169.701[/C][C]197.946504120642[/C][C]-28.2455041206422[/C][/ROW]
[ROW][C]50[/C][C]164.182[/C][C]201.416305726598[/C][C]-37.2343057265978[/C][/ROW]
[ROW][C]51[/C][C]161.914[/C][C]191.191562362308[/C][C]-29.2775623623083[/C][/ROW]
[ROW][C]52[/C][C]159.612[/C][C]192.433667227301[/C][C]-32.8216672273014[/C][/ROW]
[ROW][C]53[/C][C]151.001[/C][C]192.514155572173[/C][C]-41.5131555721734[/C][/ROW]
[ROW][C]54[/C][C]158.114[/C][C]170.884234057021[/C][C]-12.7702340570208[/C][/ROW]
[ROW][C]55[/C][C]186.53[/C][C]195.234515377129[/C][C]-8.70451537712928[/C][/ROW]
[ROW][C]56[/C][C]187.069[/C][C]209.188097942230[/C][C]-22.1190979422302[/C][/ROW]
[ROW][C]57[/C][C]174.33[/C][C]172.579156435545[/C][C]1.75084356445511[/C][/ROW]
[ROW][C]58[/C][C]169.362[/C][C]182.169609808514[/C][C]-12.8076098085141[/C][/ROW]
[ROW][C]59[/C][C]166.827[/C][C]198.113941795661[/C][C]-31.2869417956609[/C][/ROW]
[ROW][C]60[/C][C]178.037[/C][C]191.044487601344[/C][C]-13.0074876013439[/C][/ROW]
[ROW][C]61[/C][C]186.413[/C][C]198.021146009903[/C][C]-11.6081460099032[/C][/ROW]
[ROW][C]62[/C][C]189.226[/C][C]199.392304613355[/C][C]-10.1663046133553[/C][/ROW]
[ROW][C]63[/C][C]191.563[/C][C]191.867641173666[/C][C]-0.304641173666517[/C][/ROW]
[ROW][C]64[/C][C]188.906[/C][C]206.016731019328[/C][C]-17.1107310193276[/C][/ROW]
[ROW][C]65[/C][C]186.005[/C][C]214.596844760565[/C][C]-28.5918447605649[/C][/ROW]
[ROW][C]66[/C][C]195.309[/C][C]207.242010727736[/C][C]-11.9330107277357[/C][/ROW]
[ROW][C]67[/C][C]223.532[/C][C]234.451355552321[/C][C]-10.9193555523215[/C][/ROW]
[ROW][C]68[/C][C]226.899[/C][C]239.178758439944[/C][C]-12.2797584399436[/C][/ROW]
[ROW][C]69[/C][C]214.126[/C][C]202.206074733733[/C][C]11.9199252662674[/C][/ROW]
[ROW][C]70[/C][C]206.903[/C][C]210.776405639916[/C][C]-3.87340563991628[/C][/ROW]
[ROW][C]71[/C][C]204.442[/C][C]203.076249052040[/C][C]1.36575094795980[/C][/ROW]
[ROW][C]72[/C][C]220.375[/C][C]208.229462839581[/C][C]12.1455371604188[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1216.234211.3786896462514.85531035374853
2213.586208.6204774007014.96552259929858
3209.465200.9436069546858.52139304531492
4204.045206.434486446078-2.38948644607773
5200.237204.222684743762-3.98568474376226
6203.666197.6844104239905.9815895760103
7241.476221.05096010400520.4250398959949
8260.307225.71084645759734.5961535424032
9243.324195.37954718793447.9444528120658
10244.46198.20381435361346.256185646387
11233.575201.94416375136331.6308362486368
12237.217206.95322600574530.2637739942547
13235.243203.50976664344631.7332333565539
14230.354205.59477346515224.7592265348476
15227.184194.9810086496132.20299135039
16221.678204.80561898768116.8723810123186
17217.142200.53302672345816.6089732765425
18219.452190.06128745721529.3907125427845
19256.446216.88453405835439.5614659416462
20265.845220.34083235750345.5041676424967
21248.624190.50219615183458.1218038481657
22241.114202.94073432830738.1732656716934
23229.245207.98964213315121.2553578668488
24231.805201.47903879694730.3259612030534
25219.277198.68217686685320.5948231331465
26219.313203.14761893181416.1653810681857
27212.61207.2364798603995.37352013960095
28214.771211.5997419265223.17125807347796
29211.142201.6713571017199.47064289828107
30211.457203.1980445612778.25895543872257
31240.048226.92594470897813.1220552910222
32240.636230.33062151274410.3053784872563
33230.58208.11550689582222.4644931041778
