Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 23 Dec 2011 08:35:26 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/23/t1324647404r7ue5hoep7a0r91.htm/, Retrieved Thu, 31 Oct 2024 23:08:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=160396, Retrieved Thu, 31 Oct 2024 23:08:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [Standard Deviation-Mean Plot] [Unemployment] [2010-11-29 10:34:47] [b98453cac15ba1066b407e146608df68]
- RMP     [ARIMA Backward Selection] [Unemployment] [2010-11-29 17:10:28] [b98453cac15ba1066b407e146608df68]
- R P         [ARIMA Backward Selection] [ARIMA Backward Se...] [2011-12-23 13:35:26] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
235.1
280.7
264.6
240.7
201.4
240.8
241.1
223.8
206.1
174.7
203.3
220.5
299.5
347.4
338.3
327.7
351.6
396.6
438.8
395.6
363.5
378.8
357
369
464.8
479.1
431.3
366.5
326.3
355.1
331.6
261.3
249
205.5
235.6
240.9
264.9
253.8
232.3
193.8
177
213.2
207.2
180.6
188.6
175.4
199
179.6
225.8
234
200.2
183.6
178.2
203.2
208.5
191.8
172.8
148
159.4
154.5
213.2
196.4
182.8
176.4
153.6
173.2
171
151.2
161.9
157.2
201.7
236.4
356.1
398.3
403.7
384.6
365.8
368.1
367.9
347
343.3
292.9
311.5
300.9
366.9
356.9
329.7
316.2
269
289.3
266.2
253.6
233.8
228.4
253.6
260.1
306.6
309.2
309.5
271
279.9
317.9
298.4
246.7
227.3
209.1
259.9
266
320.6
308.5
282.2
262.7
263.5
313.1
284.3
252.6
250.3
246.5
312.7
333.2
446.4
511.6
515.5
506.4
483.2
522.3
509.8
460.7
405.8
375
378.5
406.8
467.8
469.8
429.8
355.8
332.7
378
360.5
334.7
319.5
323.1
363.6
352.1
411.9
388.6
416.4
360.7
338
417.2
388.4
371.1
331.5
353.7
396.7
447
533.5
565.4
542.3
488.7
467.1
531.3
496.1
444
403.4
386.3
394.1
404.1
462.1
448.1
432.3
386.3
395.2
421.9
382.9
384.2
345.5
323.4
372.6
376
462.7
487
444.2
399.3
394.9
455.4
414
375.5
347
339.4
385.8
378.8
451.8
446.1
422.5
383.1
352.8
445.3
367.5
355.1
326.2
319.8
331.8
340.9
394.1
417.2
369.9
349.2
321.4
405.7
342.9
316.5
284.2
270.9
288.8
278.8
324.4
310.9
299
273
279.3
359.2
305
282.1
250.3
246.5
257.9
266.5
315.9
318.4
295.4
266.4
245.8
362.8
324.9
294.2
289.5
295.2
290.3
272
307.4
328.7
292.9
249.1
230.4
361.5
321.7
277.2
260.7
251
257.6
241.8
287.5
292.3
274.7
254.2
230
339
318.2
287
295.8
284
271
262.7
340.6
379.4
373.3
355.2
338.4
466.9
451
422
429.2
425.9
460.7
463.6
541.4
544.2
517.5
469.4
439.4
549
533
506.1
484
457
481.5
469.5
544.7
541.2
521.5
469.7
434.4
542.6
517.3
485.7
465.8
447
426.6
411.6
467.5
484.5
451.2
417.4
379.9
484.7
455
420.8
416.5
376.3
405.6
405.8
500.8
514
475.5
430.1
414.4
538
526
488.5
520.2
504.4
568.5
610.6
818
830.9
835.9
782
762.3
856.9
820.9
769.6
752.2
724.4
723.1
719.5
817.4
803.3
752.5
689
630.4
765.5
757.7
732.2
702.6
683.3
709.5
702.2
784.8
810.9
755.6
656.8
615.1
745.3
694.1
675.7
643.7
622.1
634.6
588
689.7
673.9
647.9
568.8
545.7
632.6
643.8
593.1
579.7
546
562.9
572.5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time16 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 16 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160396&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]16 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160396&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160396&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time16 seconds
R Server'AstonUniversity' @ aston.wessa.net







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sma1
Estimates ( 1 )0.53370.1848-0.0277-0.4471-0.7213
(p-val)(0.058 )(0.0052 )(0.7696 )(0.1048 )(0 )
Estimates ( 2 )0.46170.18820-0.3767-0.7209
(p-val)(0.0078 )(0.0044 )(NA )(0.0307 )(0 )
Estimates ( 3 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 4 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sma1 \tabularnewline
Estimates ( 1 ) & 0.5337 & 0.1848 & -0.0277 & -0.4471 & -0.7213 \tabularnewline
(p-val) & (0.058 ) & (0.0052 ) & (0.7696 ) & (0.1048 ) & (0 ) \tabularnewline
Estimates ( 2 ) & 0.4617 & 0.1882 & 0 & -0.3767 & -0.7209 \tabularnewline
(p-val) & (0.0078 ) & (0.0044 ) & (NA ) & (0.0307 ) & (0 ) \tabularnewline
Estimates ( 3 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160396&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.5337[/C][C]0.1848[/C][C]-0.0277[/C][C]-0.4471[/C][C]-0.7213[/C][/ROW]
[ROW][C](p-val)[/C][C](0.058 )[/C][C](0.0052 )[/C][C](0.7696 )[/C][C](0.1048 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.4617[/C][C]0.1882[/C][C]0[/C][C]-0.3767[/C][C]-0.7209[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0078 )[/C][C](0.0044 )[/C][C](NA )[/C][C](0.0307 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160396&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160396&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sma1
Estimates ( 1 )0.53370.1848-0.0277-0.4471-0.7213
(p-val)(0.058 )(0.0052 )(0.7696 )(0.1048 )(0 )
Estimates ( 2 )0.46170.18820-0.3767-0.7209
(p-val)(0.0078 )(0.0044 )(NA )(0.0307 )(0 )
Estimates ( 3 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 4 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0447136184731888
-0.0688691361564592
0.199720049237803
0.369884625273303
1.52700334031997
-0.36352513234531
0.455818469918245
-0.5637400770144
-0.369588354080514
1.2808662378678
-1.36163615781075
-0.369943100003946
0.181198664827045
-0.864076212057988
-0.562057401950143
-0.727479940935351
-0.40737958612277
-0.0483915625403397
-0.780468994636472
-0.838734248979087
0.71626052431674
-0.701746708745324
0.890863862669053
-0.0832797592733262
-1.58685553577673
-1.08248447240573
0.423977519191422
0.0334778538136879
0.157084940458252
0.371834374355486
