Free Statistics

of Irreproducible Research!

Author's title

Are children bullied more by those in the same year or by those in a differ...

Author*The author of this computation has been verified*
R Software Module--
Title produced by softwareChi-Square Test
Date of computationThu, 17 Nov 2011 07:34:44 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/17/t1321533387bfnrcf4caxalyfp.htm/, Retrieved Thu, 31 Oct 2024 22:56:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=144413, Retrieved Thu, 31 Oct 2024 22:56:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact177
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [Bullying by Gender] [2009-11-23 19:30:44] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R P   [Chi Square Measure of Association- Free Statistics Software (Calculator)] [Bullying by Gende...] [2009-11-24 18:28:32] [b98453cac15ba1066b407e146608df68]
- R       [Chi Square Measure of Association- Free Statistics Software (Calculator)] [STARS Bullying Study] [2009-11-25 00:02:16] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD      [Chi-Square Test] [STARS Bullying Study] [2010-11-15 17:05:23] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R           [Chi-Square Test] [STARS Bullying Data] [2010-11-16 14:40:36] [98fd0e87c3eb04e0cc2efde01dbafab6]
-  MP           [Chi-Square Test] [chi2 Example - Ty...] [2011-11-14 11:58:51] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R               [Chi-Square Test] [reproduced chi2- ...] [2011-11-17 12:05:11] [8c81da13f08bc9bfea791eeaf1eaf0a1]
-   P               [Chi-Square Test] [Are children bull...] [2011-11-17 12:28:36] [8c81da13f08bc9bfea791eeaf1eaf0a1]
-   P                 [Chi-Square Test] [Are boys bullied ...] [2011-11-17 12:32:28] [8c81da13f08bc9bfea791eeaf1eaf0a1]
-   P                   [Chi-Square Test] [Are boys and girl...] [2011-11-17 12:34:00] [8c81da13f08bc9bfea791eeaf1eaf0a1]
-  M                        [Chi-Square Test] [Are children bull...] [2011-11-17 12:34:44] [d153db4507507765df2e779682beea65] [Current]
Feedback Forum

Post a new message
Dataseries X:
'g'	'Often'	'Both'	'Same'	'Boys'
'g'	'Not_bul'	'Physical'	'Same'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Rarely'	'Mental'	'Differnt'	'Boys'
'b'	'Not_bul'	'Physical'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Physical'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Same'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Both'	'Boys'
'g'	'Often'	'Mental'	'Same'	'Both'
'b'	'Often'	'Both'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Both'	'Both'	'Boys'
'b'	'Not_bul'	'Mental'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Not_bul'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Same'	'Boys'
'g'	'Often'	'Mental'	'Differnt'	'Girls'
'b'	'Often'	'Both'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Mental'	'Not_bul'	'Boys'
'b'	'Rarely'	'Both'	'Differnt'	'Boys'
'b'	'Often'	'Both'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Both'	'Same'	'Both'
'g'	'Often'	'Mental'	'Differnt'	'Both'
'b'	'Often'	'Both'	'Differnt'	'Both'
'g'	'Rarely'	'Physical'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Differnt'	'Boys'
'g'	'Often'	'Mental'	'Differnt'	'Both'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Both'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Differnt'	'Girls'
'g'	'Often'	'Both'	'Differnt'	'Both'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Both'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Not_bul'	'Same'	'Boys'
'g'	'Often'	'Mental'	'Both'	'Girls'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Often'	'Both'	'Differnt'	'Boys'
'b'	'Rarely'	'Both'	'Differnt'	'Boys'
'g'	'Rarely'	'Not_bul'	'Not_bul'	'Girls'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Often'	'Mental'	'Same'	'Boys'
'b'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Often'	'Physical'	'Same'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Both'	'Both'	'Both'
'g'	'Rarely'	'Mental'	'Both'	'Both'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'b'	'Rarely'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Both'
'g'	'Not_bul'	'Mental'	'Same'	'Both'
'g'	'Often'	'Physical'	'Differnt'	'Both'
'b'	'Often'	'Not_bul'	'Same'	'Boys'
'b'	'Often'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Mental'	'Same'	'Not_bul'
'b'	'Often'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'g'	'Often'	'Mental'	'Same'	'Girls'
'g'	'Often'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Not_bul'	'Both'
'g'	'Often'	'Both'	'Both'	'Girls'
'g'	'Often'	'Mental'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Often'	'Mental'	'Both'	'Boys'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Physical'	'Differnt'	'Boys'
'g'	'Often'	'Both'	'Same'	'Girls'
'g'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Often'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Both'	'Both'	'Boys'
'b'	'Often'	'Not_bul'	'Both'	'Boys'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Not_bul'	'Both'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Both'	'Both'	'Boys'
'b'	'Rarely'	'Both'	'Both'	'Boys'
'b'	'Often'	'Physical'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Often'	'Mental'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'g'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Rarely'	'Both'	'Both'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Same'	'Girls'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'g'	'Often'	'Mental'	'Both'	'Both'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Both'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Often'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Both'	'Same'	'Boys'
'g'	'Often'	'Both'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Both'	'Same'	'Boys'
'b'	'Often'	'Mental'	'Both'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Same'	'Boys'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Differnt'	'Boys'
'g'	'Often'	'Both'	'Both'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Not_bul'	'Both'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Often'	'Mental'	'Not_bul'	'Both'
'g'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Often'	'Not_bul'	'Same'	'Both'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Rarely'	'Both'	'Both'	'Both'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'g'	'Often'	'Both'	'Same'	'Both'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=144413&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=144413&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=144413&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net