34208.795207.6494518234681.14554817653248
35197.922209.954447933514-12.0324479335141
36194.596209.437037113758-14.8410371137581
37194.581210.045516357387-15.4645163573867
38185.686209.411492114049-23.7254921140486
39178.106204.298256750961-26.1922567509614
40172.608208.647749762296-36.0397497622959
41167.302212.659444195788-45.3574441957877
42168.053206.199797985011-38.1467979850109
43202.3227.727938123299-25.4279381232991
44202.388232.128654008044-29.7406540080437
45182.516201.11290486558-18.5969048655800
46173.476193.451265088255-19.9752650882549
47166.444202.96787381591-36.5238738159100
48171.297203.486081879613-32.1890818796129
49169.701197.946504120642-28.2455041206422
50164.182201.416305726598-37.2343057265978
51161.914191.191562362308-29.2775623623083
52159.612192.433667227301-32.8216672273014
53151.001192.514155572173-41.5131555721734
54158.114170.884234057021-12.7702340570208
55186.53195.234515377129-8.70451537712928
56187.069209.188097942230-22.1190979422302
57174.33172.5791564355451.75084356445511
58169.362182.169609808514-12.8076098085141
59166.827198.113941795661-31.2869417956609
60178.037191.044487601344-13.0074876013439
61186.413198.021146009903-11.6081460099032
62189.226199.392304613355-10.1663046133553
63191.563191.867641173666-0.304641173666517
64188.906206.016731019328-17.1107310193276
65186.005214.596844760565-28.5918447605649
66195.309207.242010727736-11.9330107277357
67223.532234.451355552321-10.9193555523215
68226.899239.178758439944-12.2797584399436
69214.126202.20607473373311.9199252662674
70206.903210.776405639916-3.87340563991628
71204.442203.0762490520401.36575094795980
72220.375208.22946283958112.1455371604188







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.003253696248693550.00650739249738710.996746303751306
70.01374813244586490.02749626489172970.986251867554135
80.01115093056691080.02230186113382170.988849069433089
90.2576762267924070.5153524535848130.742323773207593
100.2755937031607540.5511874063215080.724406296839246
110.2043156956316440.4086313912632880.795684304368356
120.1540478242992690.3080956485985380.84595217570073
130.1176808377366710.2353616754733430.882319162263329
140.08011552400574840.1602310480114970.919884475994252
150.05726885145305960.1145377029061190.94273114854694
160.04295920855407210.08591841710814420.957040791445928
170.02939985204791860.05879970409583710.970600147952081
180.02060583233703410.04121166467406830.979394167662966
190.01905219062674980.03810438125349960.98094780937325
200.02626110455635260.05252220911270520.973738895443647
210.07565271782307650.1513054356461530.924347282176924
220.1061297956616700.2122595913233390.89387020433833
230.1071714219358320.2143428438716640.892828578064168
240.1360491116969210.2720982233938410.86395088830308
250.1535365784359540.3070731568719080.846463421564046
260.1656449608131790.3312899216263580.834355039186821
270.1454188747399320.2908377494798630.854581125260068
280.1428034090890660.2856068181781310.857196590910934
290.1494170389187770.2988340778375540.850582961081223
300.1434945035771310.2869890071542620.856505496422869
310.1947048040307390.3894096080614780.80529519596926
320.3023882178167740.6047764356335470.697611782183226
330.5840016995388290.8319966009223430.415998300461171
340.5832059340877240.8335881318245510.416794065912276
350.6086397985264380.7827204029471240.391360201473562
360.654375169972950.69124966005410.34562483002705