-0.249301411718668
0.323052432316567
0.872588338798482
0.12073692516261
0.0933609092695955
-1.1969579406562
-0.181614290284593
-0.0597053320551366
-0.361861546128006
0.591834105671231
0.492182837246146
-0.320119536084172
0.106969439063089
0.579563558829838
-0.49785827677913
-0.421237034822167
-0.110180370862872
-0.121502950664406
0.515727390673425
-0.995384116325225
0.336662573298493
0.86198492182072
-0.469704043680899
-0.411104599067494
-0.0656253240673568
0.30362512477139
0.871245792056299
0.465329953108138
0.823865292319332
0.921593569172809
1.20314402861716
0.417773176976382
0.275249655457015
-0.217629109044653
-0.24536821260355
-1.10814129358522
-0.0382001113257676
0.545767328244698
0.087890657846837
-0.8881021380452
-0.327023405077393
-0.410226158567968
-0.342132252288231
-0.446058214082303
-0.0143550948882287
0.519683079860843
-0.700138656069014
-0.0484940058232523
-0.504120159199541
0.579726668983658
-0.330408887255077
0.657244314281641
0.064898474652166
-0.0459150581992619
-0.845022884351417
-0.111305561054054
0.737502405778816
-0.515884533049813
1.02068929592885
0.418704046323062
-0.609300728915372
-0.987734482097807
-0.245815374613049
0.249326437970084
0.995594151570643
0.00502916807311283
-0.537877273174329
-0.551770970421952
-0.27174774254129
0.304460021822383
0.637207012274805
0.628745042294872
-0.703460035945848
-0.155535036843733
0.370184736492193
0.503518873510722
0.832495440232408
0.18962677404977
0.724068554558658
1.1866001732546
0.160913418289714
0.0110306700439101
-0.49441475160446
-0.319960082395007
0.131972397983834
-0.177377659310184
-1.04990867969744
-0.176759275538194
-0.95567365875155
0.682056905409583
-0.394199538774913
-0.322008774181261
-0.403559129158196
-1.11478345074653
0.0806109524596702
0.628329039478654
0.0954054133065545
0.327357352417814
0.162482381888351
0.600537616748603
0.0154771760588101
-0.884330358038313
-0.445586105346277
-0.755198123599552
1.40523011951137
-0.34537639046027
-0.284204581189466
1.09149652738041
-0.345682580410226
0.284260811953271
-0.55855848087137
0.916841271039006
0.102566968846081
0.813037238919333
-0.0537366793643418
0.329370791309689
-0.489524303885672
-0.277979185794977
0.0246805296623736
0.150418469819422
-0.28559725537209
-0.423157297952037
-0.214579405675702
-0.1837110719847
-0.700984796735585
-0.0553246862129025
-0.226207654049844
-0.400645172547096
0.090834076137266
0.151330836917193
0.82206369380053
-0.697470201422813
-0.479146503824475
1.07571755088357
-0.2087635072815
-0.549935763662079
0.561825488661085
-0.292498132927339
0.323890422318032
0.488396642732748
-0.813640599338993
-0.0553107122815419
0.29876792154787
0.326794647452868
-0.363014667733227
-0.381647413863305
0.156487399954246
0.183823316802429
0.27477825646875
-0.548989488956649
-0.0724036723789373
-0.255643806829908
-0.0105235116548243
0.221121985031404
-0.504786425044616
1.11862876554492
-1.13139667717053
0.303824228119016
0.19244425286755
0.0681824224795155
-0.707678498996967
0.0933231674386991
-0.301150797763588
0.524678109272938
-0.608317070795131
0.519176930358839
-0.269922114018435
0.629906754293615
-0.525481751802929
-0.195687501939265
-0.0415241281660368
-0.0904124946052268
-0.235725641021313
-0.426178720502384
-0.265285230399778
-0.449160590285465
0.5500827668549
0.312819400777474
0.66180739005486
0.4216341131039
-0.452887819701735
-0.166669010736859
-0.139866344372233
0.18001141592347
-0.37570259494587
0.20433924206211
-0.0874845417507762
-0.00941118980159067
-0.0273745084389758
0.0287897854627805
-0.321662437381796
1.52971202000861
0.236064696578788
-0.55329204130218
0.597037501349289
0.332855363361619
-0.99605547387895
-0.75004580302487
-0.338961306639215
0.75090684044246
-0.268454852130147
-0.473396999423603
-0.0835337937615711
1.6896421180525
0.109195620052607
-0.89590147695519
0.08687836983179
-0.113451998196991
-0.219509597856425
-0.382305187284288
0.089842855299747
0.0409808833294104
0.252823451717823
0.390429049718841
-0.384795298516376
0.462561215476148
0.609379767216593
-0.18419061791475
0.712926234709516
-0.298553956767952
-0.95910476366668
-0.0400912390800441
0.989485723325219
0.81384726413759
0.279175119469468
0.146362969610687
-0.137739114841749
0.169012427731683
0.53069440100064
0.01800513547112
0.351720473969818
-0.00873807204775537
0.496007261703869
0.122675832039694
-0.118246508009615
-0.50089263348314
-0.0902197263745315
-0.244433047299048
-0.132224193088114
-0.40046464122934
0.60295778991539
0.331296571381383
-0.356231806773947
-0.481917343653801
0.300600188336704
-0.0586663022067286
-0.000783243055225478
-0.367517952927265
0.159109708758428
-0.214935321556822
-0.227886783088746
-0.278803681844659
0.264239553422249
0.156586052882187
-0.154170959394508
-0.125179998008418
-0.84537669675417
-0.0787181956532863
-0.105461895486927
0.320310362995694
-0.154314917909772
0.164996680819778
-0.242423954550078
-0.179082766454653
0.0555650798412117
-0.00330761958024145
0.274640620096172
-0.658136967314377
0.60162749914626
0.31520945275704
0.549444667879584
-0.100977210820649
-0.459996800017905
-0.199064416952461
0.391879889976933
0.184576610722168
0.32821786325616
-0.158180121465448
0.877685013929322
0.0717592040332637
0.818664823573648
0.81846334798647
1.7561918338059
-0.558666389352778
0.157462781741194
-0.255138785743859
0.0187592888451426
-1.17023293884596
-0.0820927700788914
0.0770457185907574
-0.227323060091709
0.0538039200591301
-0.543793526839038
-0.0973708644856482
-0.410090800115218
-0.357959758800816
-0.24506180846509
-0.0187868370150921
-0.402350963742194
0.302450990924227
