Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 31 Dec 2010 09:55:50 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/31/t1293789357amdpmz7u1yulzm4.htm/, Retrieved Thu, 31 Oct 2024 23:03:18 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=117222, Retrieved Thu, 31 Oct 2024 23:03:18 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact270
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RM D  [Multiple Regression] [Seatbelt] [2009-11-12 14:10:54] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [] [2010-11-27 14:44:38] [5b5e2f42cf221276958b46f2b8444c18]
-   P         [Multiple Regression] [Multiple Regressi...] [2010-12-31 09:55:50] [7a87ed98a7b21a29d6a45388a9b7b229] [Current]
Feedback Forum

Post a new message
Dataseries X:
4831	0	3695	2462	2146	1579
5134	0	4831	3695	2462	2146
6250	0	5134	4831	3695	2462
5760	0	6250	5134	4831	3695
6249	0	5760	6250	5134	4831
2917	0	6249	5760	6250	5134
1741	0	2917	6249	5760	6250
2359	0	1741	2917	6249	5760
1511	1	2359	1741	2917	6249
2059	0	1511	2359	1741	2917
2635	0	2059	1511	2359	1741
2867	0	2635	2059	1511	2359
4403	0	2867	2635	2059	1511
5720	0	4403	2867	2635	2059
4502	0	5720	4403	2867	2635
5749	0	4502	5720	4403	2867
5627	0	5749	4502	5720	4403
2846	0	5627	5749	4502	5720
1762	0	2846	5627	5749	4502
2429	0	1762	2846	5627	5749
1169	0	2429	1762	2846	5627
2154	1	1169	2429	1762	2846
2249	0	2154	1169	2429	1762
2687	0	2249	2154	1169	2429
4359	0	2687	2249	2154	1169
5382	0	4359	2687	2249	2154
4459	0	5382	4359	2687	2249
6398	0	4459	5382	4359	2687
4596	0	6398	4459	5382	4359
3024	0	4596	6398	4459	5382
1887	0	3024	4596	6398	4459
2070	0	1887	3024	4596	6398
1351	0	2070	1887	3024	4596
2218	0	1351	2070	1887	3024
2461	1	2218	1351	2070	1887
3028	0	2461	2218	1351	2070
4784	0	3028	2461	2218	1351
4975	0	4784	3028	2461	2218
4607	0	4975	4784	3028	2461
6249	0	4607	4975	4784	3028
4809	0	6249	4607	4975	4784
3157	0	4809	6249	4607	4975
1910	0	3157	4809	6249	4607
2228	0	1910	3157	4809	6249
1594	0	2228	1910	3157	4809
2467	0	1594	2228	1910	3157
2222	0	2467	1594	2228	1910
3607	1	2222	2467	1594	2228
4685	0	3607	2222	2467	1594
4962	0	4685	3607	2222	2467
5770	0	4962	4685	3607	2222
5480	0	5770	4962	4685	3607
5000	0	5480	5770	4962	4685
3228	0	5000	5480	5770	4962
1993	0	3228	5000	5480	5770
2288	0	1993	3228	5000	5480
1580	0	2288	1993	3228	5000
2111	0	1580	2288	1993	3228
2192	0	2111	1580	2288	1993
3601	0	2192	2111	1580	2288
4665	1	3601	2192	2111	1580
4876	0	4665	3601	2192	2111
5813	0	4876	4665	3601	2192
5589	0	5813	4876	4665	3601
5331	0	5589	5813	4876	4665
3075	0	5331	5589	5813	4876
2002	0	3075	5331	5589	5813
2306	0	2002	3075	5331	5589
1507	0	2306	2002	3075	5331
1992	0	1507	2306	2002	3075
2487	0	1992	1507	2306	2002
3490	0	2487	1992	1507	2306
4647	0	3490	2487	1992	1507
5594	1	4647	3490	2487	1992
5611	0	5594	4647	3490	2487
5788	0	5611	5594	4647	3490
6204	0	5788	5611	5594	4647
3013	0	6204	5788	5611	5594
1931	0	3013	6204	5788	5611
2549	0	1931	3013	6204	5788
1504	0	2549	1931	3013	6204
2090	0	1504	2549	1931	3013
2702	0	2090	1504	2549	1931
2939	0	2702	2090	1504	2549
4500	0	2939	2702	2090	1504
6208	0	4500	2939	2702	2090
6415	1	6208	4500	2939	2702
5657	0	6415	6208	4500	2939
5964	0	5657	6415	6208	4500
3163	0	5964	5657	6415	6208
1997	0	3163	5964	5657	6415
2422	0	1997	3163	5964	5657
1376	0	2422	1997	3163	5964
2202	0	1376	2422	1997	3163
2683	0	2202	1376	2422	1997
3303	0	2683	2202	1376	2422
5202	0	3303	2683	2202	1376
5231	0	5202	3303	2683	2202
4880	0	5231	5202	3303	2683
7998	1	4880	5231	5202	3303
4977	0	7998	4880	5231	5202
3531	0	4977	7998	4880	5231
2025	0	3531	4977	7998	4880
2205	0	2025	3531	4977	7998
1442	0	2205	2025	3531	4977
2238	0	1442	2205	2025	3531
2179	0	2238	1442	2205	2025
3218	0	2179	2238	1442	2205
5139	0	3218	2179	2238	1442
4990	0	5139	3218	2179	2238
4914	0	4990	5139	3218	2179
6084	0	4914	4990	5139	3218
5672	1	6084	4914	4990	5139
3548	0	5672	6084	4914	4990
1793	0	3548	5672	6084	4914
2086	0	1793	3548	5672	6084




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ www.wessa.org

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ www.wessa.org \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ www.wessa.org[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ www.wessa.org







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 2811.22887588795 + 536.65294179354X[t] -0.270735639007487Y1[t] + 0.146972260964833Y2[t] + 0.38234645812074Y3[t] + 0.0456948838664329Y4[t] + 1482.41945217729M1[t] + 2216.79549815919M2[t] + 1849.07312409255M3[t] + 1917.71663306403M4[t] + 1195.64039723629M5[t] -1357.72571856797M6[t] -3420.23672889271M7[t] -2823.19225751594M8[t] -2512.03180419436M9[t] -1523.91827487921M10[t] -1046.44162180443M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  2811.22887588795 +  536.65294179354X[t] -0.270735639007487Y1[t] +  0.146972260964833Y2[t] +  0.38234645812074Y3[t] +  0.0456948838664329Y4[t] +  1482.41945217729M1[t] +  2216.79549815919M2[t] +  1849.07312409255M3[t] +  1917.71663306403M4[t] +  1195.64039723629M5[t] -1357.72571856797M6[t] -3420.23672889271M7[t] -2823.19225751594M8[t] -2512.03180419436M9[t] -1523.91827487921M10[t] -1046.44162180443M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  2811.22887588795 +  536.65294179354X[t] -0.270735639007487Y1[t] +  0.146972260964833Y2[t] +  0.38234645812074Y3[t] +  0.0456948838664329Y4[t] +  1482.41945217729M1[t] +  2216.79549815919M2[t] +  1849.07312409255M3[t] +  1917.71663306403M4[t] +  1195.64039723629M5[t] -1357.72571856797M6[t] -3420.23672889271M7[t] -2823.19225751594M8[t] -2512.03180419436M9[t] -1523.91827487921M10[t] -1046.44162180443M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 2811.22887588795 + 536.65294179354X[t] -0.270735639007487Y1[t] + 0.146972260964833Y2[t] + 0.38234645812074Y3[t] + 0.0456948838664329Y4[t] + 1482.41945217729M1[t] + 2216.79549815919M2[t] + 1849.07312409255M3[t] + 1917.71663306403M4[t] + 1195.64039723629M5[t] -1357.72571856797M6[t] -3420.23672889271M7[t] -2823.19225751594M8[t] -2512.03180419436M9[t] -1523.91827487921M10[t] -1046.44162180443M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2811.22887588795391.2924897.184500
X536.65294179354124.3860494.31443.8e-051.9e-05
Y1-0.2707356390074870.091772-2.95010.0039650.001983
Y20.1469722609648330.0888921.65340.1014230.050711
Y30.382346458120740.0893384.27984.3e-052.2e-05
Y40.04569488386643290.0928820.4920.6238330.311916
M11482.41945217729211.3757437.013200
M22216.79549815919311.1999387.123400
M31849.07312409255449.3106734.11548e-054e-05
M41917.71663306403547.1207383.50510.0006870.000344
M51195.64039723629631.9577181.8920.0614180.030709
M6-1357.72571856797668.486055-2.0310.0449310.022465
M7-3420.23672889271653.961571-5.231e-060
M8-2823.19225751594604.44105-4.67079e-065e-06
M9-2512.03180419436397.395117-6.321200
M10-1523.91827487921221.860113-6.868800
M11-1046.44162180443190.099113-5.504700

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 2811.22887588795 & 391.292489 & 7.1845 & 0 & 0 \tabularnewline
X & 536.65294179354 & 124.386049 & 4.3144 & 3.8e-05 & 1.9e-05 \tabularnewline
Y1 & -0.270735639007487 & 0.091772 & -2.9501 & 0.003965 & 0.001983 \tabularnewline
Y2 & 0.146972260964833 & 0.088892 & 1.6534 & 0.101423 & 0.050711 \tabularnewline
Y3 & 0.38234645812074 & 0.089338 & 4.2798 & 4.3e-05 & 2.2e-05 \tabularnewline
Y4 & 0.0456948838664329 & 0.092882 & 0.492 & 0.623833 & 0.311916 \tabularnewline
M1 & 1482.41945217729 & 211.375743 & 7.0132 & 0 & 0 \tabularnewline
M2 & 2216.79549815919 & 311.199938 & 7.1234 & 0 & 0 \tabularnewline
M3 & 1849.07312409255 & 449.310673 & 4.1154 & 8e-05 & 4e-05 \tabularnewline
M4 & 1917.71663306403 & 547.120738 & 3.5051 & 0.000687 & 0.000344 \tabularnewline
