Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 03 Aug 2012 09:20:23 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Aug/03/t1344000075ri3qumunjpyta35.htm/, Retrieved Thu, 31 Oct 2024 23:39:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=168998, Retrieved Thu, 31 Oct 2024 23:39:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsSelleslaghs Tessa
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Tijdreeks B stap 17] [2012-08-03 13:20:23] [5f178b5bce8a01d64692a8a5c649399b] [Current]
Feedback Forum

Post a new message
Dataseries X:
1020
970
1030
970
1070
1650
1010
980
1050
1010
1040
1120
1090
1060
990
950
1540
870
1070
1050
1020
960
1100
1190
1040
1090
1050
850
1100
850
1040
990
1040
1100
1030
1290
1040
1170
1040
860
1090
870
1080
1000
980
1080
1040
1280
1140
1220
1080
790
1020
830
1150
1030
900
1140
1010
1270
1090
1090
980
850
1010
810
1070
1040
880
1110
1010
1230
490
1040
1010
860
1010
800
1130
1040
940
1070
1030
1320
1040
1070
1070
770
1010
810
1150
1030
890
1010
1120
1250
990
1020
1110
830
1030
870
1260
980
940
970
1100
1320




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=168998&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=168998&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=168998&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'AstonUniversity' @ aston.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.136637-1.420.079248
20.0977121.01550.156079
3-0.037896-0.39380.347244
4-0.144473-1.50140.068084
50.146641.52390.065225
6-0.328992-3.4190.000444
70.1714991.78230.038758
8-0.149133-1.54980.062053
9-0.028223-0.29330.384927
100.1182221.22860.110946
11-0.01426-0.14820.441235
120.4510284.68724e-06
13-0.140143-1.45640.074091
140.1170581.21650.113223
15-0.04753-0.49390.311174
16-0.160857-1.67170.048741
170.165951.72460.04373
18-0.324264-3.36980.000522
190.1666231.73160.0431
20-0.127176-1.32170.094538
210.0412950.42910.334336
220.0489790.5090.305893
23-0.127539-1.32540.093914
240.3498393.63560.000213
25-0.12252-1.27330.102828
260.0765550.79560.21401
27-0.017813-0.18510.426744
28-0.145577-1.51290.066616
290.1233181.28160.101371
30-0.251888-2.61770.005061
310.1607051.67010.048898
32-0.080501-0.83660.202334
330.0420290.43680.331571
340.0491290.51060.305348
35-0.13439-1.39660.082696
360.2647552.75140.00348
37-0.114606-1.1910.118129
380.083280.86550.194349
39-0.083858-0.87150.192713
40-0.168437-1.75040.04144
410.0935340.9720.166603
42-0.144114-1.49770.068567
430.1557831.61890.054187
44-0.065427-0.67990.249001
450.0300050.31180.377891
460.0108640.11290.455159
47-0.063-0.65470.257023
480.1850761.92340.028533

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.136637 & -1.42 & 0.079248 \tabularnewline
2 & 0.097712 & 1.0155 & 0.156079 \tabularnewline
3 & -0.037896 & -0.3938 & 0.347244 \tabularnewline
4 & -0.144473 & -1.5014 & 0.068084 \tabularnewline
5 & 0.14664 & 1.5239 & 0.065225 \tabularnewline
6 & -0.328992 & -3.419 & 0.000444 \tabularnewline
7 & 0.171499 & 1.7823 & 0.038758 \tabularnewline