0.593801802667415
0.346325690682931
-0.571266887884467
0.0597896258443859
0.11642056147126
-0.224360676806376
-0.670834229761189
0.4454226171365
-0.273713725599355
-0.830875979540574
0.0537944146879465
0.266374913637773
-0.407473110355912
0.445617447907658
-0.308047438455055
0.0206344333145843
-0.123503055000252
-0.918254446753227
0.14976447190054
-0.283925077749898
0.308117693859332
-0.219971308703024
0.299239174365883
-0.613156202772519
0.844474325811503
-0.325178656797374
-0.0453713647379114
-0.215913616803606
-0.0152353801015679
0.517732810261644

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0447136184731888 \tabularnewline
-0.0688691361564592 \tabularnewline
0.199720049237803 \tabularnewline
0.369884625273303 \tabularnewline
1.52700334031997 \tabularnewline
-0.36352513234531 \tabularnewline
0.455818469918245 \tabularnewline
-0.5637400770144 \tabularnewline
-0.369588354080514 \tabularnewline
1.2808662378678 \tabularnewline
-1.36163615781075 \tabularnewline
-0.369943100003946 \tabularnewline
0.181198664827045 \tabularnewline
-0.864076212057988 \tabularnewline
-0.562057401950143 \tabularnewline
-0.727479940935351 \tabularnewline
-0.40737958612277 \tabularnewline
-0.0483915625403397 \tabularnewline
-0.780468994636472 \tabularnewline
-0.838734248979087 \tabularnewline
0.71626052431674 \tabularnewline
-0.701746708745324 \tabularnewline
0.890863862669053 \tabularnewline
-0.0832797592733262 \tabularnewline
-1.58685553577673 \tabularnewline
-1.08248447240573 \tabularnewline
0.423977519191422 \tabularnewline
0.0334778538136879 \tabularnewline
0.157084940458252 \tabularnewline
0.371834374355486 \tabularnewline
-0.249301411718668 \tabularnewline
0.323052432316567 \tabularnewline
0.872588338798482 \tabularnewline
0.12073692516261 \tabularnewline
0.0933609092695955 \tabularnewline
-1.1969579406562 \tabularnewline
-0.181614290284593 \tabularnewline
-0.0597053320551366 \tabularnewline
-0.361861546128006 \tabularnewline
0.591834105671231 \tabularnewline
0.492182837246146 \tabularnewline
-0.320119536084172 \tabularnewline
0.106969439063089 \tabularnewline
0.579563558829838 \tabularnewline
-0.49785827677913 \tabularnewline
-0.421237034822167 \tabularnewline
-0.110180370862872 \tabularnewline
-0.121502950664406 \tabularnewline
0.515727390673425 \tabularnewline
-0.995384116325225 \tabularnewline
0.336662573298493 \tabularnewline
0.86198492182072 \tabularnewline
-0.469704043680899 \tabularnewline
-0.411104599067494 \tabularnewline
-0.0656253240673568 \tabularnewline
0.30362512477139 \tabularnewline
0.871245792056299 \tabularnewline
0.465329953108138 \tabularnewline
0.823865292319332 \tabularnewline
0.921593569172809 \tabularnewline
1.20314402861716 \tabularnewline
0.417773176976382 \tabularnewline
0.275249655457015 \tabularnewline
-0.217629109044653 \tabularnewline
-0.24536821260355 \tabularnewline
-1.10814129358522 \tabularnewline
-0.0382001113257676 \tabularnewline
0.545767328244698 \tabularnewline
0.087890657846837 \tabularnewline
-0.8881021380452 \tabularnewline
-0.327023405077393 \tabularnewline
-0.410226158567968 \tabularnewline
-0.342132252288231 \tabularnewline
-0.446058214082303 \tabularnewline
-0.0143550948882287 \tabularnewline
0.519683079860843 \tabularnewline
-0.700138656069014 \tabularnewline
-0.0484940058232523 \tabularnewline
-0.504120159199541 \tabularnewline
0.579726668983658 \tabularnewline
-0.330408887255077 \tabularnewline
0.657244314281641 \tabularnewline
0.064898474652166 \tabularnewline
-0.0459150581992619 \tabularnewline
-0.845022884351417 \tabularnewline
-0.111305561054054 \tabularnewline
0.737502405778816 \tabularnewline
-0.515884533049813 \tabularnewline
1.02068929592885 \tabularnewline
0.418704046323062 \tabularnewline
-0.609300728915372 \tabularnewline
-0.987734482097807 \tabularnewline
-0.245815374613049 \tabularnewline
0.249326437970084 \tabularnewline
0.995594151570643 \tabularnewline
0.00502916807311283 \tabularnewline
-0.537877273174329 \tabularnewline
-0.551770970421952 \tabularnewline
-0.27174774254129 \tabularnewline
0.304460021822383 \tabularnewline
0.637207012274805 \tabularnewline
0.628745042294872 \tabularnewline
-0.703460035945848 \tabularnewline
-0.155535036843733 \tabularnewline
0.370184736492193 \tabularnewline
0.503518873510722 \tabularnewline
0.832495440232408 \tabularnewline
0.18962677404977 \tabularnewline
0.724068554558658 \tabularnewline
1.1866001732546 \tabularnewline
0.160913418289714 \tabularnewline
0.0110306700439101 \tabularnewline
-0.49441475160446 \tabularnewline
-0.319960082395007 \tabularnewline
0.131972397983834 \tabularnewline
-0.177377659310184 \tabularnewline
-1.04990867969744 \tabularnewline
-0.176759275538194 \tabularnewline
-0.95567365875155 \tabularnewline
0.682056905409583 \tabularnewline
-0.394199538774913 \tabularnewline
-0.322008774181261 \tabularnewline
-0.403559129158196 \tabularnewline
-1.11478345074653 \tabularnewline
0.0806109524596702 \tabularnewline
0.628329039478654 \tabularnewline
0.0954054133065545 \tabularnewline
0.327357352417814 \tabularnewline
0.162482381888351 \tabularnewline
0.600537616748603 \tabularnewline
0.0154771760588101 \tabularnewline
-0.884330358038313 \tabularnewline
-0.445586105346277 \tabularnewline
-0.755198123599552 \tabularnewline
1.40523011951137 \tabularnewline
-0.34537639046027 \tabularnewline
-0.284204581189466 \tabularnewline
1.09149652738041 \tabularnewline
-0.345682580410226 \tabularnewline
0.284260811953271 \tabularnewline
-0.55855848087137 \tabularnewline
0.916841271039006 \tabularnewline
0.102566968846081 \tabularnewline