M5 & 1195.64039723629 & 631.957718 & 1.892 & 0.061418 & 0.030709 \tabularnewline
M6 & -1357.72571856797 & 668.486055 & -2.031 & 0.044931 & 0.022465 \tabularnewline
M7 & -3420.23672889271 & 653.961571 & -5.23 & 1e-06 & 0 \tabularnewline
M8 & -2823.19225751594 & 604.44105 & -4.6707 & 9e-06 & 5e-06 \tabularnewline
M9 & -2512.03180419436 & 397.395117 & -6.3212 & 0 & 0 \tabularnewline
M10 & -1523.91827487921 & 221.860113 & -6.8688 & 0 & 0 \tabularnewline
M11 & -1046.44162180443 & 190.099113 & -5.5047 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]2811.22887588795[/C][C]391.292489[/C][C]7.1845[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]536.65294179354[/C][C]124.386049[/C][C]4.3144[/C][C]3.8e-05[/C][C]1.9e-05[/C][/ROW]
[ROW][C]Y1[/C][C]-0.270735639007487[/C][C]0.091772[/C][C]-2.9501[/C][C]0.003965[/C][C]0.001983[/C][/ROW]
[ROW][C]Y2[/C][C]0.146972260964833[/C][C]0.088892[/C][C]1.6534[/C][C]0.101423[/C][C]0.050711[/C][/ROW]
[ROW][C]Y3[/C][C]0.38234645812074[/C][C]0.089338[/C][C]4.2798[/C][C]4.3e-05[/C][C]2.2e-05[/C][/ROW]
[ROW][C]Y4[/C][C]0.0456948838664329[/C][C]0.092882[/C][C]0.492[/C][C]0.623833[/C][C]0.311916[/C][/ROW]
[ROW][C]M1[/C][C]1482.41945217729[/C][C]211.375743[/C][C]7.0132[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M2[/C][C]2216.79549815919[/C][C]311.199938[/C][C]7.1234[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M3[/C][C]1849.07312409255[/C][C]449.310673[/C][C]4.1154[/C][C]8e-05[/C][C]4e-05[/C][/ROW]
[ROW][C]M4[/C][C]1917.71663306403[/C][C]547.120738[/C][C]3.5051[/C][C]0.000687[/C][C]0.000344[/C][/ROW]
[ROW][C]M5[/C][C]1195.64039723629[/C][C]631.957718[/C][C]1.892[/C][C]0.061418[/C][C]0.030709[/C][/ROW]
[ROW][C]M6[/C][C]-1357.72571856797[/C][C]668.486055[/C][C]-2.031[/C][C]0.044931[/C][C]0.022465[/C][/ROW]
[ROW][C]M7[/C][C]-3420.23672889271[/C][C]653.961571[/C][C]-5.23[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]-2823.19225751594[/C][C]604.44105[/C][C]-4.6707[/C][C]9e-06[/C][C]5e-06[/C][/ROW]
[ROW][C]M9[/C][C]-2512.03180419436[/C][C]397.395117[/C][C]-6.3212[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M10[/C][C]-1523.91827487921[/C][C]221.860113[/C][C]-6.8688[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M11[/C][C]-1046.44162180443[/C][C]190.099113[/C][C]-5.5047[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2811.22887588795391.2924897.184500
X536.65294179354124.3860494.31443.8e-051.9e-05
Y1-0.2707356390074870.091772-2.95010.0039650.001983
Y20.1469722609648330.0888921.65340.1014230.050711
Y30.382346458120740.0893384.27984.3e-052.2e-05
Y40.04569488386643290.0928820.4920.6238330.311916
M11482.41945217729211.3757437.013200
M22216.79549815919311.1999387.123400
M31849.07312409255449.3106734.11548e-054e-05
M41917.71663306403547.1207383.50510.0006870.000344
M51195.64039723629631.9577181.8920.0614180.030709
M6-1357.72571856797668.486055-2.0310.0449310.022465
M7-3420.23672889271653.961571-5.231e-060
M8-2823.19225751594604.44105-4.67079e-065e-06
M9-2512.03180419436397.395117-6.321200
M10-1523.91827487921221.860113-6.868800
M11-1046.44162180443190.099113-5.504700







Multiple Linear Regression - Regression Statistics
Multiple R0.979897654723466
R-squared0.96019941373255
Adjusted R-squared0.953766995749931
F-TEST (value)149.275034104935
F-TEST (DF numerator)16
F-TEST (DF denominator)99
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation350.48446385522
Sum Squared Residuals12161096.5809843

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.979897654723466 \tabularnewline
R-squared & 0.96019941373255 \tabularnewline
Adjusted R-squared & 0.953766995749931 \tabularnewline
F-TEST (value) & 149.275034104935 \tabularnewline
F-TEST (DF numerator) & 16 \tabularnewline
F-TEST (DF denominator) & 99 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 350.48446385522 \tabularnewline
Sum Squared Residuals & 12161096.5809843 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.979897654723466[/C][/ROW]
[ROW][C]R-squared[/C][C]0.96019941373255[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.953766995749931[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]149.275034104935[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]16[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]99[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]350.48446385522[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]12161096.5809843[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.979897654723466
R-squared0.96019941373255
Adjusted R-squared0.953766995749931
F-TEST (value)149.275034104935
F-TEST (DF numerator)16
F-TEST (DF denominator)99
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation350.48446385522
Sum Squared Residuals12161096.5809843







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
148314547.79356918019283.206430819806
251345302.56120693764-168.561206937636
362505505.63918887246744.360811127543
457605807.3616880164-47.3616880164031
562495549.72732342193699.272676578067
629173232.49926934452-315.49926934452
717412007.5945697203-266.594569720301
823592597.88950396155-238.889503961549
915111853.91529502778-342.915295027784
1020592023.8937739110635.106226088936
1126352410.92774720325224.072252796752
1228673085.97608169117-218.976081691165
1344034761.01748546589-358.017485465894
1457205358.91351071248361.08648928752
1545024975.40632430604-473.406324306041
1657496165.2536820098-416.253682009801
1756275500.29551744841126.704482551588
1828462757.7157350872488.2842649127623
1917621851.31958573186-89.3195857318558
2024292343.4468843402685.5531156597398
2111691245.82845969249-76.828459692487
2221542668.21130137873-514.211301378728
2322492362.66719287721-113.667192877213
2426873076.87855633307-389.878556333072
2543594773.71387099397-414.713870993968
2653825201.12615298785180.873847012154
2744594973.98760317394-514.987603173944
2863986102.17036702774295.82963297226
2945965187.02460277613-591.024602776131
3030243100.34340782409-76.343407824087
3118871897.77821224789-10.7782122478856
3220701971.222773222998.7772267771035
3313511382.34033099598-31.3403309959778
3422182085.44842819276132.551571807237
3524612777.19148728784-316.191487287836
3630283082.07141763516-54.0714176351594
3747844745.3377796003838.6622203996229
3849755220.16296908772-245.16296908772
3946075286.7076767589-679.707676758901
4062496180.3629823417168.6370176582872
4148095112.92142479913-303.921424799135
4231573058.7673078999698.2326921000364
4319101842.8686843976467.1313156023588
4422282059.17442211767168.825577882334
4515941403.52955122859190.470448771405
4624672057.7526732374409.2473267626
4722222270.30135350789-48.3013535078871
4836073820.15625110597-213.156251105973
4946854659.7635990960525.2364009039458
5049625252.05995903998-290.059959039985
5157705486.13450823831283.865491761689
5254805852.19183318817-372.191833188173
5350005482.55157323965-482.551573239646
5432283338.11002947173-110.110029471735
5519931610.8368795142382.163120485796
5622882085.02720241632202.972797583678
5715801435.35843189329144.641568106712
5821112105.340400619935.65959938006733
5921922391.3590921892-199.359092189204
6036013236.69209619747364.307903802532
6146655056.87671942958-391.876719429584
6248765228.85506585427-352.855065854273
6358135502.81340270894310.186597291058
6455895819.98948780226-230.989487802262
6553315425.56550273361-94.5655027336064
6630753277.0276470921-202.027647092102
6720021744.54789460313257.452105396873
6823062191.64124571704114.358754282959
6915071388.43393920715118.566060792847
7019922124.19940385637-132.199403856369
7124872420.1411483816366.8588516183671
7234903112.24660010223377.753399897774