8 & -0.149133 & -1.5498 & 0.062053 \tabularnewline
9 & -0.028223 & -0.2933 & 0.384927 \tabularnewline
10 & 0.118222 & 1.2286 & 0.110946 \tabularnewline
11 & -0.01426 & -0.1482 & 0.441235 \tabularnewline
12 & 0.451028 & 4.6872 & 4e-06 \tabularnewline
13 & -0.140143 & -1.4564 & 0.074091 \tabularnewline
14 & 0.117058 & 1.2165 & 0.113223 \tabularnewline
15 & -0.04753 & -0.4939 & 0.311174 \tabularnewline
16 & -0.160857 & -1.6717 & 0.048741 \tabularnewline
17 & 0.16595 & 1.7246 & 0.04373 \tabularnewline
18 & -0.324264 & -3.3698 & 0.000522 \tabularnewline
19 & 0.166623 & 1.7316 & 0.0431 \tabularnewline
20 & -0.127176 & -1.3217 & 0.094538 \tabularnewline
21 & 0.041295 & 0.4291 & 0.334336 \tabularnewline
22 & 0.048979 & 0.509 & 0.305893 \tabularnewline
23 & -0.127539 & -1.3254 & 0.093914 \tabularnewline
24 & 0.349839 & 3.6356 & 0.000213 \tabularnewline
25 & -0.12252 & -1.2733 & 0.102828 \tabularnewline
26 & 0.076555 & 0.7956 & 0.21401 \tabularnewline
27 & -0.017813 & -0.1851 & 0.426744 \tabularnewline
28 & -0.145577 & -1.5129 & 0.066616 \tabularnewline
29 & 0.123318 & 1.2816 & 0.101371 \tabularnewline
30 & -0.251888 & -2.6177 & 0.005061 \tabularnewline
31 & 0.160705 & 1.6701 & 0.048898 \tabularnewline
32 & -0.080501 & -0.8366 & 0.202334 \tabularnewline
33 & 0.042029 & 0.4368 & 0.331571 \tabularnewline
34 & 0.049129 & 0.5106 & 0.305348 \tabularnewline
35 & -0.13439 & -1.3966 & 0.082696 \tabularnewline
36 & 0.264755 & 2.7514 & 0.00348 \tabularnewline
37 & -0.114606 & -1.191 & 0.118129 \tabularnewline
38 & 0.08328 & 0.8655 & 0.194349 \tabularnewline
39 & -0.083858 & -0.8715 & 0.192713 \tabularnewline
40 & -0.168437 & -1.7504 & 0.04144 \tabularnewline
41 & 0.093534 & 0.972 & 0.166603 \tabularnewline
42 & -0.144114 & -1.4977 & 0.068567 \tabularnewline
43 & 0.155783 & 1.6189 & 0.054187 \tabularnewline
44 & -0.065427 & -0.6799 & 0.249001 \tabularnewline
45 & 0.030005 & 0.3118 & 0.377891 \tabularnewline
46 & 0.010864 & 0.1129 & 0.455159 \tabularnewline
47 & -0.063 & -0.6547 & 0.257023 \tabularnewline
48 & 0.185076 & 1.9234 & 0.028533 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=168998&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.136637[/C][C]-1.42[/C][C]0.079248[/C][/ROW]
[ROW][C]2[/C][C]0.097712[/C][C]1.0155[/C][C]0.156079[/C][/ROW]
[ROW][C]3[/C][C]-0.037896[/C][C]-0.3938[/C][C]0.347244[/C][/ROW]
[ROW][C]4[/C][C]-0.144473[/C][C]-1.5014[/C][C]0.068084[/C][/ROW]
[ROW][C]5[/C][C]0.14664[/C][C]1.5239[/C][C]0.065225[/C][/ROW]
[ROW][C]6[/C][C]-0.328992[/C][C]-3.419[/C][C]0.000444[/C][/ROW]
[ROW][C]7[/C][C]0.171499[/C][C]1.7823[/C][C]0.038758[/C][/ROW]
[ROW][C]8[/C][C]-0.149133[/C][C]-1.5498[/C][C]0.062053[/C][/ROW]
[ROW][C]9[/C][C]-0.028223[/C][C]-0.2933[/C][C]0.384927[/C][/ROW]
[ROW][C]10[/C][C]0.118222[/C][C]1.2286[/C][C]0.110946[/C][/ROW]
[ROW][C]11[/C][C]-0.01426[/C][C]-0.1482[/C][C]0.441235[/C][/ROW]
[ROW][C]12[/C][C]0.451028[/C][C]4.6872[/C][C]4e-06[/C][/ROW]
[ROW][C]13[/C][C]-0.140143[/C][C]-1.4564[/C][C]0.074091[/C][/ROW]