0.813037238919333 \tabularnewline
-0.0537366793643418 \tabularnewline
0.329370791309689 \tabularnewline
-0.489524303885672 \tabularnewline
-0.277979185794977 \tabularnewline
0.0246805296623736 \tabularnewline
0.150418469819422 \tabularnewline
-0.28559725537209 \tabularnewline
-0.423157297952037 \tabularnewline
-0.214579405675702 \tabularnewline
-0.1837110719847 \tabularnewline
-0.700984796735585 \tabularnewline
-0.0553246862129025 \tabularnewline
-0.226207654049844 \tabularnewline
-0.400645172547096 \tabularnewline
0.090834076137266 \tabularnewline
0.151330836917193 \tabularnewline
0.82206369380053 \tabularnewline
-0.697470201422813 \tabularnewline
-0.479146503824475 \tabularnewline
1.07571755088357 \tabularnewline
-0.2087635072815 \tabularnewline
-0.549935763662079 \tabularnewline
0.561825488661085 \tabularnewline
-0.292498132927339 \tabularnewline
0.323890422318032 \tabularnewline
0.488396642732748 \tabularnewline
-0.813640599338993 \tabularnewline
-0.0553107122815419 \tabularnewline
0.29876792154787 \tabularnewline
0.326794647452868 \tabularnewline
-0.363014667733227 \tabularnewline
-0.381647413863305 \tabularnewline
0.156487399954246 \tabularnewline
0.183823316802429 \tabularnewline
0.27477825646875 \tabularnewline
-0.548989488956649 \tabularnewline
-0.0724036723789373 \tabularnewline
-0.255643806829908 \tabularnewline
-0.0105235116548243 \tabularnewline
0.221121985031404 \tabularnewline
-0.504786425044616 \tabularnewline
1.11862876554492 \tabularnewline
-1.13139667717053 \tabularnewline
0.303824228119016 \tabularnewline
0.19244425286755 \tabularnewline
0.0681824224795155 \tabularnewline
-0.707678498996967 \tabularnewline
0.0933231674386991 \tabularnewline
-0.301150797763588 \tabularnewline
0.524678109272938 \tabularnewline
-0.608317070795131 \tabularnewline
0.519176930358839 \tabularnewline
-0.269922114018435 \tabularnewline
0.629906754293615 \tabularnewline
-0.525481751802929 \tabularnewline
-0.195687501939265 \tabularnewline
-0.0415241281660368 \tabularnewline
-0.0904124946052268 \tabularnewline
-0.235725641021313 \tabularnewline
-0.426178720502384 \tabularnewline
-0.265285230399778 \tabularnewline
-0.449160590285465 \tabularnewline
0.5500827668549 \tabularnewline
0.312819400777474 \tabularnewline
0.66180739005486 \tabularnewline
0.4216341131039 \tabularnewline
-0.452887819701735 \tabularnewline
-0.166669010736859 \tabularnewline
-0.139866344372233 \tabularnewline
0.18001141592347 \tabularnewline
-0.37570259494587 \tabularnewline
0.20433924206211 \tabularnewline
-0.0874845417507762 \tabularnewline
-0.00941118980159067 \tabularnewline
-0.0273745084389758 \tabularnewline
0.0287897854627805 \tabularnewline
-0.321662437381796 \tabularnewline
1.52971202000861 \tabularnewline
0.236064696578788 \tabularnewline
-0.55329204130218 \tabularnewline
0.597037501349289 \tabularnewline
0.332855363361619 \tabularnewline
-0.99605547387895 \tabularnewline
-0.75004580302487 \tabularnewline
-0.338961306639215 \tabularnewline
0.75090684044246 \tabularnewline
-0.268454852130147 \tabularnewline
-0.473396999423603 \tabularnewline
-0.0835337937615711 \tabularnewline
1.6896421180525 \tabularnewline
0.109195620052607 \tabularnewline
-0.89590147695519 \tabularnewline
0.08687836983179 \tabularnewline
-0.113451998196991 \tabularnewline
-0.219509597856425 \tabularnewline
-0.382305187284288 \tabularnewline
0.089842855299747 \tabularnewline
0.0409808833294104 \tabularnewline
0.252823451717823 \tabularnewline
0.390429049718841 \tabularnewline
-0.384795298516376 \tabularnewline
0.462561215476148 \tabularnewline
0.609379767216593 \tabularnewline
-0.18419061791475 \tabularnewline
0.712926234709516 \tabularnewline
-0.298553956767952 \tabularnewline
-0.95910476366668 \tabularnewline
-0.0400912390800441 \tabularnewline
0.989485723325219 \tabularnewline
0.81384726413759 \tabularnewline
0.279175119469468 \tabularnewline
0.146362969610687 \tabularnewline
-0.137739114841749 \tabularnewline
0.169012427731683 \tabularnewline
0.53069440100064 \tabularnewline
0.01800513547112 \tabularnewline
0.351720473969818 \tabularnewline
-0.00873807204775537 \tabularnewline
0.496007261703869 \tabularnewline
0.122675832039694 \tabularnewline
-0.118246508009615 \tabularnewline
-0.50089263348314 \tabularnewline
-0.0902197263745315 \tabularnewline
-0.244433047299048 \tabularnewline
-0.132224193088114 \tabularnewline
-0.40046464122934 \tabularnewline
0.60295778991539 \tabularnewline
0.331296571381383 \tabularnewline
-0.356231806773947 \tabularnewline
-0.481917343653801 \tabularnewline
0.300600188336704 \tabularnewline
-0.0586663022067286 \tabularnewline
-0.000783243055225478 \tabularnewline
-0.367517952927265 \tabularnewline
0.159109708758428 \tabularnewline
-0.214935321556822 \tabularnewline
-0.227886783088746 \tabularnewline
-0.278803681844659 \tabularnewline
0.264239553422249 \tabularnewline
0.156586052882187 \tabularnewline
-0.154170959394508 \tabularnewline
-0.125179998008418 \tabularnewline
-0.84537669675417 \tabularnewline
-0.0787181956532863 \tabularnewline
-0.105461895486927 \tabularnewline
0.320310362995694 \tabularnewline
-0.154314917909772 \tabularnewline
0.164996680819778 \tabularnewline
-0.242423954550078 \tabularnewline
-0.179082766454653 \tabularnewline
0.0555650798412117 \tabularnewline
-0.00330761958024145 \tabularnewline
0.274640620096172 \tabularnewline
-0.658136967314377 \tabularnewline
0.60162749914626 \tabularnewline
0.31520945275704 \tabularnewline
0.549444667879584 \tabularnewline
-0.100977210820649 \tabularnewline
-0.459996800017905 \tabularnewline