7346474544.79729551188102.20270448812
7455945861.42184214837-267.421842148368
7556115276.81924709339334.180752906606
7657885968.24980189918-180.249801899177
7762045615.70296287732588.297037122684
7830133025.49785624628-12.4978562462758
7919311956.4968666689-25.4968666688975
8025492544.632935735584.36706426442032
8115041328.39630161174175.60369838826
8220902130.74618886155-40.7461888615537
8327022482.83399154483219.166008455172
8429393078.39853669535-139.398536695351
8545004762.90453695668-262.904536956678
8662085370.26791061217837.732089387828
8764155424.78708578126990.212914218735
8856575759.43650601541-102.436506015411
8959645997.37860676079-33.3786067607902
9031633406.68425444474-243.684254444744
9119971867.26447880101129.735521198991
9224222451.06104297033-29.0610429703297
9313761418.86509357954-42.8650935795374
9422022178.8239723279123.1760276720877
9526832388.15701272634294.842987273659
9633033045.25981017406257.740189825938
9752024698.53814957424503.461850425761
9852315231.56263930886-0.562639308860696
9948805394.12329845784-514.123298457836
10079986853.116906050951144.88309394905
10149774796.50937415352180.490625846483
10235313386.41667831097144.583321689033
10320252447.50355379964-422.503553799642
10422052227.16200607933-22.1620060793274
10514421577.33259676344-135.33259676344
10622382156.5838576142881.4161423857224
10721792306.42097428181-127.42097428181
10832183202.3206500655215.679349934477
10951394664.25699419113474.743005808868
11049905045.06874331066-55.0687433106602
11149145394.58166460891-480.581664608911
11260846243.86674564837-159.866745648371
11356725761.32311178951-89.3231117895135
11435482918.93781427837629.062185721631
11517931814.78927451544-21.7892745154363
11620862470.74198343903-384.741983439028

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 4831 & 4547.79356918019 & 283.206430819806 \tabularnewline
2 & 5134 & 5302.56120693764 & -168.561206937636 \tabularnewline
3 & 6250 & 5505.63918887246 & 744.360811127543 \tabularnewline
4 & 5760 & 5807.3616880164 & -47.3616880164031 \tabularnewline
5 & 6249 & 5549.72732342193 & 699.272676578067 \tabularnewline
6 & 2917 & 3232.49926934452 & -315.49926934452 \tabularnewline
7 & 1741 & 2007.5945697203 & -266.594569720301 \tabularnewline
8 & 2359 & 2597.88950396155 & -238.889503961549 \tabularnewline
9 & 1511 & 1853.91529502778 & -342.915295027784 \tabularnewline
10 & 2059 & 2023.89377391106 & 35.106226088936 \tabularnewline
11 & 2635 & 2410.92774720325 & 224.072252796752 \tabularnewline
12 & 2867 & 3085.97608169117 & -218.976081691165 \tabularnewline
13 & 4403 & 4761.01748546589 & -358.017485465894 \tabularnewline
14 & 5720 & 5358.91351071248 & 361.08648928752 \tabularnewline
15 & 4502 & 4975.40632430604 & -473.406324306041 \tabularnewline
16 & 5749 & 6165.2536820098 & -416.253682009801 \tabularnewline
17 & 5627 & 5500.29551744841 & 126.704482551588 \tabularnewline
18 & 2846 & 2757.71573508724 & 88.2842649127623 \tabularnewline
19 & 1762 & 1851.31958573186 & -89.3195857318558 \tabularnewline
20 & 2429 & 2343.44688434026 & 85.5531156597398 \tabularnewline
21 & 1169 & 1245.82845969249 & -76.828459692487 \tabularnewline
22 & 2154 & 2668.21130137873 & -514.211301378728 \tabularnewline
23 & 2249 & 2362.66719287721 & -113.667192877213 \tabularnewline
24 & 2687 & 3076.87855633307 & -389.878556333072 \tabularnewline
25 & 4359 & 4773.71387099397 & -414.713870993968 \tabularnewline
26 & 5382 & 5201.12615298785 & 180.873847012154 \tabularnewline
27 & 4459 & 4973.98760317394 & -514.987603173944 \tabularnewline
28 & 6398 & 6102.17036702774 & 295.82963297226 \tabularnewline
29 & 4596 & 5187.02460277613 & -591.024602776131 \tabularnewline
30 & 3024 & 3100.34340782409 & -76.343407824087 \tabularnewline
31 & 1887 & 1897.77821224789 & -10.7782122478856 \tabularnewline
32 & 2070 & 1971.2227732229 & 98.7772267771035 \tabularnewline
33 & 1351 & 1382.34033099598 & -31.3403309959778 \tabularnewline
34 & 2218 & 2085.44842819276 & 132.551571807237 \tabularnewline
35 & 2461 & 2777.19148728784 & -316.191487287836 \tabularnewline
36 & 3028 & 3082.07141763516 & -54.0714176351594 \tabularnewline
37 & 4784 & 4745.33777960038 & 38.6622203996229 \tabularnewline
38 & 4975 & 5220.16296908772 & -245.16296908772 \tabularnewline
39 & 4607 & 5286.7076767589 & -679.707676758901 \tabularnewline
40 & 6249 & 6180.36298234171 & 68.6370176582872 \tabularnewline
41 & 4809 & 5112.92142479913 & -303.921424799135 \tabularnewline
42 & 3157 & 3058.76730789996 & 98.2326921000364 \tabularnewline
43 & 1910 & 1842.86868439764 & 67.1313156023588 \tabularnewline
44 & 2228 & 2059.17442211767 & 168.825577882334 \tabularnewline
45 & 1594 & 1403.52955122859 & 190.470448771405 \tabularnewline
46 & 2467 & 2057.7526732374 & 409.2473267626 \tabularnewline
47 & 2222 & 2270.30135350789 & -48.3013535078871 \tabularnewline
48 & 3607 & 3820.15625110597 & -213.156251105973 \tabularnewline
49 & 4685 & 4659.76359909605 & 25.2364009039458 \tabularnewline
50 & 4962 & 5252.05995903998 & -290.059959039985 \tabularnewline
51 & 5770 & 5486.13450823831 & 283.865491761689 \tabularnewline
52 & 5480 & 5852.19183318817 & -372.191833188173 \tabularnewline
53 & 5000 & 5482.55157323965 & -482.551573239646 \tabularnewline
54 & 3228 & 3338.11002947173 & -110.110029471735 \tabularnewline
55 & 1993 & 1610.8368795142 & 382.163120485796 \tabularnewline
56 & 2288 & 2085.02720241632 & 202.972797583678 \tabularnewline
57 & 1580 & 1435.35843189329 & 144.641568106712 \tabularnewline
58 & 2111 & 2105.34040061993 & 5.65959938006733 \tabularnewline
59 & 2192 & 2391.3590921892 & -199.359092189204 \tabularnewline
60 & 3601 & 3236.69209619747 & 364.307903802532 \tabularnewline
61 & 4665 & 5056.87671942958 & -391.876719429584 \tabularnewline
62 & 4876 & 5228.85506585427 & -352.855065854273 \tabularnewline
63 & 5813 & 5502.81340270894 & 310.186597291058 \tabularnewline
64 & 5589 & 5819.98948780226 & -230.989487802262 \tabularnewline
65 & 5331 & 5425.56550273361 & -94.5655027336064 \tabularnewline
66 & 3075 & 3277.0276470921 & -202.027647092102 \tabularnewline
67 & 2002 & 1744.54789460313 & 257.452105396873 \tabularnewline
68 & 2306 & 2191.64124571704 & 114.358754282959 \tabularnewline
69 & 1507 & 1388.43393920715 & 118.566060792847 \tabularnewline
70 & 1992 & 2124.19940385637 & -132.199403856369 \tabularnewline
71 & 2487 & 2420.14114838163 & 66.8588516183671 \tabularnewline
72 & 3490 & 3112.24660010223 & 377.753399897774 \tabularnewline
73 & 4647 & 4544.79729551188 & 102.20270448812 \tabularnewline
74 & 5594 & 5861.42184214837 & -267.421842148368 \tabularnewline
75 & 5611 & 5276.81924709339 & 334.180752906606 \tabularnewline
76 & 5788 & 5968.24980189918 & -180.249801899177 \tabularnewline
77 & 6204 & 5615.70296287732 & 588.297037122684 \tabularnewline
78 & 3013 & 3025.49785624628 & -12.4978562462758 \tabularnewline
79 & 1931 & 1956.4968666689 & -25.4968666688975 \tabularnewline
80 & 2549 & 2544.63293573558 & 4.36706426442032 \tabularnewline
81 & 1504 & 1328.39630161174 & 175.60369838826 \tabularnewline
82 & 2090 & 2130.74618886155 & -40.7461888615537 \tabularnewline
83 & 2702 & 2482.83399154483 & 219.166008455172 \tabularnewline
84 & 2939 & 3078.39853669535 & -139.398536695351 \tabularnewline
85 & 4500 & 4762.90453695668 & -262.904536956678 \tabularnewline
86 & 6208 & 5370.26791061217 & 837.732089387828 \tabularnewline
87 & 6415 & 5424.78708578126 & 990.212914218735 \tabularnewline
88 & 5657 & 5759.43650601541 & -102.436506015411 \tabularnewline
89 & 5964 & 5997.37860676079 & -33.3786067607902 \tabularnewline
90 & 3163 & 3406.68425444474 & -243.684254444744 \tabularnewline