370.687096599405030.625806801189940.31290340059497
380.7701516930708860.4596966138582280.229848306929114
390.8438381858387690.3123236283224630.156161814161231
400.9297017748424120.1405964503151770.0702982251575883
410.977969738223810.04406052355238050.0220302617761902
420.9903524100506460.0192951798987090.0096475899493545
430.9862236596424370.02755268071512560.0137763403575628
440.9791611609455420.04167767810891660.0208388390544583
450.9712012472518690.05759750549626260.0287987527481313
460.9750490671290440.04990186574191210.0249509328709560
470.9954808650618290.00903826987634120.0045191349381706
480.9982738316072560.003452336785488500.00172616839274425
490.999030439280840.001939121438320090.000969560719160047
500.9996347092694940.0007305814610127050.000365290730506353
510.9997116004940620.0005767990118765930.000288399505938297
520.9997971203181460.0004057593637080430.000202879681854021
530.9999469641836460.0001060716327086225.30358163543111e-05
540.99987014223550.0002597155289997800.000129857764499890
550.999777926153190.0004441476936193490.000222073846809675
560.9995202560990860.0009594878018286030.000479743900914302
570.9994429571913270.001114085617345400.000557042808672701
580.998802138382550.002395723234899460.00119786161744973
590.9983125311593270.003374937681345070.00168746884067253
600.9957913427112890.008417314577422440.00420865728871122
610.9896233111950120.02075337760997680.0103766888049884
620.9757477031929460.04850459361410880.0242522968070544
630.9463194859269280.1073610281461450.0536805140730723
640.918134326506060.1637313469878800.0818656734939401
650.976838520480910.04632295903817930.0231614795190897
660.975129346133460.04974130773307790.0248706538665390

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 & 0.00325369624869355 & 0.0065073924973871 & 0.996746303751306 \tabularnewline
7 & 0.0137481324458649 & 0.0274962648917297 & 0.986251867554135 \tabularnewline
8 & 0.0111509305669108 & 0.0223018611338217 & 0.988849069433089 \tabularnewline
9 & 0.257676226792407 & 0.515352453584813 & 0.742323773207593 \tabularnewline
10 & 0.275593703160754 & 0.551187406321508 & 0.724406296839246 \tabularnewline
11 & 0.204315695631644 & 0.408631391263288 & 0.795684304368356 \tabularnewline
12 & 0.154047824299269 & 0.308095648598538 & 0.84595217570073 \tabularnewline
13 & 0.117680837736671 & 0.235361675473343 & 0.882319162263329 \tabularnewline
14 & 0.0801155240057484 & 0.160231048011497 & 0.919884475994252 \tabularnewline
15 & 0.0572688514530596 & 0.114537702906119 & 0.94273114854694 \tabularnewline
16 & 0.0429592085540721 & 0.0859184171081442 & 0.957040791445928 \tabularnewline
17 & 0.0293998520479186 & 0.0587997040958371 & 0.970600147952081 \tabularnewline
18 & 0.0206058323370341 & 0.0412116646740683 & 0.979394167662966 \tabularnewline
19 & 0.0190521906267498 & 0.0381043812534996 & 0.98094780937325 \tabularnewline
20 & 0.0262611045563526 & 0.0525222091127052 & 0.973738895443647 \tabularnewline
21 & 0.0756527178230765 & 0.151305435646153 & 0.924347282176924 \tabularnewline
22 & 0.106129795661670 & 0.212259591323339 & 0.89387020433833 \tabularnewline
23 & 0.107171421935832 & 0.214342843871664 & 0.892828578064168 \tabularnewline
24 & 0.136049111696921 & 0.272098223393841 & 0.86395088830308 \tabularnewline
25 & 0.153536578435954 & 0.307073156871908 & 0.846463421564046 \tabularnewline