[ROW][C]14[/C][C]0.117058[/C][C]1.2165[/C][C]0.113223[/C][/ROW]
[ROW][C]15[/C][C]-0.04753[/C][C]-0.4939[/C][C]0.311174[/C][/ROW]
[ROW][C]16[/C][C]-0.160857[/C][C]-1.6717[/C][C]0.048741[/C][/ROW]
[ROW][C]17[/C][C]0.16595[/C][C]1.7246[/C][C]0.04373[/C][/ROW]
[ROW][C]18[/C][C]-0.324264[/C][C]-3.3698[/C][C]0.000522[/C][/ROW]
[ROW][C]19[/C][C]0.166623[/C][C]1.7316[/C][C]0.0431[/C][/ROW]
[ROW][C]20[/C][C]-0.127176[/C][C]-1.3217[/C][C]0.094538[/C][/ROW]
[ROW][C]21[/C][C]0.041295[/C][C]0.4291[/C][C]0.334336[/C][/ROW]
[ROW][C]22[/C][C]0.048979[/C][C]0.509[/C][C]0.305893[/C][/ROW]
[ROW][C]23[/C][C]-0.127539[/C][C]-1.3254[/C][C]0.093914[/C][/ROW]
[ROW][C]24[/C][C]0.349839[/C][C]3.6356[/C][C]0.000213[/C][/ROW]
[ROW][C]25[/C][C]-0.12252[/C][C]-1.2733[/C][C]0.102828[/C][/ROW]
[ROW][C]26[/C][C]0.076555[/C][C]0.7956[/C][C]0.21401[/C][/ROW]
[ROW][C]27[/C][C]-0.017813[/C][C]-0.1851[/C][C]0.426744[/C][/ROW]
[ROW][C]28[/C][C]-0.145577[/C][C]-1.5129[/C][C]0.066616[/C][/ROW]
[ROW][C]29[/C][C]0.123318[/C][C]1.2816[/C][C]0.101371[/C][/ROW]
[ROW][C]30[/C][C]-0.251888[/C][C]-2.6177[/C][C]0.005061[/C][/ROW]
[ROW][C]31[/C][C]0.160705[/C][C]1.6701[/C][C]0.048898[/C][/ROW]
[ROW][C]32[/C][C]-0.080501[/C][C]-0.8366[/C][C]0.202334[/C][/ROW]
[ROW][C]33[/C][C]0.042029[/C][C]0.4368[/C][C]0.331571[/C][/ROW]
[ROW][C]34[/C][C]0.049129[/C][C]0.5106[/C][C]0.305348[/C][/ROW]
[ROW][C]35[/C][C]-0.13439[/C][C]-1.3966[/C][C]0.082696[/C][/ROW]
[ROW][C]36[/C][C]0.264755[/C][C]2.7514[/C][C]0.00348[/C][/ROW]
[ROW][C]37[/C][C]-0.114606[/C][C]-1.191[/C][C]0.118129[/C][/ROW]
[ROW][C]38[/C][C]0.08328[/C][C]0.8655[/C][C]0.194349[/C][/ROW]
[ROW][C]39[/C][C]-0.083858[/C][C]-0.8715[/C][C]0.192713[/C][/ROW]
[ROW][C]40[/C][C]-0.168437[/C][C]-1.7504[/C][C]0.04144[/C][/ROW]
[ROW][C]41[/C][C]0.093534[/C][C]0.972[/C][C]0.166603[/C][/ROW]
[ROW][C]42[/C][C]-0.144114[/C][C]-1.4977[/C][C]0.068567[/C][/ROW]
[ROW][C]43[/C][C]0.155783[/C][C]1.6189[/C][C]0.054187[/C][/ROW]
[ROW][C]44[/C][C]-0.065427[/C][C]-0.6799[/C][C]0.249001[/C][/ROW]
[ROW][C]45[/C][C]0.030005[/C][C]0.3118[/C][C]0.377891[/C][/ROW]
[ROW][C]46[/C][C]0.010864[/C][C]0.1129[/C][C]0.455159[/C][/ROW]
[ROW][C]47[/C][C]-0.063[/C][C]-0.6547[/C][C]0.257023[/C][/ROW]
[ROW][C]48[/C][C]0.185076[/C][C]1.9234[/C][C]0.028533[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=168998&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=168998&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.136637-1.420.079248
20.0977121.01550.156079
3-0.037896-0.39380.347244
4-0.144473-1.50140.068084
50.146641.52390.065225
6-0.328992-3.4190.000444
70.1714991.78230.038758
8-0.149133-1.54980.062053
9-0.028223-0.29330.384927
100.1182221.22860.110946
11-0.01426-0.14820.441235
120.4510284.68724e-06
13-0.140143-1.45640.074091
140.1170581.21650.113223
15-0.04753-0.49390.311174
16-0.160857-1.67170.048741
170.165951.72460.04373
18-0.324264-3.36980.000522
190.1666231.73160.0431
20-0.127176-1.32170.094538
210.0412950.42910.334336
220.0489790.5090.305893
23-0.127539-1.32540.093914
240.3498393.63560.000213