91 & 1997 & 1867.26447880101 & 129.735521198991 \tabularnewline
92 & 2422 & 2451.06104297033 & -29.0610429703297 \tabularnewline
93 & 1376 & 1418.86509357954 & -42.8650935795374 \tabularnewline
94 & 2202 & 2178.82397232791 & 23.1760276720877 \tabularnewline
95 & 2683 & 2388.15701272634 & 294.842987273659 \tabularnewline
96 & 3303 & 3045.25981017406 & 257.740189825938 \tabularnewline
97 & 5202 & 4698.53814957424 & 503.461850425761 \tabularnewline
98 & 5231 & 5231.56263930886 & -0.562639308860696 \tabularnewline
99 & 4880 & 5394.12329845784 & -514.123298457836 \tabularnewline
100 & 7998 & 6853.11690605095 & 1144.88309394905 \tabularnewline
101 & 4977 & 4796.50937415352 & 180.490625846483 \tabularnewline
102 & 3531 & 3386.41667831097 & 144.583321689033 \tabularnewline
103 & 2025 & 2447.50355379964 & -422.503553799642 \tabularnewline
104 & 2205 & 2227.16200607933 & -22.1620060793274 \tabularnewline
105 & 1442 & 1577.33259676344 & -135.33259676344 \tabularnewline
106 & 2238 & 2156.58385761428 & 81.4161423857224 \tabularnewline
107 & 2179 & 2306.42097428181 & -127.42097428181 \tabularnewline
108 & 3218 & 3202.32065006552 & 15.679349934477 \tabularnewline
109 & 5139 & 4664.25699419113 & 474.743005808868 \tabularnewline
110 & 4990 & 5045.06874331066 & -55.0687433106602 \tabularnewline
111 & 4914 & 5394.58166460891 & -480.581664608911 \tabularnewline
112 & 6084 & 6243.86674564837 & -159.866745648371 \tabularnewline
113 & 5672 & 5761.32311178951 & -89.3231117895135 \tabularnewline
114 & 3548 & 2918.93781427837 & 629.062185721631 \tabularnewline
115 & 1793 & 1814.78927451544 & -21.7892745154363 \tabularnewline
116 & 2086 & 2470.74198343903 & -384.741983439028 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]4831[/C][C]4547.79356918019[/C][C]283.206430819806[/C][/ROW]
[ROW][C]2[/C][C]5134[/C][C]5302.56120693764[/C][C]-168.561206937636[/C][/ROW]
[ROW][C]3[/C][C]6250[/C][C]5505.63918887246[/C][C]744.360811127543[/C][/ROW]
[ROW][C]4[/C][C]5760[/C][C]5807.3616880164[/C][C]-47.3616880164031[/C][/ROW]
[ROW][C]5[/C][C]6249[/C][C]5549.72732342193[/C][C]699.272676578067[/C][/ROW]
[ROW][C]6[/C][C]2917[/C][C]3232.49926934452[/C][C]-315.49926934452[/C][/ROW]
[ROW][C]7[/C][C]1741[/C][C]2007.5945697203[/C][C]-266.594569720301[/C][/ROW]
[ROW][C]8[/C][C]2359[/C][C]2597.88950396155[/C][C]-238.889503961549[/C][/ROW]
[ROW][C]9[/C][C]1511[/C][C]1853.91529502778[/C][C]-342.915295027784[/C][/ROW]
[ROW][C]10[/C][C]2059[/C][C]2023.89377391106[/C][C]35.106226088936[/C][/ROW]
[ROW][C]11[/C][C]2635[/C][C]2410.92774720325[/C][C]224.072252796752[/C][/ROW]
[ROW][C]12[/C][C]2867[/C][C]3085.97608169117[/C][C]-218.976081691165[/C][/ROW]
[ROW][C]13[/C][C]4403[/C][C]4761.01748546589[/C][C]-358.017485465894[/C][/ROW]
[ROW][C]14[/C][C]5720[/C][C]5358.91351071248[/C][C]361.08648928752[/C][/ROW]
[ROW][C]15[/C][C]4502[/C][C]4975.40632430604[/C][C]-473.406324306041[/C][/ROW]
[ROW][C]16[/C][C]5749[/C][C]6165.2536820098[/C][C]-416.253682009801[/C][/ROW]
[ROW][C]17[/C][C]5627[/C][C]5500.29551744841[/C][C]126.704482551588[/C][/ROW]
[ROW][C]18[/C][C]2846[/C][C]2757.71573508724[/C][C]88.2842649127623[/C][/ROW]
[ROW][C]19[/C][C]1762[/C][C]1851.31958573186[/C][C]-89.3195857318558[/C][/ROW]
[ROW][C]20[/C][C]2429[/C][C]2343.44688434026[/C][C]85.5531156597398[/C][/ROW]
[ROW][C]21[/C][C]1169[/C][C]1245.82845969249[/C][C]-76.828459692487[/C][/ROW]
[ROW][C]22[/C][C]2154[/C][C]2668.21130137873[/C][C]-514.211301378728[/C][/ROW]
[ROW][C]23[/C][C]2249[/C][C]2362.66719287721[/C][C]-113.667192877213[/C][/ROW]
[ROW][C]24[/C][C]2687[/C][C]3076.87855633307[/C][C]-389.878556333072[/C][/ROW]
[ROW][C]25[/C][C]4359[/C][C]4773.71387099397[/C][C]-414.713870993968[/C][/ROW]
[ROW][C]26[/C][C]5382[/C][C]5201.12615298785[/C][C]180.873847012154[/C][/ROW]
[ROW][C]27[/C][C]4459[/C][C]4973.98760317394[/C][C]-514.987603173944[/C][/ROW]
[ROW][C]28[/C][C]6398[/C][C]6102.17036702774[/C][C]295.82963297226[/C][/ROW]
[ROW][C]29[/C][C]4596[/C][C]5187.02460277613[/C][C]-591.024602776131[/C][/ROW]
[ROW][C]30[/C][C]3024[/C][C]3100.34340782409[/C][C]-76.343407824087[/C][/ROW]
[ROW][C]31[/C][C]1887[/C][C]1897.77821224789[/C][C]-10.7782122478856[/C][/ROW]
[ROW][C]32[/C][C]2070[/C][C]1971.2227732229[/C][C]98.7772267771035[/C][/ROW]
[ROW][C]33[/C][C]1351[/C][C]1382.34033099598[/C][C]-31.3403309959778[/C][/ROW]
[ROW][C]34[/C][C]2218[/C][C]2085.44842819276[/C][C]132.551571807237[/C][/ROW]
[ROW][C]35[/C][C]2461[/C][C]2777.19148728784[/C][C]-316.191487287836[/C][/ROW]
[ROW][C]36[/C][C]3028[/C][C]3082.07141763516[/C][C]-54.0714176351594[/C][/ROW]
[ROW][C]37[/C][C]4784[/C][C]4745.33777960038[/C][C]38.6622203996229[/C][/ROW]
[ROW][C]38[/C][C]4975[/C][C]5220.16296908772[/C][C]-245.16296908772[/C][/ROW]
[ROW][C]39[/C][C]4607[/C][C]5286.7076767589[/C][C]-679.707676758901[/C][/ROW]
[ROW][C]40[/C][C]6249[/C][C]6180.36298234171[/C][C]68.6370176582872[/C][/ROW]
[ROW][C]41[/C][C]4809[/C][C]5112.92142479913[/C][C]-303.921424799135[/C][/ROW]
[ROW][C]42[/C][C]3157[/C][C]3058.76730789996[/C][C]98.2326921000364[/C][/ROW]
[ROW][C]43[/C][C]1910[/C][C]1842.86868439764[/C][C]67.1313156023588[/C][/ROW]
[ROW][C]44[/C][C]2228[/C][C]2059.17442211767[/C][C]168.825577882334[/C][/ROW]
[ROW][C]45[/C][C]1594[/C][C]1403.52955122859[/C][C]190.470448771405[/C][/ROW]
[ROW][C]46[/C][C]2467[/C][C]2057.7526732374[/C][C]409.2473267626[/C][/ROW]
[ROW][C]47[/C][C]2222[/C][C]2270.30135350789[/C][C]-48.3013535078871[/C][/ROW]
[ROW][C]48[/C][C]3607[/C][C]3820.15625110597[/C][C]-213.156251105973[/C][/ROW]
[ROW][C]49[/C][C]4685[/C][C]4659.76359909605[/C][C]25.2364009039458[/C][/ROW]
[ROW][C]50[/C][C]4962[/C][C]5252.05995903998[/C][C]-290.059959039985[/C][/ROW]
[ROW][C]51[/C][C]5770[/C][C]5486.13450823831[/C][C]283.865491761689[/C][/ROW]
[ROW][C]52[/C][C]5480[/C][C]5852.19183318817[/C][C]-372.191833188173[/C][/ROW]
[ROW][C]53[/C][C]5000[/C][C]5482.55157323965[/C][C]-482.551573239646[/C][/ROW]
[ROW][C]54[/C][C]3228[/C][C]3338.11002947173[/C][C]-110.110029471735[/C][/ROW]
[ROW][C]55[/C][C]1993[/C][C]1610.8368795142[/C][C]382.163120485796[/C][/ROW]
[ROW][C]56[/C][C]2288[/C][C]2085.02720241632[/C][C]202.972797583678[/C][/ROW]
[ROW][C]57[/C][C]1580[/C][C]1435.35843189329[/C][C]144.641568106712[/C][/ROW]
[ROW][C]58[/C][C]2111[/C][C]2105.34040061993[/C][C]5.65959938006733[/C][/ROW]
[ROW][C]59[/C][C]2192[/C][C]2391.3590921892[/C][C]-199.359092189204[/C][/ROW]
[ROW][C]60[/C][C]3601[/C][C]3236.69209619747[/C][C]364.307903802532[/C][/ROW]
[ROW][C]61[/C][C]4665[/C][C]5056.87671942958[/C][C]-391.876719429584[/C][/ROW]
[ROW][C]62[/C][C]4876[/C][C]5228.85506585427[/C][C]-352.855065854273[/C][/ROW]
[ROW][C]63[/C][C]5813[/C][C]5502.81340270894[/C][C]310.186597291058[/C][/ROW]
[ROW][C]64[/C][C]5589[/C][C]5819.98948780226[/C][C]-230.989487802262[/C][/ROW]
[ROW][C]65[/C][C]5331[/C][C]5425.56550273361[/C][C]-94.5655027336064[/C][/ROW]
[ROW][C]66[/C][C]3075[/C][C]3277.0276470921[/C][C]-202.027647092102[/C][/ROW]
[ROW][C]67[/C][C]2002[/C][C]1744.54789460313[/C][C]257.452105396873[/C][/ROW]
[ROW][C]68[/C][C]2306[/C][C]2191.64124571704[/C][C]114.358754282959[/C][/ROW]
[ROW][C]69[/C][C]1507[/C][C]1388.43393920715[/C][C]118.566060792847[/C][/ROW]
[ROW][C]70[/C][C]1992[/C][C]2124.19940385637[/C][C]-132.199403856369[/C][/ROW]
[ROW][C]71[/C][C]2487[/C][C]2420.14114838163[/C][C]66.8588516183671[/C][/ROW]
[ROW][C]72[/C][C]3490[/C][C]3112.24660010223[/C][C]377.753399897774[/C][/ROW]
[ROW][C]73[/C][C]4647[/C][C]4544.79729551188[/C][C]102.20270448812[/C][/ROW]
[ROW][C]74[/C][C]5594[/C][C]5861.42184214837[/C][C]-267.421842148368[/C][/ROW]
[ROW][C]75[/C][C]5611[/C][C]5276.81924709339[/C][C]334.180752906606[/C][/ROW]