26 & 0.165644960813179 & 0.331289921626358 & 0.834355039186821 \tabularnewline
27 & 0.145418874739932 & 0.290837749479863 & 0.854581125260068 \tabularnewline
28 & 0.142803409089066 & 0.285606818178131 & 0.857196590910934 \tabularnewline
29 & 0.149417038918777 & 0.298834077837554 & 0.850582961081223 \tabularnewline
30 & 0.143494503577131 & 0.286989007154262 & 0.856505496422869 \tabularnewline
31 & 0.194704804030739 & 0.389409608061478 & 0.80529519596926 \tabularnewline
32 & 0.302388217816774 & 0.604776435633547 & 0.697611782183226 \tabularnewline
33 & 0.584001699538829 & 0.831996600922343 & 0.415998300461171 \tabularnewline
34 & 0.583205934087724 & 0.833588131824551 & 0.416794065912276 \tabularnewline
35 & 0.608639798526438 & 0.782720402947124 & 0.391360201473562 \tabularnewline
36 & 0.65437516997295 & 0.6912496600541 & 0.34562483002705 \tabularnewline
37 & 0.68709659940503 & 0.62580680118994 & 0.31290340059497 \tabularnewline
38 & 0.770151693070886 & 0.459696613858228 & 0.229848306929114 \tabularnewline
39 & 0.843838185838769 & 0.312323628322463 & 0.156161814161231 \tabularnewline
40 & 0.929701774842412 & 0.140596450315177 & 0.0702982251575883 \tabularnewline
41 & 0.97796973822381 & 0.0440605235523805 & 0.0220302617761902 \tabularnewline
42 & 0.990352410050646 & 0.019295179898709 & 0.0096475899493545 \tabularnewline
43 & 0.986223659642437 & 0.0275526807151256 & 0.0137763403575628 \tabularnewline
44 & 0.979161160945542 & 0.0416776781089166 & 0.0208388390544583 \tabularnewline
45 & 0.971201247251869 & 0.0575975054962626 & 0.0287987527481313 \tabularnewline
46 & 0.975049067129044 & 0.0499018657419121 & 0.0249509328709560 \tabularnewline
47 & 0.995480865061829 & 0.0090382698763412 & 0.0045191349381706 \tabularnewline
48 & 0.998273831607256 & 0.00345233678548850 & 0.00172616839274425 \tabularnewline
49 & 0.99903043928084 & 0.00193912143832009 & 0.000969560719160047 \tabularnewline
50 & 0.999634709269494 & 0.000730581461012705 & 0.000365290730506353 \tabularnewline
51 & 0.999711600494062 & 0.000576799011876593 & 0.000288399505938297 \tabularnewline
52 & 0.999797120318146 & 0.000405759363708043 & 0.000202879681854021 \tabularnewline
53 & 0.999946964183646 & 0.000106071632708622 & 5.30358163543111e-05 \tabularnewline
54 & 0.9998701422355 & 0.000259715528999780 & 0.000129857764499890 \tabularnewline
55 & 0.99977792615319 & 0.000444147693619349 & 0.000222073846809675 \tabularnewline
56 & 0.999520256099086 & 0.000959487801828603 & 0.000479743900914302 \tabularnewline
57 & 0.999442957191327 & 0.00111408561734540 & 0.000557042808672701 \tabularnewline
58 & 0.99880213838255 & 0.00239572323489946 & 0.00119786161744973 \tabularnewline
59 & 0.998312531159327 & 0.00337493768134507 & 0.00168746884067253 \tabularnewline
60 & 0.995791342711289 & 0.00841731457742244 & 0.00420865728871122 \tabularnewline
61 & 0.989623311195012 & 0.0207533776099768 & 0.0103766888049884 \tabularnewline
62 & 0.975747703192946 & 0.0485045936141088 & 0.0242522968070544 \tabularnewline
63 & 0.946319485926928 & 0.107361028146145 & 0.0536805140730723 \tabularnewline
64 & 0.91813432650606 & 0.163731346987880 & 0.0818656734939401 \tabularnewline
65 & 0.97683852048091 & 0.0463229590381793 & 0.0231614795190897 \tabularnewline
66 & 0.97512934613346 & 0.0497413077330779 & 0.0248706538665390 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C]0.00325369624869355[/C][C]0.0065073924973871[/C][C]0.996746303751306[/C][/ROW]