-0.199064416952461 \tabularnewline
0.391879889976933 \tabularnewline
0.184576610722168 \tabularnewline
0.32821786325616 \tabularnewline
-0.158180121465448 \tabularnewline
0.877685013929322 \tabularnewline
0.0717592040332637 \tabularnewline
0.818664823573648 \tabularnewline
0.81846334798647 \tabularnewline
1.7561918338059 \tabularnewline
-0.558666389352778 \tabularnewline
0.157462781741194 \tabularnewline
-0.255138785743859 \tabularnewline
0.0187592888451426 \tabularnewline
-1.17023293884596 \tabularnewline
-0.0820927700788914 \tabularnewline
0.0770457185907574 \tabularnewline
-0.227323060091709 \tabularnewline
0.0538039200591301 \tabularnewline
-0.543793526839038 \tabularnewline
-0.0973708644856482 \tabularnewline
-0.410090800115218 \tabularnewline
-0.357959758800816 \tabularnewline
-0.24506180846509 \tabularnewline
-0.0187868370150921 \tabularnewline
-0.402350963742194 \tabularnewline
0.302450990924227 \tabularnewline
0.593801802667415 \tabularnewline
0.346325690682931 \tabularnewline
-0.571266887884467 \tabularnewline
0.0597896258443859 \tabularnewline
0.11642056147126 \tabularnewline
-0.224360676806376 \tabularnewline
-0.670834229761189 \tabularnewline
0.4454226171365 \tabularnewline
-0.273713725599355 \tabularnewline
-0.830875979540574 \tabularnewline
0.0537944146879465 \tabularnewline
0.266374913637773 \tabularnewline
-0.407473110355912 \tabularnewline
0.445617447907658 \tabularnewline
-0.308047438455055 \tabularnewline
0.0206344333145843 \tabularnewline
-0.123503055000252 \tabularnewline
-0.918254446753227 \tabularnewline
0.14976447190054 \tabularnewline
-0.283925077749898 \tabularnewline
0.308117693859332 \tabularnewline
-0.219971308703024 \tabularnewline
0.299239174365883 \tabularnewline
-0.613156202772519 \tabularnewline
0.844474325811503 \tabularnewline
-0.325178656797374 \tabularnewline
-0.0453713647379114 \tabularnewline
-0.215913616803606 \tabularnewline
-0.0152353801015679 \tabularnewline
0.517732810261644 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160396&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0447136184731888[/C][/ROW]
[ROW][C]-0.0688691361564592[/C][/ROW]
[ROW][C]0.199720049237803[/C][/ROW]
[ROW][C]0.369884625273303[/C][/ROW]
[ROW][C]1.52700334031997[/C][/ROW]
[ROW][C]-0.36352513234531[/C][/ROW]
[ROW][C]0.455818469918245[/C][/ROW]
[ROW][C]-0.5637400770144[/C][/ROW]
[ROW][C]-0.369588354080514[/C][/ROW]
[ROW][C]1.2808662378678[/C][/ROW]
[ROW][C]-1.36163615781075[/C][/ROW]
[ROW][C]-0.369943100003946[/C][/ROW]
[ROW][C]0.181198664827045[/C][/ROW]
[ROW][C]-0.864076212057988[/C][/ROW]
[ROW][C]-0.562057401950143[/C][/ROW]
[ROW][C]-0.727479940935351[/C][/ROW]
[ROW][C]-0.40737958612277[/C][/ROW]
[ROW][C]-0.0483915625403397[/C][/ROW]
[ROW][C]-0.780468994636472[/C][/ROW]
[ROW][C]-0.838734248979087[/C][/ROW]
[ROW][C]0.71626052431674[/C][/ROW]
[ROW][C]-0.701746708745324[/C][/ROW]
[ROW][C]0.890863862669053[/C][/ROW]
[ROW][C]-0.0832797592733262[/C][/ROW]
[ROW][C]-1.58685553577673[/C][/ROW]
[ROW][C]-1.08248447240573[/C][/ROW]
[ROW][C]0.423977519191422[/C][/ROW]
[ROW][C]0.0334778538136879[/C][/ROW]
[ROW][C]0.157084940458252[/C][/ROW]
[ROW][C]0.371834374355486[/C][/ROW]
[ROW][C]-0.249301411718668[/C][/ROW]
[ROW][C]0.323052432316567[/C][/ROW]
[ROW][C]0.872588338798482[/C][/ROW]
[ROW][C]0.12073692516261[/C][/ROW]
[ROW][C]0.0933609092695955[/C][/ROW]
[ROW][C]-1.1969579406562[/C][/ROW]
[ROW][C]-0.181614290284593[/C][/ROW]
[ROW][C]-0.0597053320551366[/C][/ROW]
[ROW][C]-0.361861546128006[/C][/ROW]
[ROW][C]0.591834105671231[/C][/ROW]
[ROW][C]0.492182837246146[/C][/ROW]
[ROW][C]-0.320119536084172[/C][/ROW]
[ROW][C]0.106969439063089[/C][/ROW]
[ROW][C]0.579563558829838[/C][/ROW]
[ROW][C]-0.49785827677913[/C][/ROW]
[ROW][C]-0.421237034822167[/C][/ROW]
[ROW][C]-0.110180370862872[/C][/ROW]
[ROW][C]-0.121502950664406[/C][/ROW]
[ROW][C]0.515727390673425[/C][/ROW]
[ROW][C]-0.995384116325225[/C][/ROW]
[ROW][C]0.336662573298493[/C][/ROW]
[ROW][C]0.86198492182072[/C][/ROW]
[ROW][C]-0.469704043680899[/C][/ROW]
[ROW][C]-0.411104599067494[/C][/ROW]
[ROW][C]-0.0656253240673568[/C][/ROW]
[ROW][C]0.30362512477139[/C][/ROW]
[ROW][C]0.871245792056299[/C][/ROW]
[ROW][C]0.465329953108138[/C][/ROW]
[ROW][C]0.823865292319332[/C][/ROW]
[ROW][C]0.921593569172809[/C][/ROW]
[ROW][C]1.20314402861716[/C][/ROW]
[ROW][C]0.417773176976382[/C][/ROW]
[ROW][C]0.275249655457015[/C][/ROW]
[ROW][C]-0.217629109044653[/C][/ROW]
[ROW][C]-0.24536821260355[/C][/ROW]
[ROW][C]-1.10814129358522[/C][/ROW]
[ROW][C]-0.0382001113257676[/C][/ROW]
[ROW][C]0.545767328244698[/C][/ROW]
[ROW][C]0.087890657846837[/C][/ROW]
[ROW][C]-0.8881021380452[/C][/ROW]
[ROW][C]-0.327023405077393[/C][/ROW]
[ROW][C]-0.410226158567968[/C][/ROW]
[ROW][C]-0.342132252288231[/C][/ROW]
[ROW][C]-0.446058214082303[/C][/ROW]
[ROW][C]-0.0143550948882287[/C][/ROW]
[ROW][C]0.519683079860843[/C][/ROW]
[ROW][C]-0.700138656069014[/C][/ROW]
[ROW][C]-0.0484940058232523[/C][/ROW]
[ROW][C]-0.504120159199541[/C][/ROW]
[ROW][C]0.579726668983658[/C][/ROW]
[ROW][C]-0.330408887255077[/C][/ROW]
[ROW][C]0.657244314281641[/C][/ROW]
[ROW][C]0.064898474652166[/C][/ROW]
[ROW][C]-0.0459150581992619[/C][/ROW]
[ROW][C]-0.845022884351417[/C][/ROW]
[ROW][C]-0.111305561054054[/C][/ROW]
[ROW][C]0.737502405778816[/C][/ROW]
[ROW][C]-0.515884533049813[/C][/ROW]
[ROW][C]1.02068929592885[/C][/ROW]
[ROW][C]0.418704046323062[/C][/ROW]
[ROW][C]-0.609300728915372[/C][/ROW]
[ROW][C]-0.987734482097807[/C][/ROW]
[ROW][C]-0.245815374613049[/C][/ROW]
[ROW][C]0.249326437970084[/C][/ROW]
[ROW][C]0.995594151570643[/C][/ROW]