[ROW][C]76[/C][C]5788[/C][C]5968.24980189918[/C][C]-180.249801899177[/C][/ROW]
[ROW][C]77[/C][C]6204[/C][C]5615.70296287732[/C][C]588.297037122684[/C][/ROW]
[ROW][C]78[/C][C]3013[/C][C]3025.49785624628[/C][C]-12.4978562462758[/C][/ROW]
[ROW][C]79[/C][C]1931[/C][C]1956.4968666689[/C][C]-25.4968666688975[/C][/ROW]
[ROW][C]80[/C][C]2549[/C][C]2544.63293573558[/C][C]4.36706426442032[/C][/ROW]
[ROW][C]81[/C][C]1504[/C][C]1328.39630161174[/C][C]175.60369838826[/C][/ROW]
[ROW][C]82[/C][C]2090[/C][C]2130.74618886155[/C][C]-40.7461888615537[/C][/ROW]
[ROW][C]83[/C][C]2702[/C][C]2482.83399154483[/C][C]219.166008455172[/C][/ROW]
[ROW][C]84[/C][C]2939[/C][C]3078.39853669535[/C][C]-139.398536695351[/C][/ROW]
[ROW][C]85[/C][C]4500[/C][C]4762.90453695668[/C][C]-262.904536956678[/C][/ROW]
[ROW][C]86[/C][C]6208[/C][C]5370.26791061217[/C][C]837.732089387828[/C][/ROW]
[ROW][C]87[/C][C]6415[/C][C]5424.78708578126[/C][C]990.212914218735[/C][/ROW]
[ROW][C]88[/C][C]5657[/C][C]5759.43650601541[/C][C]-102.436506015411[/C][/ROW]
[ROW][C]89[/C][C]5964[/C][C]5997.37860676079[/C][C]-33.3786067607902[/C][/ROW]
[ROW][C]90[/C][C]3163[/C][C]3406.68425444474[/C][C]-243.684254444744[/C][/ROW]
[ROW][C]91[/C][C]1997[/C][C]1867.26447880101[/C][C]129.735521198991[/C][/ROW]
[ROW][C]92[/C][C]2422[/C][C]2451.06104297033[/C][C]-29.0610429703297[/C][/ROW]
[ROW][C]93[/C][C]1376[/C][C]1418.86509357954[/C][C]-42.8650935795374[/C][/ROW]
[ROW][C]94[/C][C]2202[/C][C]2178.82397232791[/C][C]23.1760276720877[/C][/ROW]
[ROW][C]95[/C][C]2683[/C][C]2388.15701272634[/C][C]294.842987273659[/C][/ROW]
[ROW][C]96[/C][C]3303[/C][C]3045.25981017406[/C][C]257.740189825938[/C][/ROW]
[ROW][C]97[/C][C]5202[/C][C]4698.53814957424[/C][C]503.461850425761[/C][/ROW]
[ROW][C]98[/C][C]5231[/C][C]5231.56263930886[/C][C]-0.562639308860696[/C][/ROW]
[ROW][C]99[/C][C]4880[/C][C]5394.12329845784[/C][C]-514.123298457836[/C][/ROW]
[ROW][C]100[/C][C]7998[/C][C]6853.11690605095[/C][C]1144.88309394905[/C][/ROW]
[ROW][C]101[/C][C]4977[/C][C]4796.50937415352[/C][C]180.490625846483[/C][/ROW]
[ROW][C]102[/C][C]3531[/C][C]3386.41667831097[/C][C]144.583321689033[/C][/ROW]
[ROW][C]103[/C][C]2025[/C][C]2447.50355379964[/C][C]-422.503553799642[/C][/ROW]
[ROW][C]104[/C][C]2205[/C][C]2227.16200607933[/C][C]-22.1620060793274[/C][/ROW]
[ROW][C]105[/C][C]1442[/C][C]1577.33259676344[/C][C]-135.33259676344[/C][/ROW]
[ROW][C]106[/C][C]2238[/C][C]2156.58385761428[/C][C]81.4161423857224[/C][/ROW]
[ROW][C]107[/C][C]2179[/C][C]2306.42097428181[/C][C]-127.42097428181[/C][/ROW]
[ROW][C]108[/C][C]3218[/C][C]3202.32065006552[/C][C]15.679349934477[/C][/ROW]
[ROW][C]109[/C][C]5139[/C][C]4664.25699419113[/C][C]474.743005808868[/C][/ROW]
[ROW][C]110[/C][C]4990[/C][C]5045.06874331066[/C][C]-55.0687433106602[/C][/ROW]
[ROW][C]111[/C][C]4914[/C][C]5394.58166460891[/C][C]-480.581664608911[/C][/ROW]
[ROW][C]112[/C][C]6084[/C][C]6243.86674564837[/C][C]-159.866745648371[/C][/ROW]
[ROW][C]113[/C][C]5672[/C][C]5761.32311178951[/C][C]-89.3231117895135[/C][/ROW]
[ROW][C]114[/C][C]3548[/C][C]2918.93781427837[/C][C]629.062185721631[/C][/ROW]
[ROW][C]115[/C][C]1793[/C][C]1814.78927451544[/C][C]-21.7892745154363[/C][/ROW]
[ROW][C]116[/C][C]2086[/C][C]2470.74198343903[/C][C]-384.741983439028[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
148314547.79356918019283.206430819806
251345302.56120693764-168.561206937636
362505505.63918887246744.360811127543
457605807.3616880164-47.3616880164031
562495549.72732342193699.272676578067
629173232.49926934452-315.49926934452
717412007.5945697203-266.594569720301
823592597.88950396155-238.889503961549
915111853.91529502778-342.915295027784
1020592023.8937739110635.106226088936
1126352410.92774720325224.072252796752
1228673085.97608169117-218.976081691165
1344034761.01748546589-358.017485465894
1457205358.91351071248361.08648928752
1545024975.40632430604-473.406324306041
1657496165.2536820098-416.253682009801
1756275500.29551744841126.704482551588
1828462757.7157350872488.2842649127623
1917621851.31958573186-89.3195857318558
2024292343.4468843402685.5531156597398
2111691245.82845969249-76.828459692487
2221542668.21130137873-514.211301378728
2322492362.66719287721-113.667192877213
2426873076.87855633307-389.878556333072
2543594773.71387099397-414.713870993968
2653825201.12615298785180.873847012154
2744594973.98760317394-514.987603173944
2863986102.17036702774295.82963297226
2945965187.02460277613-591.024602776131
3030243100.34340782409-76.343407824087
3118871897.77821224789-10.7782122478856
3220701971.222773222998.7772267771035
3313511382.34033099598-31.3403309959778
3422182085.44842819276132.551571807237
3524612777.19148728784-316.191487287836
3630283082.07141763516-54.0714176351594
3747844745.3377796003838.6622203996229
3849755220.16296908772-245.16296908772
3946075286.7076767589-679.707676758901
4062496180.3629823417168.6370176582872
4148095112.92142479913-303.921424799135
4231573058.7673078999698.2326921000364
4319101842.8686843976467.1313156023588
4422282059.17442211767168.825577882334
4515941403.52955122859190.470448771405
4624672057.7526732374409.2473267626
4722222270.30135350789-48.3013535078871
4836073820.15625110597-213.156251105973
4946854659.7635990960525.2364009039458
5049625252.05995903998-290.059959039985
5157705486.13450823831283.865491761689
5254805852.19183318817-372.191833188173
5350005482.55157323965-482.551573239646
5432283338.11002947173-110.110029471735
5519931610.8368795142382.163120485796
5622882085.02720241632202.972797583678
5715801435.35843189329144.641568106712
5821112105.340400619935.65959938006733
5921922391.3590921892-199.359092189204
6036013236.69209619747364.307903802532
6146655056.87671942958-391.876719429584
6248765228.85506585427-352.855065854273
6358135502.81340270894310.186597291058
6455895819.98948780226-230.989487802262
6553315425.56550273361-94.5655027336064
6630753277.0276470921-202.027647092102
6720021744.54789460313257.452105396873
6823062191.64124571704114.358754282959
6915071388.43393920715118.566060792847
7019922124.19940385637-132.199403856369
7124872420.1411483816366.8588516183671
7234903112.24660010223377.753399897774
7346474544.79729551188102.20270448812
7455945861.42184214837-267.421842148368
7556115276.81924709339334.180752906606
7657885968.24980189918-180.249801899177
7762045615.70296287732588.297037122684
7830133025.49785624628-12.4978562462758
7919311956.4968666689-25.4968666688975
8025492544.632935735584.36706426442032
8115041328.39630161174175.60369838826
8220902130.74618886155-40.7461888615537
8327022482.83399154483219.166008455172
8429393078.39853669535-139.398536695351
8545004762.90453695668-262.904536956678
8662085370.26791061217837.732089387828
8764155424.78708578126990.212914218735
8856575759.43650601541-102.436506015411
8959645997.37860676079-33.3786067607902
9031633406.68425444474-243.684254444744
9119971867.26447880101129.735521198991
9224222451.06104297033-29.0610429703297
9313761418.86509357954-42.8650935795374
9422022178.8239723279123.1760276720877
9526832388.15701272634294.842987273659
9633033045.25981017406257.740189825938
9752024698.53814957424503.461850425761
9852315231.56263930886-0.562639308860696
9948805394.12329845784-514.123298457836
10079986853.116906050951144.88309394905
10149774796.50937415352180.490625846483
10235313386.41667831097144.583321689033
10320252447.50355379964-422.503553799642
10422052227.16200607933-22.1620060793274
10514421577.33259676344-135.33259676344
10622382156.5838576142881.4161423857224
10721792306.42097428181-127.42097428181
10832183202.3206500655215.679349934477
10951394664.25699419113474.743005808868
11049905045.06874331066-55.0687433106602