[ROW][C]7[/C][C]0.0137481324458649[/C][C]0.0274962648917297[/C][C]0.986251867554135[/C][/ROW]
[ROW][C]8[/C][C]0.0111509305669108[/C][C]0.0223018611338217[/C][C]0.988849069433089[/C][/ROW]
[ROW][C]9[/C][C]0.257676226792407[/C][C]0.515352453584813[/C][C]0.742323773207593[/C][/ROW]
[ROW][C]10[/C][C]0.275593703160754[/C][C]0.551187406321508[/C][C]0.724406296839246[/C][/ROW]
[ROW][C]11[/C][C]0.204315695631644[/C][C]0.408631391263288[/C][C]0.795684304368356[/C][/ROW]
[ROW][C]12[/C][C]0.154047824299269[/C][C]0.308095648598538[/C][C]0.84595217570073[/C][/ROW]
[ROW][C]13[/C][C]0.117680837736671[/C][C]0.235361675473343[/C][C]0.882319162263329[/C][/ROW]
[ROW][C]14[/C][C]0.0801155240057484[/C][C]0.160231048011497[/C][C]0.919884475994252[/C][/ROW]
[ROW][C]15[/C][C]0.0572688514530596[/C][C]0.114537702906119[/C][C]0.94273114854694[/C][/ROW]
[ROW][C]16[/C][C]0.0429592085540721[/C][C]0.0859184171081442[/C][C]0.957040791445928[/C][/ROW]
[ROW][C]17[/C][C]0.0293998520479186[/C][C]0.0587997040958371[/C][C]0.970600147952081[/C][/ROW]
[ROW][C]18[/C][C]0.0206058323370341[/C][C]0.0412116646740683[/C][C]0.979394167662966[/C][/ROW]
[ROW][C]19[/C][C]0.0190521906267498[/C][C]0.0381043812534996[/C][C]0.98094780937325[/C][/ROW]
[ROW][C]20[/C][C]0.0262611045563526[/C][C]0.0525222091127052[/C][C]0.973738895443647[/C][/ROW]
[ROW][C]21[/C][C]0.0756527178230765[/C][C]0.151305435646153[/C][C]0.924347282176924[/C][/ROW]
[ROW][C]22[/C][C]0.106129795661670[/C][C]0.212259591323339[/C][C]0.89387020433833[/C][/ROW]
[ROW][C]23[/C][C]0.107171421935832[/C][C]0.214342843871664[/C][C]0.892828578064168[/C][/ROW]
[ROW][C]24[/C][C]0.136049111696921[/C][C]0.272098223393841[/C][C]0.86395088830308[/C][/ROW]
[ROW][C]25[/C][C]0.153536578435954[/C][C]0.307073156871908[/C][C]0.846463421564046[/C][/ROW]
[ROW][C]26[/C][C]0.165644960813179[/C][C]0.331289921626358[/C][C]0.834355039186821[/C][/ROW]
[ROW][C]27[/C][C]0.145418874739932[/C][C]0.290837749479863[/C][C]0.854581125260068[/C][/ROW]
[ROW][C]28[/C][C]0.142803409089066[/C][C]0.285606818178131[/C][C]0.857196590910934[/C][/ROW]
[ROW][C]29[/C][C]0.149417038918777[/C][C]0.298834077837554[/C][C]0.850582961081223[/C][/ROW]
[ROW][C]30[/C][C]0.143494503577131[/C][C]0.286989007154262[/C][C]0.856505496422869[/C][/ROW]
[ROW][C]31[/C][C]0.194704804030739[/C][C]0.389409608061478[/C][C]0.80529519596926[/C][/ROW]
[ROW][C]32[/C][C]0.302388217816774[/C][C]0.604776435633547[/C][C]0.697611782183226[/C][/ROW]
[ROW][C]33[/C][C]0.584001699538829[/C][C]0.831996600922343[/C][C]0.415998300461171[/C][/ROW]
[ROW][C]34[/C][C]0.583205934087724[/C][C]0.833588131824551[/C][C]0.416794065912276[/C][/ROW]
[ROW][C]35[/C][C]0.608639798526438[/C][C]0.782720402947124[/C][C]0.391360201473562[/C][/ROW]
[ROW][C]36[/C][C]0.65437516997295[/C][C]0.6912496600541[/C][C]0.34562483002705[/C][/ROW]
[ROW][C]37[/C][C]0.68709659940503[/C][C]0.62580680118994[/C][C]0.31290340059497[/C][/ROW]
[ROW][C]38[/C][C]0.770151693070886[/C][C]0.459696613858228[/C][C]0.229848306929114[/C][/ROW]
[ROW][C]39[/C][C]0.843838185838769[/C][C]0.312323628322463[/C][C]0.156161814161231[/C][/ROW]
[ROW][C]40[/C][C]0.929701774842412[/C][C]0.140596450315177[/C][C]0.0702982251575883[/C][/ROW]
[ROW][C]41[/C][C]0.97796973822381[/C][C]0.0440605235523805[/C][C]0.0220302617761902[/C][/ROW]
[ROW][C]42[/C][C]0.990352410050646[/C][C]0.019295179898709[/C][C]0.0096475899493545[/C][/ROW]