[ROW][C]0.00502916807311283[/C][/ROW]
[ROW][C]-0.537877273174329[/C][/ROW]
[ROW][C]-0.551770970421952[/C][/ROW]
[ROW][C]-0.27174774254129[/C][/ROW]
[ROW][C]0.304460021822383[/C][/ROW]
[ROW][C]0.637207012274805[/C][/ROW]
[ROW][C]0.628745042294872[/C][/ROW]
[ROW][C]-0.703460035945848[/C][/ROW]
[ROW][C]-0.155535036843733[/C][/ROW]
[ROW][C]0.370184736492193[/C][/ROW]
[ROW][C]0.503518873510722[/C][/ROW]
[ROW][C]0.832495440232408[/C][/ROW]
[ROW][C]0.18962677404977[/C][/ROW]
[ROW][C]0.724068554558658[/C][/ROW]
[ROW][C]1.1866001732546[/C][/ROW]
[ROW][C]0.160913418289714[/C][/ROW]
[ROW][C]0.0110306700439101[/C][/ROW]
[ROW][C]-0.49441475160446[/C][/ROW]
[ROW][C]-0.319960082395007[/C][/ROW]
[ROW][C]0.131972397983834[/C][/ROW]
[ROW][C]-0.177377659310184[/C][/ROW]
[ROW][C]-1.04990867969744[/C][/ROW]
[ROW][C]-0.176759275538194[/C][/ROW]
[ROW][C]-0.95567365875155[/C][/ROW]
[ROW][C]0.682056905409583[/C][/ROW]
[ROW][C]-0.394199538774913[/C][/ROW]
[ROW][C]-0.322008774181261[/C][/ROW]
[ROW][C]-0.403559129158196[/C][/ROW]
[ROW][C]-1.11478345074653[/C][/ROW]
[ROW][C]0.0806109524596702[/C][/ROW]
[ROW][C]0.628329039478654[/C][/ROW]
[ROW][C]0.0954054133065545[/C][/ROW]
[ROW][C]0.327357352417814[/C][/ROW]
[ROW][C]0.162482381888351[/C][/ROW]
[ROW][C]0.600537616748603[/C][/ROW]
[ROW][C]0.0154771760588101[/C][/ROW]
[ROW][C]-0.884330358038313[/C][/ROW]
[ROW][C]-0.445586105346277[/C][/ROW]
[ROW][C]-0.755198123599552[/C][/ROW]
[ROW][C]1.40523011951137[/C][/ROW]
[ROW][C]-0.34537639046027[/C][/ROW]
[ROW][C]-0.284204581189466[/C][/ROW]
[ROW][C]1.09149652738041[/C][/ROW]
[ROW][C]-0.345682580410226[/C][/ROW]
[ROW][C]0.284260811953271[/C][/ROW]
[ROW][C]-0.55855848087137[/C][/ROW]
[ROW][C]0.916841271039006[/C][/ROW]
[ROW][C]0.102566968846081[/C][/ROW]
[ROW][C]0.813037238919333[/C][/ROW]
[ROW][C]-0.0537366793643418[/C][/ROW]
[ROW][C]0.329370791309689[/C][/ROW]
[ROW][C]-0.489524303885672[/C][/ROW]
[ROW][C]-0.277979185794977[/C][/ROW]
[ROW][C]0.0246805296623736[/C][/ROW]
[ROW][C]0.150418469819422[/C][/ROW]
[ROW][C]-0.28559725537209[/C][/ROW]
[ROW][C]-0.423157297952037[/C][/ROW]
[ROW][C]-0.214579405675702[/C][/ROW]
[ROW][C]-0.1837110719847[/C][/ROW]
[ROW][C]-0.700984796735585[/C][/ROW]
[ROW][C]-0.0553246862129025[/C][/ROW]
[ROW][C]-0.226207654049844[/C][/ROW]
[ROW][C]-0.400645172547096[/C][/ROW]
[ROW][C]0.090834076137266[/C][/ROW]
[ROW][C]0.151330836917193[/C][/ROW]
[ROW][C]0.82206369380053[/C][/ROW]
[ROW][C]-0.697470201422813[/C][/ROW]
[ROW][C]-0.479146503824475[/C][/ROW]
[ROW][C]1.07571755088357[/C][/ROW]
[ROW][C]-0.2087635072815[/C][/ROW]
[ROW][C]-0.549935763662079[/C][/ROW]
[ROW][C]0.561825488661085[/C][/ROW]
[ROW][C]-0.292498132927339[/C][/ROW]
[ROW][C]0.323890422318032[/C][/ROW]
[ROW][C]0.488396642732748[/C][/ROW]
[ROW][C]-0.813640599338993[/C][/ROW]
[ROW][C]-0.0553107122815419[/C][/ROW]
[ROW][C]0.29876792154787[/C][/ROW]
[ROW][C]0.326794647452868[/C][/ROW]
[ROW][C]-0.363014667733227[/C][/ROW]
[ROW][C]-0.381647413863305[/C][/ROW]
[ROW][C]0.156487399954246[/C][/ROW]
[ROW][C]0.183823316802429[/C][/ROW]
[ROW][C]0.27477825646875[/C][/ROW]
[ROW][C]-0.548989488956649[/C][/ROW]
[ROW][C]-0.0724036723789373[/C][/ROW]
[ROW][C]-0.255643806829908[/C][/ROW]
[ROW][C]-0.0105235116548243[/C][/ROW]
[ROW][C]0.221121985031404[/C][/ROW]
[ROW][C]-0.504786425044616[/C][/ROW]
[ROW][C]1.11862876554492[/C][/ROW]
[ROW][C]-1.13139667717053[/C][/ROW]
[ROW][C]0.303824228119016[/C][/ROW]
[ROW][C]0.19244425286755[/C][/ROW]
[ROW][C]0.0681824224795155[/C][/ROW]
[ROW][C]-0.707678498996967[/C][/ROW]
[ROW][C]0.0933231674386991[/C][/ROW]
[ROW][C]-0.301150797763588[/C][/ROW]
[ROW][C]0.524678109272938[/C][/ROW]
[ROW][C]-0.608317070795131[/C][/ROW]
[ROW][C]0.519176930358839[/C][/ROW]
[ROW][C]-0.269922114018435[/C][/ROW]
[ROW][C]0.629906754293615[/C][/ROW]
[ROW][C]-0.525481751802929[/C][/ROW]
[ROW][C]-0.195687501939265[/C][/ROW]
[ROW][C]-0.0415241281660368[/C][/ROW]
[ROW][C]-0.0904124946052268[/C][/ROW]
[ROW][C]-0.235725641021313[/C][/ROW]
[ROW][C]-0.426178720502384[/C][/ROW]
[ROW][C]-0.265285230399778[/C][/ROW]
[ROW][C]-0.449160590285465[/C][/ROW]
[ROW][C]0.5500827668549[/C][/ROW]
[ROW][C]0.312819400777474[/C][/ROW]
[ROW][C]0.66180739005486[/C][/ROW]
[ROW][C]0.4216341131039[/C][/ROW]
[ROW][C]-0.452887819701735[/C][/ROW]
[ROW][C]-0.166669010736859[/C][/ROW]
[ROW][C]-0.139866344372233[/C][/ROW]
[ROW][C]0.18001141592347[/C][/ROW]
[ROW][C]-0.37570259494587[/C][/ROW]
[ROW][C]0.20433924206211[/C][/ROW]
[ROW][C]-0.0874845417507762[/C][/ROW]
[ROW][C]-0.00941118980159067[/C][/ROW]
[ROW][C]-0.0273745084389758[/C][/ROW]
[ROW][C]0.0287897854627805[/C][/ROW]
[ROW][C]-0.321662437381796[/C][/ROW]
[ROW][C]1.52971202000861[/C][/ROW]
[ROW][C]0.236064696578788[/C][/ROW]
[ROW][C]-0.55329204130218[/C][/ROW]
[ROW][C]0.597037501349289[/C][/ROW]
[ROW][C]0.332855363361619[/C][/ROW]
[ROW][C]-0.99605547387895[/C][/ROW]
[ROW][C]-0.75004580302487[/C][/ROW]
[ROW][C]-0.338961306639215[/C][/ROW]
[ROW][C]0.75090684044246[/C][/ROW]
[ROW][C]-0.268454852130147[/C][/ROW]
[ROW][C]-0.473396999423603[/C][/ROW]
[ROW][C]-0.0835337937615711[/C][/ROW]
[ROW][C]1.6896421180525[/C][/ROW]
[ROW][C]0.109195620052607[/C][/ROW]
[ROW][C]-0.89590147695519[/C][/ROW]
[ROW][C]0.08687836983179[/C][/ROW]
[ROW][C]-0.113451998196991[/C][/ROW]
[ROW][C]-0.219509597856425[/C][/ROW]
[ROW][C]-0.382305187284288[/C][/ROW]
[ROW][C]0.089842855299747[/C][/ROW]
[ROW][C]0.0409808833294104[/C][/ROW]
[ROW][C]0.252823451717823[/C][/ROW]
[ROW][C]0.390429049718841[/C][/ROW]
[ROW][C]-0.384795298516376[/C][/ROW]
[ROW][C]0.462561215476148[/C][/ROW]
[ROW][C]0.609379767216593[/C][/ROW]