11149145394.58166460891-480.581664608911
11260846243.86674564837-159.866745648371
11356725761.32311178951-89.3231117895135
11435482918.93781427837629.062185721631
11517931814.78927451544-21.7892745154363
11620862470.74198343903-384.741983439028







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
200.9879850239666430.02402995206671490.0120149760333574
210.9722950017700150.05540999645996990.027704998229985
220.9560270573896280.08794588522074340.0439729426103717
230.9298222116664150.140355576667170.0701777883335852
240.8963048147212680.2073903705574630.103695185278732
250.8690243071477140.2619513857045720.130975692852286
260.8215275439842950.356944912031410.178472456015705
270.8427627769833080.3144744460333840.157237223016692
280.8605520245952020.2788959508095970.139447975404798
290.9025155172193130.1949689655613740.097484482780687
300.8681997092983830.2636005814032350.131800290701617
310.854216935753720.291566128492560.14578306424628
320.8292577089420570.3414845821158860.170742291057943
330.7765830920067540.4468338159864910.223416907993246
340.7186406520167180.5627186959665650.281359347983282
350.6893452115925090.6213095768149820.310654788407491
360.6424264690608720.7151470618782560.357573530939128
370.5818263608027140.8363472783945720.418173639197286
380.5496583152361310.9006833695277390.450341684763869
390.701943632638840.5961127347223210.298056367361161
400.641571202376870.7168575952462610.358428797623131
410.6192965097722040.7614069804555910.380703490227796
420.561228852898510.877542294202980.43877114710149
430.5232227509665830.9535544980668340.476777249033417
440.4728965303375850.945793060675170.527103469662415
450.4147980972453850.829596194490770.585201902754615
460.4095875179941870.8191750359883740.590412482005813
470.3532637502686820.7065275005373650.646736249731318
480.3552945668680760.7105891337361520.644705433131924
490.3044051169329710.6088102338659430.695594883067029
500.2898034755574180.5796069511148370.710196524442582
510.2719398106725590.5438796213451190.72806018932744
520.2597044521286250.519408904257250.740295547871375
530.3378150026212440.6756300052424880.662184997378756
540.304444780662650.60888956132530.69555521933735
550.3207284134041490.6414568268082980.679271586595851
560.2811424571837760.5622849143675520.718857542816224
570.2326540420356190.4653080840712380.767345957964381
580.189478426507870.3789568530157410.81052157349213
590.1691728268303270.3383456536606530.830827173169673
600.1645343899647710.3290687799295430.835465610035229
610.2307558738574420.4615117477148850.769244126142558
620.2233446529333620.4466893058667230.776655347066638
630.2113225102485850.4226450204971690.788677489751415
640.1936843560219530.3873687120439060.806315643978047
650.1626354573712590.3252709147425180.837364542628741
660.1588080952701160.3176161905402320.841191904729884
670.1307746591830780.2615493183661560.869225340816922
680.1005787941667310.2011575883334620.899421205833269
690.07551357182154020.151027143643080.92448642817846
700.0603078347588140.1206156695176280.939692165241186
710.04356767757318990.08713535514637980.95643232242681
720.04170456834973690.08340913669947370.958295431650263
730.03184032051893630.06368064103787250.968159679481064
740.07415232862454560.1483046572490910.925847671375454
750.09689509384830930.1937901876966190.90310490615169
760.0768155117813090.1536310235626180.92318448821869
770.1858252714676030.3716505429352060.814174728532397
780.1526151085472830.3052302170945660.847384891452717
790.1176510771057720.2353021542115440.882348922894228
800.0938807739641230.1877615479282460.906119226035877
810.07257240788224130.1451448157644830.927427592117759
820.05210564783665210.1042112956733040.947894352163348
830.0376404941972020.0752809883944040.962359505802798
840.02853768319662810.05707536639325610.971462316803372
850.04906132131251470.09812264262502950.950938678687485
860.2473771467837110.4947542935674220.752622853216289
870.4909042910874230.9818085821748460.509095708912577
880.6923944694894130.6152110610211750.307605530510587
890.9521602330916960.09567953381660770.0478397669083038
900.9729317556175460.0541364887649090.0270682443824545
910.9869250102880770.02614997942384510.0130749897119226
920.97623568221220.04752863557559750.0237643177877988
930.9526309887154740.09473802256905130.0473690112845257
940.900252867984380.199494264031240.09974713201562
950.9768558123045090.0462883753909830.0231441876954915
960.9575852329086440.08482953418271150.0424147670913558

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
20 & 0.987985023966643 & 0.0240299520667149 & 0.0120149760333574 \tabularnewline
21 & 0.972295001770015 & 0.0554099964599699 & 0.027704998229985 \tabularnewline
22 & 0.956027057389628 & 0.0879458852207434 & 0.0439729426103717 \tabularnewline
23 & 0.929822211666415 & 0.14035557666717 & 0.0701777883335852 \tabularnewline
24 & 0.896304814721268 & 0.207390370557463 & 0.103695185278732 \tabularnewline
25 & 0.869024307147714 & 0.261951385704572 & 0.130975692852286 \tabularnewline
26 & 0.821527543984295 & 0.35694491203141 & 0.178472456015705 \tabularnewline
27 & 0.842762776983308 & 0.314474446033384 & 0.157237223016692 \tabularnewline
28 & 0.860552024595202 & 0.278895950809597 & 0.139447975404798 \tabularnewline
29 & 0.902515517219313 & 0.194968965561374 & 0.097484482780687 \tabularnewline
30 & 0.868199709298383 & 0.263600581403235 & 0.131800290701617 \tabularnewline
31 & 0.85421693575372 & 0.29156612849256 & 0.14578306424628 \tabularnewline
32 & 0.829257708942057 & 0.341484582115886 & 0.170742291057943 \tabularnewline
33 & 0.776583092006754 & 0.446833815986491 & 0.223416907993246 \tabularnewline
34 & 0.718640652016718 & 0.562718695966565 & 0.281359347983282 \tabularnewline
35 & 0.689345211592509 & 0.621309576814982 & 0.310654788407491 \tabularnewline
36 & 0.642426469060872 & 0.715147061878256 & 0.357573530939128 \tabularnewline
37 & 0.581826360802714 & 0.836347278394572 & 0.418173639197286 \tabularnewline
38 & 0.549658315236131 & 0.900683369527739 & 0.450341684763869 \tabularnewline
39 & 0.70194363263884 & 0.596112734722321 & 0.298056367361161 \tabularnewline
40 & 0.64157120237687 & 0.716857595246261 & 0.358428797623131 \tabularnewline
41 & 0.619296509772204 & 0.761406980455591 & 0.380703490227796 \tabularnewline
42 & 0.56122885289851 & 0.87754229420298 & 0.43877114710149 \tabularnewline
43 & 0.523222750966583 & 0.953554498066834 & 0.476777249033417 \tabularnewline
44 & 0.472896530337585 & 0.94579306067517 & 0.527103469662415 \tabularnewline
45 & 0.414798097245385 & 0.82959619449077 & 0.585201902754615 \tabularnewline
46 & 0.409587517994187 & 0.819175035988374 & 0.590412482005813 \tabularnewline
47 & 0.353263750268682 & 0.706527500537365 & 0.646736249731318 \tabularnewline
48 & 0.355294566868076 & 0.710589133736152 & 0.644705433131924 \tabularnewline
49 & 0.304405116932971 & 0.608810233865943 & 0.695594883067029 \tabularnewline
50 & 0.289803475557418 & 0.579606951114837 & 0.710196524442582 \tabularnewline
51 & 0.271939810672559 & 0.543879621345119 & 0.72806018932744 \tabularnewline
52 & 0.259704452128625 & 0.51940890425725 & 0.740295547871375 \tabularnewline
53 & 0.337815002621244 & 0.675630005242488 & 0.662184997378756 \tabularnewline
54 & 0.30444478066265 & 0.6088895613253 & 0.69555521933735 \tabularnewline
55 & 0.320728413404149 & 0.641456826808298 & 0.679271586595851 \tabularnewline
56 & 0.281142457183776 & 0.562284914367552 & 0.718857542816224 \tabularnewline
57 & 0.232654042035619 & 0.465308084071238 & 0.767345957964381 \tabularnewline
58 & 0.18947842650787 & 0.378956853015741 & 0.81052157349213 \tabularnewline