[ROW][C]43[/C][C]0.986223659642437[/C][C]0.0275526807151256[/C][C]0.0137763403575628[/C][/ROW]
[ROW][C]44[/C][C]0.979161160945542[/C][C]0.0416776781089166[/C][C]0.0208388390544583[/C][/ROW]
[ROW][C]45[/C][C]0.971201247251869[/C][C]0.0575975054962626[/C][C]0.0287987527481313[/C][/ROW]
[ROW][C]46[/C][C]0.975049067129044[/C][C]0.0499018657419121[/C][C]0.0249509328709560[/C][/ROW]
[ROW][C]47[/C][C]0.995480865061829[/C][C]0.0090382698763412[/C][C]0.0045191349381706[/C][/ROW]
[ROW][C]48[/C][C]0.998273831607256[/C][C]0.00345233678548850[/C][C]0.00172616839274425[/C][/ROW]
[ROW][C]49[/C][C]0.99903043928084[/C][C]0.00193912143832009[/C][C]0.000969560719160047[/C][/ROW]
[ROW][C]50[/C][C]0.999634709269494[/C][C]0.000730581461012705[/C][C]0.000365290730506353[/C][/ROW]
[ROW][C]51[/C][C]0.999711600494062[/C][C]0.000576799011876593[/C][C]0.000288399505938297[/C][/ROW]
[ROW][C]52[/C][C]0.999797120318146[/C][C]0.000405759363708043[/C][C]0.000202879681854021[/C][/ROW]
[ROW][C]53[/C][C]0.999946964183646[/C][C]0.000106071632708622[/C][C]5.30358163543111e-05[/C][/ROW]
[ROW][C]54[/C][C]0.9998701422355[/C][C]0.000259715528999780[/C][C]0.000129857764499890[/C][/ROW]
[ROW][C]55[/C][C]0.99977792615319[/C][C]0.000444147693619349[/C][C]0.000222073846809675[/C][/ROW]
[ROW][C]56[/C][C]0.999520256099086[/C][C]0.000959487801828603[/C][C]0.000479743900914302[/C][/ROW]
[ROW][C]57[/C][C]0.999442957191327[/C][C]0.00111408561734540[/C][C]0.000557042808672701[/C][/ROW]
[ROW][C]58[/C][C]0.99880213838255[/C][C]0.00239572323489946[/C][C]0.00119786161744973[/C][/ROW]
[ROW][C]59[/C][C]0.998312531159327[/C][C]0.00337493768134507[/C][C]0.00168746884067253[/C][/ROW]
[ROW][C]60[/C][C]0.995791342711289[/C][C]0.00841731457742244[/C][C]0.00420865728871122[/C][/ROW]
[ROW][C]61[/C][C]0.989623311195012[/C][C]0.0207533776099768[/C][C]0.0103766888049884[/C][/ROW]
[ROW][C]62[/C][C]0.975747703192946[/C][C]0.0485045936141088[/C][C]0.0242522968070544[/C][/ROW]
[ROW][C]63[/C][C]0.946319485926928[/C][C]0.107361028146145[/C][C]0.0536805140730723[/C][/ROW]
[ROW][C]64[/C][C]0.91813432650606[/C][C]0.163731346987880[/C][C]0.0818656734939401[/C][/ROW]
[ROW][C]65[/C][C]0.97683852048091[/C][C]0.0463229590381793[/C][C]0.0231614795190897[/C][/ROW]
[ROW][C]66[/C][C]0.97512934613346[/C][C]0.0497413077330779[/C][C]0.0248706538665390[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.003253696248693550.00650739249738710.996746303751306
70.01374813244586490.02749626489172970.986251867554135
80.01115093056691080.02230186113382170.988849069433089
90.2576762267924070.5153524535848130.742323773207593
100.2755937031607540.5511874063215080.724406296839246
110.2043156956316440.4086313912632880.795684304368356
120.1540478242992690.3080956485985380.84595217570073
130.1176808377366710.2353616754733430.882319162263329
140.08011552400574840.1602310480114970.919884475994252
150.05726885145305960.1145377029061190.94273114854694
160.04295920855407210.08591841710814420.957040791445928
170.02939985204791860.05879970409583710.970600147952081
180.02060583233703410.04121166467406830.979394167662966
190.01905219062674980.03810438125349960.98094780937325
200.02626110455635260.05252220911270520.973738895443647
210.07565271782307650.1513054356461530.924347282176924
220.1061297956616700.2122595913233390.89387020433833
230.1071714219358320.2143428438716640.892828578064168
240.1360491116969210.2720982233938410.86395088830308