[ROW][C]-0.18419061791475[/C][/ROW]
[ROW][C]0.712926234709516[/C][/ROW]
[ROW][C]-0.298553956767952[/C][/ROW]
[ROW][C]-0.95910476366668[/C][/ROW]
[ROW][C]-0.0400912390800441[/C][/ROW]
[ROW][C]0.989485723325219[/C][/ROW]
[ROW][C]0.81384726413759[/C][/ROW]
[ROW][C]0.279175119469468[/C][/ROW]
[ROW][C]0.146362969610687[/C][/ROW]
[ROW][C]-0.137739114841749[/C][/ROW]
[ROW][C]0.169012427731683[/C][/ROW]
[ROW][C]0.53069440100064[/C][/ROW]
[ROW][C]0.01800513547112[/C][/ROW]
[ROW][C]0.351720473969818[/C][/ROW]
[ROW][C]-0.00873807204775537[/C][/ROW]
[ROW][C]0.496007261703869[/C][/ROW]
[ROW][C]0.122675832039694[/C][/ROW]
[ROW][C]-0.118246508009615[/C][/ROW]
[ROW][C]-0.50089263348314[/C][/ROW]
[ROW][C]-0.0902197263745315[/C][/ROW]
[ROW][C]-0.244433047299048[/C][/ROW]
[ROW][C]-0.132224193088114[/C][/ROW]
[ROW][C]-0.40046464122934[/C][/ROW]
[ROW][C]0.60295778991539[/C][/ROW]
[ROW][C]0.331296571381383[/C][/ROW]
[ROW][C]-0.356231806773947[/C][/ROW]
[ROW][C]-0.481917343653801[/C][/ROW]
[ROW][C]0.300600188336704[/C][/ROW]
[ROW][C]-0.0586663022067286[/C][/ROW]
[ROW][C]-0.000783243055225478[/C][/ROW]
[ROW][C]-0.367517952927265[/C][/ROW]
[ROW][C]0.159109708758428[/C][/ROW]
[ROW][C]-0.214935321556822[/C][/ROW]
[ROW][C]-0.227886783088746[/C][/ROW]
[ROW][C]-0.278803681844659[/C][/ROW]
[ROW][C]0.264239553422249[/C][/ROW]
[ROW][C]0.156586052882187[/C][/ROW]
[ROW][C]-0.154170959394508[/C][/ROW]
[ROW][C]-0.125179998008418[/C][/ROW]
[ROW][C]-0.84537669675417[/C][/ROW]
[ROW][C]-0.0787181956532863[/C][/ROW]
[ROW][C]-0.105461895486927[/C][/ROW]
[ROW][C]0.320310362995694[/C][/ROW]
[ROW][C]-0.154314917909772[/C][/ROW]
[ROW][C]0.164996680819778[/C][/ROW]
[ROW][C]-0.242423954550078[/C][/ROW]
[ROW][C]-0.179082766454653[/C][/ROW]
[ROW][C]0.0555650798412117[/C][/ROW]
[ROW][C]-0.00330761958024145[/C][/ROW]
[ROW][C]0.274640620096172[/C][/ROW]
[ROW][C]-0.658136967314377[/C][/ROW]
[ROW][C]0.60162749914626[/C][/ROW]
[ROW][C]0.31520945275704[/C][/ROW]
[ROW][C]0.549444667879584[/C][/ROW]
[ROW][C]-0.100977210820649[/C][/ROW]
[ROW][C]-0.459996800017905[/C][/ROW]
[ROW][C]-0.199064416952461[/C][/ROW]
[ROW][C]0.391879889976933[/C][/ROW]
[ROW][C]0.184576610722168[/C][/ROW]
[ROW][C]0.32821786325616[/C][/ROW]
[ROW][C]-0.158180121465448[/C][/ROW]
[ROW][C]0.877685013929322[/C][/ROW]
[ROW][C]0.0717592040332637[/C][/ROW]
[ROW][C]0.818664823573648[/C][/ROW]
[ROW][C]0.81846334798647[/C][/ROW]
[ROW][C]1.7561918338059[/C][/ROW]
[ROW][C]-0.558666389352778[/C][/ROW]
[ROW][C]0.157462781741194[/C][/ROW]
[ROW][C]-0.255138785743859[/C][/ROW]
[ROW][C]0.0187592888451426[/C][/ROW]
[ROW][C]-1.17023293884596[/C][/ROW]
[ROW][C]-0.0820927700788914[/C][/ROW]
[ROW][C]0.0770457185907574[/C][/ROW]
[ROW][C]-0.227323060091709[/C][/ROW]
[ROW][C]0.0538039200591301[/C][/ROW]
[ROW][C]-0.543793526839038[/C][/ROW]
[ROW][C]-0.0973708644856482[/C][/ROW]
[ROW][C]-0.410090800115218[/C][/ROW]
[ROW][C]-0.357959758800816[/C][/ROW]
[ROW][C]-0.24506180846509[/C][/ROW]
[ROW][C]-0.0187868370150921[/C][/ROW]
[ROW][C]-0.402350963742194[/C][/ROW]
[ROW][C]0.302450990924227[/C][/ROW]
[ROW][C]0.593801802667415[/C][/ROW]
[ROW][C]0.346325690682931[/C][/ROW]
[ROW][C]-0.571266887884467[/C][/ROW]
[ROW][C]0.0597896258443859[/C][/ROW]
[ROW][C]0.11642056147126[/C][/ROW]
[ROW][C]-0.224360676806376[/C][/ROW]
[ROW][C]-0.670834229761189[/C][/ROW]
[ROW][C]0.4454226171365[/C][/ROW]
[ROW][C]-0.273713725599355[/C][/ROW]
[ROW][C]-0.830875979540574[/C][/ROW]
[ROW][C]0.0537944146879465[/C][/ROW]
[ROW][C]0.266374913637773[/C][/ROW]
[ROW][C]-0.407473110355912[/C][/ROW]
[ROW][C]0.445617447907658[/C][/ROW]
[ROW][C]-0.308047438455055[/C][/ROW]
[ROW][C]0.0206344333145843[/C][/ROW]
[ROW][C]-0.123503055000252[/C][/ROW]
[ROW][C]-0.918254446753227[/C][/ROW]
[ROW][C]0.14976447190054[/C][/ROW]
[ROW][C]-0.283925077749898[/C][/ROW]
[ROW][C]0.308117693859332[/C][/ROW]
[ROW][C]-0.219971308703024[/C][/ROW]
[ROW][C]0.299239174365883[/C][/ROW]
[ROW][C]-0.613156202772519[/C][/ROW]
[ROW][C]0.844474325811503[/C][/ROW]
[ROW][C]-0.325178656797374[/C][/ROW]
[ROW][C]-0.0453713647379114[/C][/ROW]
[ROW][C]-0.215913616803606[/C][/ROW]
[ROW][C]-0.0152353801015679[/C][/ROW]
[ROW][C]0.517732810261644[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160396&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160396&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0447136184731888
-0.0688691361564592
0.199720049237803
0.369884625273303
1.52700334031997
-0.36352513234531
0.455818469918245
-0.5637400770144
-0.369588354080514
1.2808662378678
-1.36163615781075
-0.369943100003946
0.181198664827045
-0.864076212057988
-0.562057401950143
-0.727479940935351
-0.40737958612277
-0.0483915625403397
-0.780468994636472
-0.838734248979087
0.71626052431674
-0.701746708745324
0.890863862669053
-0.0832797592733262
-1.58685553577673
-1.08248447240573
0.423977519191422
0.0334778538136879
0.157084940458252
0.371834374355486
-0.249301411718668
0.323052432316567
0.872588338798482
0.12073692516261
0.0933609092695955
-1.1969579406562
-0.181614290284593
-0.0597053320551366
-0.361861546128006
0.591834105671231
0.492182837246146
-0.320119536084172
0.106969439063089
0.579563558829838
-0.49785827677913
-0.421237034822167
-0.110180370862872
-0.121502950664406
0.515727390673425
-0.995384116325225
0.336662573298493
0.86198492182072
-0.469704043680899
-0.411104599067494
-0.0656253240673568
0.30362512477139
0.871245792056299
0.465329953108138
0.823865292319332
0.921593569172809
1.20314402861716
0.417773176976382
0.275249655457015
-0.217629109044653
-0.24536821260355
-1.10814129358522
-0.0382001113257676