59 & 0.169172826830327 & 0.338345653660653 & 0.830827173169673 \tabularnewline
60 & 0.164534389964771 & 0.329068779929543 & 0.835465610035229 \tabularnewline
61 & 0.230755873857442 & 0.461511747714885 & 0.769244126142558 \tabularnewline
62 & 0.223344652933362 & 0.446689305866723 & 0.776655347066638 \tabularnewline
63 & 0.211322510248585 & 0.422645020497169 & 0.788677489751415 \tabularnewline
64 & 0.193684356021953 & 0.387368712043906 & 0.806315643978047 \tabularnewline
65 & 0.162635457371259 & 0.325270914742518 & 0.837364542628741 \tabularnewline
66 & 0.158808095270116 & 0.317616190540232 & 0.841191904729884 \tabularnewline
67 & 0.130774659183078 & 0.261549318366156 & 0.869225340816922 \tabularnewline
68 & 0.100578794166731 & 0.201157588333462 & 0.899421205833269 \tabularnewline
69 & 0.0755135718215402 & 0.15102714364308 & 0.92448642817846 \tabularnewline
70 & 0.060307834758814 & 0.120615669517628 & 0.939692165241186 \tabularnewline
71 & 0.0435676775731899 & 0.0871353551463798 & 0.95643232242681 \tabularnewline
72 & 0.0417045683497369 & 0.0834091366994737 & 0.958295431650263 \tabularnewline
73 & 0.0318403205189363 & 0.0636806410378725 & 0.968159679481064 \tabularnewline
74 & 0.0741523286245456 & 0.148304657249091 & 0.925847671375454 \tabularnewline
75 & 0.0968950938483093 & 0.193790187696619 & 0.90310490615169 \tabularnewline
76 & 0.076815511781309 & 0.153631023562618 & 0.92318448821869 \tabularnewline
77 & 0.185825271467603 & 0.371650542935206 & 0.814174728532397 \tabularnewline
78 & 0.152615108547283 & 0.305230217094566 & 0.847384891452717 \tabularnewline
79 & 0.117651077105772 & 0.235302154211544 & 0.882348922894228 \tabularnewline
80 & 0.093880773964123 & 0.187761547928246 & 0.906119226035877 \tabularnewline
81 & 0.0725724078822413 & 0.145144815764483 & 0.927427592117759 \tabularnewline
82 & 0.0521056478366521 & 0.104211295673304 & 0.947894352163348 \tabularnewline
83 & 0.037640494197202 & 0.075280988394404 & 0.962359505802798 \tabularnewline
84 & 0.0285376831966281 & 0.0570753663932561 & 0.971462316803372 \tabularnewline
85 & 0.0490613213125147 & 0.0981226426250295 & 0.950938678687485 \tabularnewline
86 & 0.247377146783711 & 0.494754293567422 & 0.752622853216289 \tabularnewline
87 & 0.490904291087423 & 0.981808582174846 & 0.509095708912577 \tabularnewline
88 & 0.692394469489413 & 0.615211061021175 & 0.307605530510587 \tabularnewline
89 & 0.952160233091696 & 0.0956795338166077 & 0.0478397669083038 \tabularnewline
90 & 0.972931755617546 & 0.054136488764909 & 0.0270682443824545 \tabularnewline
91 & 0.986925010288077 & 0.0261499794238451 & 0.0130749897119226 \tabularnewline
92 & 0.9762356822122 & 0.0475286355755975 & 0.0237643177877988 \tabularnewline
93 & 0.952630988715474 & 0.0947380225690513 & 0.0473690112845257 \tabularnewline
94 & 0.90025286798438 & 0.19949426403124 & 0.09974713201562 \tabularnewline
95 & 0.976855812304509 & 0.046288375390983 & 0.0231441876954915 \tabularnewline
96 & 0.957585232908644 & 0.0848295341827115 & 0.0424147670913558 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]20[/C][C]0.987985023966643[/C][C]0.0240299520667149[/C][C]0.0120149760333574[/C][/ROW]
[ROW][C]21[/C][C]0.972295001770015[/C][C]0.0554099964599699[/C][C]0.027704998229985[/C][/ROW]
[ROW][C]22[/C][C]0.956027057389628[/C][C]0.0879458852207434[/C][C]0.0439729426103717[/C][/ROW]
[ROW][C]23[/C][C]0.929822211666415[/C][C]0.14035557666717[/C][C]0.0701777883335852[/C][/ROW]
[ROW][C]24[/C][C]0.896304814721268[/C][C]0.207390370557463[/C][C]0.103695185278732[/C][/ROW]
[ROW][C]25[/C][C]0.869024307147714[/C][C]0.261951385704572[/C][C]0.130975692852286[/C][/ROW]
[ROW][C]26[/C][C]0.821527543984295[/C][C]0.35694491203141[/C][C]0.178472456015705[/C][/ROW]
[ROW][C]27[/C][C]0.842762776983308[/C][C]0.314474446033384[/C][C]0.157237223016692[/C][/ROW]
[ROW][C]28[/C][C]0.860552024595202[/C][C]0.278895950809597[/C][C]0.139447975404798[/C][/ROW]
[ROW][C]29[/C][C]0.902515517219313[/C][C]0.194968965561374[/C][C]0.097484482780687[/C][/ROW]
[ROW][C]30[/C][C]0.868199709298383[/C][C]0.263600581403235[/C][C]0.131800290701617[/C][/ROW]
[ROW][C]31[/C][C]0.85421693575372[/C][C]0.29156612849256[/C][C]0.14578306424628[/C][/ROW]
[ROW][C]32[/C][C]0.829257708942057[/C][C]0.341484582115886[/C][C]0.170742291057943[/C][/ROW]
[ROW][C]33[/C][C]0.776583092006754[/C][C]0.446833815986491[/C][C]0.223416907993246[/C][/ROW]
[ROW][C]34[/C][C]0.718640652016718[/C][C]0.562718695966565[/C][C]0.281359347983282[/C][/ROW]
[ROW][C]35[/C][C]0.689345211592509[/C][C]0.621309576814982[/C][C]0.310654788407491[/C][/ROW]
[ROW][C]36[/C][C]0.642426469060872[/C][C]0.715147061878256[/C][C]0.357573530939128[/C][/ROW]
[ROW][C]37[/C][C]0.581826360802714[/C][C]0.836347278394572[/C][C]0.418173639197286[/C][/ROW]
[ROW][C]38[/C][C]0.549658315236131[/C][C]0.900683369527739[/C][C]0.450341684763869[/C][/ROW]
[ROW][C]39[/C][C]0.70194363263884[/C][C]0.596112734722321[/C][C]0.298056367361161[/C][/ROW]
[ROW][C]40[/C][C]0.64157120237687[/C][C]0.716857595246261[/C][C]0.358428797623131[/C][/ROW]
[ROW][C]41[/C][C]0.619296509772204[/C][C]0.761406980455591[/C][C]0.380703490227796[/C][/ROW]
[ROW][C]42[/C][C]0.56122885289851[/C][C]0.87754229420298[/C][C]0.43877114710149[/C][/ROW]
[ROW][C]43[/C][C]0.523222750966583[/C][C]0.953554498066834[/C][C]0.476777249033417[/C][/ROW]
[ROW][C]44[/C][C]0.472896530337585[/C][C]0.94579306067517[/C][C]0.527103469662415[/C][/ROW]
[ROW][C]45[/C][C]0.414798097245385[/C][C]0.82959619449077[/C][C]0.585201902754615[/C][/ROW]
[ROW][C]46[/C][C]0.409587517994187[/C][C]0.819175035988374[/C][C]0.590412482005813[/C][/ROW]
[ROW][C]47[/C][C]0.353263750268682[/C][C]0.706527500537365[/C][C]0.646736249731318[/C][/ROW]
[ROW][C]48[/C][C]0.355294566868076[/C][C]0.710589133736152[/C][C]0.644705433131924[/C][/ROW]
[ROW][C]49[/C][C]0.304405116932971[/C][C]0.608810233865943[/C][C]0.695594883067029[/C][/ROW]
[ROW][C]50[/C][C]0.289803475557418[/C][C]0.579606951114837[/C][C]0.710196524442582[/C][/ROW]
[ROW][C]51[/C][C]0.271939810672559[/C][C]0.543879621345119[/C][C]0.72806018932744[/C][/ROW]
[ROW][C]52[/C][C]0.259704452128625[/C][C]0.51940890425725[/C][C]0.740295547871375[/C][/ROW]
[ROW][C]53[/C][C]0.337815002621244[/C][C]0.675630005242488[/C][C]0.662184997378756[/C][/ROW]
[ROW][C]54[/C][C]0.30444478066265[/C][C]0.6088895613253[/C][C]0.69555521933735[/C][/ROW]
[ROW][C]55[/C][C]0.320728413404149[/C][C]0.641456826808298[/C][C]0.679271586595851[/C][/ROW]
[ROW][C]56[/C][C]0.281142457183776[/C][C]0.562284914367552[/C][C]0.718857542816224[/C][/ROW]
[ROW][C]57[/C][C]0.232654042035619[/C][C]0.465308084071238[/C][C]0.767345957964381[/C][/ROW]
[ROW][C]58[/C][C]0.18947842650787[/C][C]0.378956853015741[/C][C]0.81052157349213[/C][/ROW]
[ROW][C]59[/C][C]0.169172826830327[/C][C]0.338345653660653[/C][C]0.830827173169673[/C][/ROW]
[ROW][C]60[/C][C]0.164534389964771[/C][C]0.329068779929543[/C][C]0.835465610035229[/C][/ROW]
[ROW][C]61[/C][C]0.230755873857442[/C][C]0.461511747714885[/C][C]0.769244126142558[/C][/ROW]
[ROW][C]62[/C][C]0.223344652933362[/C][C]0.446689305866723[/C][C]0.776655347066638[/C][/ROW]
[ROW][C]63[/C][C]0.211322510248585[/C][C]0.422645020497169[/C][C]0.788677489751415[/C][/ROW]
[ROW][C]64[/C][C]0.193684356021953[/C][C]0.387368712043906[/C][C]0.806315643978047[/C][/ROW]
[ROW][C]65[/C][C]0.162635457371259[/C][C]0.325270914742518[/C][C]0.837364542628741[/C][/ROW]
[ROW][C]66[/C][C]0.158808095270116[/C][C]0.317616190540232[/C][C]0.841191904729884[/C][/ROW]
[ROW][C]67[/C][C]0.130774659183078[/C][C]0.261549318366156[/C][C]0.869225340816922[/C][/ROW]
[ROW][C]68[/C][C]0.100578794166731[/C][C]0.201157588333462[/C][C]0.899421205833269[/C][/ROW]