250.1535365784359540.3070731568719080.846463421564046
260.1656449608131790.3312899216263580.834355039186821
270.1454188747399320.2908377494798630.854581125260068
280.1428034090890660.2856068181781310.857196590910934
290.1494170389187770.2988340778375540.850582961081223
300.1434945035771310.2869890071542620.856505496422869
310.1947048040307390.3894096080614780.80529519596926
320.3023882178167740.6047764356335470.697611782183226
330.5840016995388290.8319966009223430.415998300461171
340.5832059340877240.8335881318245510.416794065912276
350.6086397985264380.7827204029471240.391360201473562
360.654375169972950.69124966005410.34562483002705
370.687096599405030.625806801189940.31290340059497
380.7701516930708860.4596966138582280.229848306929114
390.8438381858387690.3123236283224630.156161814161231
400.9297017748424120.1405964503151770.0702982251575883
410.977969738223810.04406052355238050.0220302617761902
420.9903524100506460.0192951798987090.0096475899493545
430.9862236596424370.02755268071512560.0137763403575628
440.9791611609455420.04167767810891660.0208388390544583
450.9712012472518690.05759750549626260.0287987527481313
460.9750490671290440.04990186574191210.0249509328709560
470.9954808650618290.00903826987634120.0045191349381706
480.9982738316072560.003452336785488500.00172616839274425
490.999030439280840.001939121438320090.000969560719160047
500.9996347092694940.0007305814610127050.000365290730506353
510.9997116004940620.0005767990118765930.000288399505938297
520.9997971203181460.0004057593637080430.000202879681854021
530.9999469641836460.0001060716327086225.30358163543111e-05
540.99987014223550.0002597155289997800.000129857764499890
550.999777926153190.0004441476936193490.000222073846809675
560.9995202560990860.0009594878018286030.000479743900914302
570.9994429571913270.001114085617345400.000557042808672701
580.998802138382550.002395723234899460.00119786161744973
590.9983125311593270.003374937681345070.00168746884067253
600.9957913427112890.008417314577422440.00420865728871122
610.9896233111950120.02075337760997680.0103766888049884
620.9757477031929460.04850459361410880.0242522968070544
630.9463194859269280.1073610281461450.0536805140730723
640.918134326506060.1637313469878800.0818656734939401
650.976838520480910.04632295903817930.0231614795190897
660.975129346133460.04974130773307790.0248706538665390







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level150.245901639344262NOK
5% type I error level280.459016393442623NOK
10% type I error level320.524590163934426NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 15 & 0.245901639344262 & NOK \tabularnewline
5% type I error level & 28 & 0.459016393442623 & NOK \tabularnewline
10% type I error level & 32 & 0.524590163934426 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113624&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]15[/C][C]0.245901639344262[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]28[/C][C]0.459016393442623[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]32[/C][C]0.524590163934426[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113624&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113624&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level150.245901639344262NOK
5% type I error level280.459016393442623NOK
10% type I error level320.524590163934426NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}