25-0.12252-1.27330.102828
260.0765550.79560.21401
27-0.017813-0.18510.426744
28-0.145577-1.51290.066616
290.1233181.28160.101371
30-0.251888-2.61770.005061
310.1607051.67010.048898
32-0.080501-0.83660.202334
330.0420290.43680.331571
340.0491290.51060.305348
35-0.13439-1.39660.082696
360.2647552.75140.00348
37-0.114606-1.1910.118129
380.083280.86550.194349
39-0.083858-0.87150.192713
40-0.168437-1.75040.04144
410.0935340.9720.166603
42-0.144114-1.49770.068567
430.1557831.61890.054187
44-0.065427-0.67990.249001
450.0300050.31180.377891
460.0108640.11290.455159
47-0.063-0.65470.257023
480.1850761.92340.028533







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.136637-1.420.079248
20.0805460.83710.202203
3-0.01499-0.15580.43825
4-0.163041-1.69440.046539
50.1190381.23710.109371
6-0.289119-3.00460.001653
70.0915220.95110.171834
8-0.108948-1.13220.130024
9-0.063114-0.65590.256642
100.0529140.54990.291763
110.101061.05020.147974
120.3575233.71550.000162
130.0022170.0230.490832
140.0477470.49620.310381
15-0.005778-0.060.476116
16-0.087674-0.91110.182126
170.1047391.08850.139403
18-0.131857-1.37030.086718
190.0300230.3120.377818
200.0002750.00290.498864
210.0479670.49850.309576
22-0.106776-1.10960.134808
23-0.107211-1.11420.133839
240.0851640.88510.189048
250.0297540.30920.378877
26-0.047347-0.4920.311842
270.0564730.58690.279253
28-0.075087-0.78030.218453
290.0127820.13280.447288
30-0.005651-0.05870.476638
310.0016610.01730.493128
320.0063040.06550.473943
330.0788620.81960.207135
34-0.014718-0.1530.439359
35-0.034414-0.35760.360655
360.014090.14640.441926
370.0393760.40920.341599
38-0.031816-0.33060.370777
39-0.049167-0.5110.30521
40-0.107853-1.12080.13242
41-0.045956-0.47760.316956
420.0802440.83390.203082
430.0300950.31280.377533
44-0.045617-0.47410.318207
450.0003370.00350.498608
46-0.068938-0.71640.237637
470.0773850.80420.211522
48-0.024213-0.25160.400904

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.136637 & -1.42 & 0.079248 \tabularnewline
2 & 0.080546 & 0.8371 & 0.202203 \tabularnewline
3 & -0.01499 & -0.1558 & 0.43825 \tabularnewline
4 & -0.163041 & -1.6944 & 0.046539 \tabularnewline
5 & 0.119038 & 1.2371 & 0.109371 \tabularnewline
6 & -0.289119 & -3.0046 & 0.001653 \tabularnewline
7 & 0.091522 & 0.9511 & 0.171834 \tabularnewline
8 & -0.108948 & -1.1322 & 0.130024 \tabularnewline
9 & -0.063114 & -0.6559 & 0.256642 \tabularnewline
10 & 0.052914 & 0.5499 & 0.291763 \tabularnewline
11 & 0.10106 & 1.0502 & 0.147974 \tabularnewline
12 & 0.357523 & 3.7155 & 0.000162 \tabularnewline
13 & 0.002217 & 0.023 & 0.490832 \tabularnewline
14 & 0.047747 & 0.4962 & 0.310381 \tabularnewline
15 & -0.005778 & -0.06 & 0.476116 \tabularnewline
16 & -0.087674 & -0.9111 & 0.182126 \tabularnewline
17 & 0.104739 & 1.0885 & 0.139403 \tabularnewline
18 & -0.131857 & -1.3703 & 0.086718 \tabularnewline
19 & 0.030023 & 0.312 & 0.377818 \tabularnewline
20 & 0.000275 & 0.0029 & 0.498864 \tabularnewline
21 & 0.047967 & 0.4985 & 0.309576 \tabularnewline