[ROW][C]69[/C][C]0.0755135718215402[/C][C]0.15102714364308[/C][C]0.92448642817846[/C][/ROW]
[ROW][C]70[/C][C]0.060307834758814[/C][C]0.120615669517628[/C][C]0.939692165241186[/C][/ROW]
[ROW][C]71[/C][C]0.0435676775731899[/C][C]0.0871353551463798[/C][C]0.95643232242681[/C][/ROW]
[ROW][C]72[/C][C]0.0417045683497369[/C][C]0.0834091366994737[/C][C]0.958295431650263[/C][/ROW]
[ROW][C]73[/C][C]0.0318403205189363[/C][C]0.0636806410378725[/C][C]0.968159679481064[/C][/ROW]
[ROW][C]74[/C][C]0.0741523286245456[/C][C]0.148304657249091[/C][C]0.925847671375454[/C][/ROW]
[ROW][C]75[/C][C]0.0968950938483093[/C][C]0.193790187696619[/C][C]0.90310490615169[/C][/ROW]
[ROW][C]76[/C][C]0.076815511781309[/C][C]0.153631023562618[/C][C]0.92318448821869[/C][/ROW]
[ROW][C]77[/C][C]0.185825271467603[/C][C]0.371650542935206[/C][C]0.814174728532397[/C][/ROW]
[ROW][C]78[/C][C]0.152615108547283[/C][C]0.305230217094566[/C][C]0.847384891452717[/C][/ROW]
[ROW][C]79[/C][C]0.117651077105772[/C][C]0.235302154211544[/C][C]0.882348922894228[/C][/ROW]
[ROW][C]80[/C][C]0.093880773964123[/C][C]0.187761547928246[/C][C]0.906119226035877[/C][/ROW]
[ROW][C]81[/C][C]0.0725724078822413[/C][C]0.145144815764483[/C][C]0.927427592117759[/C][/ROW]
[ROW][C]82[/C][C]0.0521056478366521[/C][C]0.104211295673304[/C][C]0.947894352163348[/C][/ROW]
[ROW][C]83[/C][C]0.037640494197202[/C][C]0.075280988394404[/C][C]0.962359505802798[/C][/ROW]
[ROW][C]84[/C][C]0.0285376831966281[/C][C]0.0570753663932561[/C][C]0.971462316803372[/C][/ROW]
[ROW][C]85[/C][C]0.0490613213125147[/C][C]0.0981226426250295[/C][C]0.950938678687485[/C][/ROW]
[ROW][C]86[/C][C]0.247377146783711[/C][C]0.494754293567422[/C][C]0.752622853216289[/C][/ROW]
[ROW][C]87[/C][C]0.490904291087423[/C][C]0.981808582174846[/C][C]0.509095708912577[/C][/ROW]
[ROW][C]88[/C][C]0.692394469489413[/C][C]0.615211061021175[/C][C]0.307605530510587[/C][/ROW]
[ROW][C]89[/C][C]0.952160233091696[/C][C]0.0956795338166077[/C][C]0.0478397669083038[/C][/ROW]
[ROW][C]90[/C][C]0.972931755617546[/C][C]0.054136488764909[/C][C]0.0270682443824545[/C][/ROW]
[ROW][C]91[/C][C]0.986925010288077[/C][C]0.0261499794238451[/C][C]0.0130749897119226[/C][/ROW]
[ROW][C]92[/C][C]0.9762356822122[/C][C]0.0475286355755975[/C][C]0.0237643177877988[/C][/ROW]
[ROW][C]93[/C][C]0.952630988715474[/C][C]0.0947380225690513[/C][C]0.0473690112845257[/C][/ROW]
[ROW][C]94[/C][C]0.90025286798438[/C][C]0.19949426403124[/C][C]0.09974713201562[/C][/ROW]
[ROW][C]95[/C][C]0.976855812304509[/C][C]0.046288375390983[/C][C]0.0231441876954915[/C][/ROW]
[ROW][C]96[/C][C]0.957585232908644[/C][C]0.0848295341827115[/C][C]0.0424147670913558[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
200.9879850239666430.02402995206671490.0120149760333574
210.9722950017700150.05540999645996990.027704998229985
220.9560270573896280.08794588522074340.0439729426103717
230.9298222116664150.140355576667170.0701777883335852
240.8963048147212680.2073903705574630.103695185278732
250.8690243071477140.2619513857045720.130975692852286
260.8215275439842950.356944912031410.178472456015705
270.8427627769833080.3144744460333840.157237223016692
280.8605520245952020.2788959508095970.139447975404798
290.9025155172193130.1949689655613740.097484482780687
300.8681997092983830.2636005814032350.131800290701617
310.854216935753720.291566128492560.14578306424628
320.8292577089420570.3414845821158860.170742291057943
330.7765830920067540.4468338159864910.223416907993246
340.7186406520167180.5627186959665650.281359347983282
350.6893452115925090.6213095768149820.310654788407491
360.6424264690608720.7151470618782560.357573530939128
370.5818263608027140.8363472783945720.418173639197286
380.5496583152361310.9006833695277390.450341684763869
390.701943632638840.5961127347223210.298056367361161
400.641571202376870.7168575952462610.358428797623131
410.6192965097722040.7614069804555910.380703490227796
420.561228852898510.877542294202980.43877114710149
430.5232227509665830.9535544980668340.476777249033417
440.4728965303375850.945793060675170.527103469662415
450.4147980972453850.829596194490770.585201902754615
460.4095875179941870.8191750359883740.590412482005813
470.3532637502686820.7065275005373650.646736249731318
480.3552945668680760.7105891337361520.644705433131924
490.3044051169329710.6088102338659430.695594883067029
500.2898034755574180.5796069511148370.710196524442582
510.2719398106725590.5438796213451190.72806018932744
520.2597044521286250.519408904257250.740295547871375
530.3378150026212440.6756300052424880.662184997378756
540.304444780662650.60888956132530.69555521933735
550.3207284134041490.6414568268082980.679271586595851
560.2811424571837760.5622849143675520.718857542816224
570.2326540420356190.4653080840712380.767345957964381
580.189478426507870.3789568530157410.81052157349213
590.1691728268303270.3383456536606530.830827173169673
600.1645343899647710.3290687799295430.835465610035229
610.2307558738574420.4615117477148850.769244126142558
620.2233446529333620.4466893058667230.776655347066638
630.2113225102485850.4226450204971690.788677489751415
640.1936843560219530.3873687120439060.806315643978047
650.1626354573712590.3252709147425180.837364542628741
660.1588080952701160.3176161905402320.841191904729884
670.1307746591830780.2615493183661560.869225340816922
680.1005787941667310.2011575883334620.899421205833269
690.07551357182154020.151027143643080.92448642817846
700.0603078347588140.1206156695176280.939692165241186
710.04356767757318990.08713535514637980.95643232242681
720.04170456834973690.08340913669947370.958295431650263
730.03184032051893630.06368064103787250.968159679481064
740.07415232862454560.1483046572490910.925847671375454
750.09689509384830930.1937901876966190.90310490615169
760.0768155117813090.1536310235626180.92318448821869
770.1858252714676030.3716505429352060.814174728532397
780.1526151085472830.3052302170945660.847384891452717
790.1176510771057720.2353021542115440.882348922894228
800.0938807739641230.1877615479282460.906119226035877
810.07257240788224130.1451448157644830.927427592117759
820.05210564783665210.1042112956733040.947894352163348
830.0376404941972020.0752809883944040.962359505802798
840.02853768319662810.05707536639325610.971462316803372
850.04906132131251470.09812264262502950.950938678687485
860.2473771467837110.4947542935674220.752622853216289
870.4909042910874230.9818085821748460.509095708912577
880.6923944694894130.6152110610211750.307605530510587
890.9521602330916960.09567953381660770.0478397669083038
900.9729317556175460.0541364887649090.0270682443824545
910.9869250102880770.02614997942384510.0130749897119226
920.97623568221220.04752863557559750.0237643177877988
930.9526309887154740.09473802256905130.0473690112845257
940.900252867984380.199494264031240.09974713201562
950.9768558123045090.0462883753909830.0231441876954915
960.9575852329086440.08482953418271150.0424147670913558







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.051948051948052NOK
10% type I error level160.207792207792208NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 4 & 0.051948051948052 & NOK \tabularnewline
10% type I error level & 16 & 0.207792207792208 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=117222&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]4[/C][C]0.051948051948052[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]16[/C][C]0.207792207792208[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=117222&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=117222&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.051948051948052NOK
10% type I error level160.207792207792208NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}