0.545767328244698
0.087890657846837
-0.8881021380452
-0.327023405077393
-0.410226158567968
-0.342132252288231
-0.446058214082303
-0.0143550948882287
0.519683079860843
-0.700138656069014
-0.0484940058232523
-0.504120159199541
0.579726668983658
-0.330408887255077
0.657244314281641
0.064898474652166
-0.0459150581992619
-0.845022884351417
-0.111305561054054
0.737502405778816
-0.515884533049813
1.02068929592885
0.418704046323062
-0.609300728915372
-0.987734482097807
-0.245815374613049
0.249326437970084
0.995594151570643
0.00502916807311283
-0.537877273174329
-0.551770970421952
-0.27174774254129
0.304460021822383
0.637207012274805
0.628745042294872
-0.703460035945848
-0.155535036843733
0.370184736492193
0.503518873510722
0.832495440232408
0.18962677404977
0.724068554558658
1.1866001732546
0.160913418289714
0.0110306700439101
-0.49441475160446
-0.319960082395007
0.131972397983834
-0.177377659310184
-1.04990867969744
-0.176759275538194
-0.95567365875155
0.682056905409583
-0.394199538774913
-0.322008774181261
-0.403559129158196
-1.11478345074653
0.0806109524596702
0.628329039478654
0.0954054133065545
0.327357352417814
0.162482381888351
0.600537616748603
0.0154771760588101
-0.884330358038313
-0.445586105346277
-0.755198123599552
1.40523011951137
-0.34537639046027
-0.284204581189466
1.09149652738041
-0.345682580410226
0.284260811953271
-0.55855848087137
0.916841271039006
0.102566968846081
0.813037238919333
-0.0537366793643418
0.329370791309689
-0.489524303885672
-0.277979185794977
0.0246805296623736
0.150418469819422
-0.28559725537209
-0.423157297952037
-0.214579405675702
-0.1837110719847
-0.700984796735585
-0.0553246862129025
-0.226207654049844
-0.400645172547096
0.090834076137266
0.151330836917193
0.82206369380053
-0.697470201422813
-0.479146503824475
1.07571755088357
-0.2087635072815
-0.549935763662079
0.561825488661085
-0.292498132927339
0.323890422318032
0.488396642732748
-0.813640599338993
-0.0553107122815419
0.29876792154787
0.326794647452868
-0.363014667733227
-0.381647413863305
0.156487399954246
0.183823316802429
0.27477825646875
-0.548989488956649
-0.0724036723789373
-0.255643806829908
-0.0105235116548243
0.221121985031404
-0.504786425044616
1.11862876554492
-1.13139667717053
0.303824228119016
0.19244425286755
0.0681824224795155
-0.707678498996967
0.0933231674386991
-0.301150797763588
0.524678109272938
-0.608317070795131
0.519176930358839
-0.269922114018435
0.629906754293615
-0.525481751802929
-0.195687501939265
-0.0415241281660368
-0.0904124946052268
-0.235725641021313
-0.426178720502384
-0.265285230399778
-0.449160590285465
0.5500827668549
0.312819400777474
0.66180739005486
0.4216341131039
-0.452887819701735
-0.166669010736859
-0.139866344372233
0.18001141592347
-0.37570259494587
0.20433924206211
-0.0874845417507762
-0.00941118980159067
-0.0273745084389758
0.0287897854627805
-0.321662437381796
1.52971202000861
0.236064696578788
-0.55329204130218
0.597037501349289
0.332855363361619
-0.99605547387895
-0.75004580302487
-0.338961306639215
0.75090684044246
-0.268454852130147
-0.473396999423603
-0.0835337937615711
1.6896421180525
0.109195620052607
-0.89590147695519
0.08687836983179
-0.113451998196991
-0.219509597856425
-0.382305187284288
0.089842855299747
0.0409808833294104
0.252823451717823
0.390429049718841
-0.384795298516376
0.462561215476148
0.609379767216593
-0.18419061791475
0.712926234709516
-0.298553956767952
-0.95910476366668
-0.0400912390800441
0.989485723325219
0.81384726413759
0.279175119469468
0.146362969610687
-0.137739114841749
0.169012427731683
0.53069440100064
0.01800513547112
0.351720473969818
-0.00873807204775537
0.496007261703869
0.122675832039694
-0.118246508009615
-0.50089263348314
-0.0902197263745315
-0.244433047299048
-0.132224193088114
-0.40046464122934
0.60295778991539
0.331296571381383
-0.356231806773947
-0.481917343653801
0.300600188336704
-0.0586663022067286
-0.000783243055225478
-0.367517952927265
0.159109708758428
-0.214935321556822
-0.227886783088746
-0.278803681844659
0.264239553422249
0.156586052882187
-0.154170959394508
-0.125179998008418
-0.84537669675417
-0.0787181956532863
-0.105461895486927
0.320310362995694
-0.154314917909772
0.164996680819778
-0.242423954550078
-0.179082766454653
0.0555650798412117
-0.00330761958024145
0.274640620096172
-0.658136967314377
0.60162749914626
0.31520945275704
0.549444667879584
-0.100977210820649
-0.459996800017905
-0.199064416952461
0.391879889976933
0.184576610722168
0.32821786325616
-0.158180121465448
0.877685013929322
0.0717592040332637
0.818664823573648
0.81846334798647
1.7561918338059
-0.558666389352778
0.157462781741194
-0.255138785743859
0.0187592888451426
-1.17023293884596
-0.0820927700788914
0.0770457185907574
-0.227323060091709
0.0538039200591301
-0.543793526839038
-0.0973708644856482
-0.410090800115218
-0.357959758800816
-0.24506180846509
-0.0187868370150921
-0.402350963742194
0.302450990924227
0.593801802667415
0.346325690682931
-0.571266887884467
0.0597896258443859
0.11642056147126
-0.224360676806376
-0.670834229761189
0.4454226171365
-0.273713725599355
-0.830875979540574
0.0537944146879465
0.266374913637773
-0.407473110355912
0.445617447907658
-0.308047438455055
0.0206344333145843
-0.123503055000252
-0.918254446753227
0.14976447190054
-0.283925077749898
0.308117693859332
-0.219971308703024
0.299239174365883
-0.613156202772519
0.844474325811503
-0.325178656797374
-0.0453713647379114
-0.215913616803606
-0.0152353801015679
0.517732810261644



Parameters (Session):
par1 = FALSE ; par2 = 0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')