22 & -0.106776 & -1.1096 & 0.134808 \tabularnewline
23 & -0.107211 & -1.1142 & 0.133839 \tabularnewline
24 & 0.085164 & 0.8851 & 0.189048 \tabularnewline
25 & 0.029754 & 0.3092 & 0.378877 \tabularnewline
26 & -0.047347 & -0.492 & 0.311842 \tabularnewline
27 & 0.056473 & 0.5869 & 0.279253 \tabularnewline
28 & -0.075087 & -0.7803 & 0.218453 \tabularnewline
29 & 0.012782 & 0.1328 & 0.447288 \tabularnewline
30 & -0.005651 & -0.0587 & 0.476638 \tabularnewline
31 & 0.001661 & 0.0173 & 0.493128 \tabularnewline
32 & 0.006304 & 0.0655 & 0.473943 \tabularnewline
33 & 0.078862 & 0.8196 & 0.207135 \tabularnewline
34 & -0.014718 & -0.153 & 0.439359 \tabularnewline
35 & -0.034414 & -0.3576 & 0.360655 \tabularnewline
36 & 0.01409 & 0.1464 & 0.441926 \tabularnewline
37 & 0.039376 & 0.4092 & 0.341599 \tabularnewline
38 & -0.031816 & -0.3306 & 0.370777 \tabularnewline
39 & -0.049167 & -0.511 & 0.30521 \tabularnewline
40 & -0.107853 & -1.1208 & 0.13242 \tabularnewline
41 & -0.045956 & -0.4776 & 0.316956 \tabularnewline
42 & 0.080244 & 0.8339 & 0.203082 \tabularnewline
43 & 0.030095 & 0.3128 & 0.377533 \tabularnewline
44 & -0.045617 & -0.4741 & 0.318207 \tabularnewline
45 & 0.000337 & 0.0035 & 0.498608 \tabularnewline
46 & -0.068938 & -0.7164 & 0.237637 \tabularnewline
47 & 0.077385 & 0.8042 & 0.211522 \tabularnewline
48 & -0.024213 & -0.2516 & 0.400904 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=168998&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.136637[/C][C]-1.42[/C][C]0.079248[/C][/ROW]
[ROW][C]2[/C][C]0.080546[/C][C]0.8371[/C][C]0.202203[/C][/ROW]
[ROW][C]3[/C][C]-0.01499[/C][C]-0.1558[/C][C]0.43825[/C][/ROW]
[ROW][C]4[/C][C]-0.163041[/C][C]-1.6944[/C][C]0.046539[/C][/ROW]
[ROW][C]5[/C][C]0.119038[/C][C]1.2371[/C][C]0.109371[/C][/ROW]
[ROW][C]6[/C][C]-0.289119[/C][C]-3.0046[/C][C]0.001653[/C][/ROW]
[ROW][C]7[/C][C]0.091522[/C][C]0.9511[/C][C]0.171834[/C][/ROW]
[ROW][C]8[/C][C]-0.108948[/C][C]-1.1322[/C][C]0.130024[/C][/ROW]
[ROW][C]9[/C][C]-0.063114[/C][C]-0.6559[/C][C]0.256642[/C][/ROW]
[ROW][C]10[/C][C]0.052914[/C][C]0.5499[/C][C]0.291763[/C][/ROW]
[ROW][C]11[/C][C]0.10106[/C][C]1.0502[/C][C]0.147974[/C][/ROW]
[ROW][C]12[/C][C]0.357523[/C][C]3.7155[/C][C]0.000162[/C][/ROW]
[ROW][C]13[/C][C]0.002217[/C][C]0.023[/C][C]0.490832[/C][/ROW]
[ROW][C]14[/C][C]0.047747[/C][C]0.4962[/C][C]0.310381[/C][/ROW]
[ROW][C]15[/C][C]-0.005778[/C][C]-0.06[/C][C]0.476116[/C][/ROW]
[ROW][C]16[/C][C]-0.087674[/C][C]-0.9111[/C][C]0.182126[/C][/ROW]
[ROW][C]17[/C][C]0.104739[/C][C]1.0885[/C][C]0.139403[/C][/ROW]
[ROW][C]18[/C][C]-0.131857[/C][C]-1.3703[/C][C]0.086718[/C][/ROW]
[ROW][C]19[/C][C]0.030023[/C][C]0.312[/C][C]0.377818[/C][/ROW]
[ROW][C]20[/C][C]0.000275[/C][C]0.0029[/C][C]0.498864[/C][/ROW]
[ROW][C]21[/C][C]0.047967[/C][C]0.4985[/C][C]0.309576[/C][/ROW]
[ROW][C]22[/C][C]-0.106776[/C][C]-1.1096[/C][C]0.134808[/C][/ROW]
[ROW][C]23[/C][C]-0.107211[/C][C]-1.1142[/C][C]0.133839[/C][/ROW]
[ROW][C]24[/C][C]0.085164[/C][C]0.8851[/C][C]0.189048[/C][/ROW]