Tabulation of Results
gender x type_of_bullying
BothMentalNot_bulPhysical
b15253414
g1240485

\begin{tabular}{lllllllll}
\hline
Tabulation of Results \tabularnewline
gender  x  type_of_bullying \tabularnewline
  & Both & Mental & Not_bul & Physical \tabularnewline
b & 15 & 25 & 34 & 14 \tabularnewline
g & 12 & 40 & 48 & 5 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=144413&T=1

[TABLE]
[ROW][C]Tabulation of Results[/C][/ROW]
[ROW][C]gender  x  type_of_bullying[/C][/ROW]
[ROW][C] [/C][C]Both[/C][C]Mental[/C][C]Not_bul[/C][C]Physical[/C][/ROW]
[C]b[/C][C]15[/C][C]25[/C][C]34[/C][C]14[/C][/ROW]
[C]g[/C][C]12[/C][C]40[/C][C]48[/C][C]5[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=144413&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=144413&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tabulation of Results
gender x type_of_bullying
BothMentalNot_bulPhysical
b15253414
g1240485







Tabulation of Expected Results
gender x type_of_bullying
BothMentalNot_bulPhysical
b12.3129.6437.398.66
g14.6935.3644.6110.34

\begin{tabular}{lllllllll}
\hline
Tabulation of Expected Results \tabularnewline
gender  x  type_of_bullying \tabularnewline
  & Both & Mental & Not_bul & Physical \tabularnewline
b & 12.31 & 29.64 & 37.39 & 8.66 \tabularnewline
g & 14.69 & 35.36 & 44.61 & 10.34 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=144413&T=2

[TABLE]
[ROW][C]Tabulation of Expected Results[/C][/ROW]
[ROW][C]gender  x  type_of_bullying[/C][/ROW]
[ROW][C] [/C][C]Both[/C][C]Mental[/C][C]Not_bul[/C][C]Physical[/C][/ROW]
[C]b[/C][C]12.31[/C][C]29.64[/C][C]37.39[/C][C]8.66[/C][/ROW]
[C]g[/C][C]14.69[/C][C]35.36[/C][C]44.61[/C][C]10.34[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=144413&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=144413&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tabulation of Expected Results
gender x type_of_bullying
BothMentalNot_bulPhysical
b12.3129.6437.398.66
g14.6935.3644.6110.34







Statistical Results
Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
Chi Square Statistic9.02
P value0.03

\begin{tabular}{lllllllll}
\hline
Statistical Results \tabularnewline
Pearson's Chi-squared test with simulated p-value
	 (based on 2000 replicates) \tabularnewline
Chi Square Statistic & 9.02 \tabularnewline
P value & 0.03 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=144413&T=3

[TABLE]
[ROW][C]Statistical Results[/C][/ROW]
[ROW][C]Pearson's Chi-squared test with simulated p-value
	 (based on 2000 replicates)[/C][/ROW]
[ROW][C]Chi Square Statistic[/C][C]9.02[/C][/ROW]
[ROW][C]P value[/C][C]0.03[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=144413&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=144413&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Statistical Results
Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
Chi Square Statistic9.02
P value0.03



Parameters (Session):
par1 = 1 ; par2 = 3 ; par3 = Exact Pearson Chi Square by simulation ;
Parameters (R input):
par1 = 1 ; par2 = 3 ; par3 = Exact Pearson Chi Square by simulation ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
simulate.p.value=FALSE
if (par3 == 'Exact Pearson Chi Square by simulation') simulate.p.value=TRUE
x <- t(x)
(z <- array(unlist(x),dim=c(length(x[,1]),length(x[1,]))))
(table1 <- table(z[,cat1],z[,cat2]))
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tabulation of Results',ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste(V1,' x ', V2),ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1,TRUE)
for(nc in 1:ncol(table1)){
a<-table.element(a, colnames(table1)[nc], 1, TRUE)
}
a<-table.row.end(a)
for(nr in 1:nrow(table1) ){
a<-table.element(a, rownames(table1)[nr], 1, TRUE)
for(nc in 1:ncol(table1) ){
a<-table.element(a, table1[nr, nc], 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
(cst<-chisq.test(table1, simulate.p.value=simulate.p.value) )
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tabulation of Expected Results',ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste(V1,' x ', V2),ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1,TRUE)
for(nc in 1:ncol(table1)){
a<-table.element(a, colnames(table1)[nc], 1, TRUE)
}
a<-table.row.end(a)
for(nr in 1:nrow(table1) ){
a<-table.element(a, rownames(table1)[nr], 1, TRUE)
for(nc in 1:ncol(table1) ){
a<-table.element(a, round(cst$expected[nr, nc], digits=2), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Statistical Results',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, cst$method, 2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Chi Square Statistic', 1, TRUE)
a<-table.element(a, round(cst$statistic, digits=2), 1,FALSE)
a<-table.row.end(a)
if(!simulate.p.value){
a<-table.row.start(a)
a<-table.element(a, 'Degrees of Freedom', 1, TRUE)
a<-table.element(a, cst$parameter, 1,FALSE)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, 'P value', 1, TRUE)
a<-table.element(a, round(cst$p.value, digits=2), 1,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')