[ROW][C]25[/C][C]0.029754[/C][C]0.3092[/C][C]0.378877[/C][/ROW]
[ROW][C]26[/C][C]-0.047347[/C][C]-0.492[/C][C]0.311842[/C][/ROW]
[ROW][C]27[/C][C]0.056473[/C][C]0.5869[/C][C]0.279253[/C][/ROW]
[ROW][C]28[/C][C]-0.075087[/C][C]-0.7803[/C][C]0.218453[/C][/ROW]
[ROW][C]29[/C][C]0.012782[/C][C]0.1328[/C][C]0.447288[/C][/ROW]
[ROW][C]30[/C][C]-0.005651[/C][C]-0.0587[/C][C]0.476638[/C][/ROW]
[ROW][C]31[/C][C]0.001661[/C][C]0.0173[/C][C]0.493128[/C][/ROW]
[ROW][C]32[/C][C]0.006304[/C][C]0.0655[/C][C]0.473943[/C][/ROW]
[ROW][C]33[/C][C]0.078862[/C][C]0.8196[/C][C]0.207135[/C][/ROW]
[ROW][C]34[/C][C]-0.014718[/C][C]-0.153[/C][C]0.439359[/C][/ROW]
[ROW][C]35[/C][C]-0.034414[/C][C]-0.3576[/C][C]0.360655[/C][/ROW]
[ROW][C]36[/C][C]0.01409[/C][C]0.1464[/C][C]0.441926[/C][/ROW]
[ROW][C]37[/C][C]0.039376[/C][C]0.4092[/C][C]0.341599[/C][/ROW]
[ROW][C]38[/C][C]-0.031816[/C][C]-0.3306[/C][C]0.370777[/C][/ROW]
[ROW][C]39[/C][C]-0.049167[/C][C]-0.511[/C][C]0.30521[/C][/ROW]
[ROW][C]40[/C][C]-0.107853[/C][C]-1.1208[/C][C]0.13242[/C][/ROW]
[ROW][C]41[/C][C]-0.045956[/C][C]-0.4776[/C][C]0.316956[/C][/ROW]
[ROW][C]42[/C][C]0.080244[/C][C]0.8339[/C][C]0.203082[/C][/ROW]
[ROW][C]43[/C][C]0.030095[/C][C]0.3128[/C][C]0.377533[/C][/ROW]
[ROW][C]44[/C][C]-0.045617[/C][C]-0.4741[/C][C]0.318207[/C][/ROW]
[ROW][C]45[/C][C]0.000337[/C][C]0.0035[/C][C]0.498608[/C][/ROW]
[ROW][C]46[/C][C]-0.068938[/C][C]-0.7164[/C][C]0.237637[/C][/ROW]
[ROW][C]47[/C][C]0.077385[/C][C]0.8042[/C][C]0.211522[/C][/ROW]
[ROW][C]48[/C][C]-0.024213[/C][C]-0.2516[/C][C]0.400904[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=168998&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=168998&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.136637-1.420.079248
20.0805460.83710.202203
3-0.01499-0.15580.43825
4-0.163041-1.69440.046539
50.1190381.23710.109371
6-0.289119-3.00460.001653
70.0915220.95110.171834
8-0.108948-1.13220.130024
9-0.063114-0.65590.256642
100.0529140.54990.291763
110.101061.05020.147974
120.3575233.71550.000162
130.0022170.0230.490832
140.0477470.49620.310381
15-0.005778-0.060.476116
16-0.087674-0.91110.182126
170.1047391.08850.139403
18-0.131857-1.37030.086718
190.0300230.3120.377818
200.0002750.00290.498864
210.0479670.49850.309576
22-0.106776-1.10960.134808
23-0.107211-1.11420.133839
240.0851640.88510.189048
250.0297540.30920.378877
26-0.047347-0.4920.311842
270.0564730.58690.279253
28-0.075087-0.78030.218453
290.0127820.13280.447288
30-0.005651-0.05870.476638
310.0016610.01730.493128
320.0063040.06550.473943
330.0788620.81960.207135
34-0.014718-0.1530.439359
35-0.034414-0.35760.360655
360.014090.14640.441926
370.0393760.40920.341599
38-0.031816-0.33060.370777
39-0.049167-0.5110.30521
40-0.107853-1.12080.13242
41-0.045956-0.47760.316956
420.0802440.83390.203082
430.0300950.31280.377533
44-0.045617-0.47410.318207
450.0003370.00350.498608
46-0.068938-0.71640.237637
470.0773850.80420.211522
48-0.024213-0.25160.400904



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')