Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 12 Dec 2012 08:09:31 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/12/t1355317957eb8mzwhqivmuqg1.htm/, Retrieved Thu, 31 Oct 2024 23:03:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=198865, Retrieved Thu, 31 Oct 2024 23:03:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact184
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
- R PD  [Multiple Regression] [workshop 7: regre...] [2012-11-02 15:42:59] [40b341cf5fb1ddfd74e4c5704837f48c]
-   PD    [Multiple Regression] [workshop 7: Y_t m...] [2012-11-02 16:52:03] [40b341cf5fb1ddfd74e4c5704837f48c]
-           [Multiple Regression] [workshop 7: deter...] [2012-11-02 17:20:14] [40b341cf5fb1ddfd74e4c5704837f48c]
-   PD        [Multiple Regression] [workshop 7: berek...] [2012-11-02 19:46:17] [40b341cf5fb1ddfd74e4c5704837f48c]
-   PD            [Multiple Regression] [Paper 2012: rfc m...] [2012-12-12 13:09:31] [7a9100b3135ff0dae36397155af309d9] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	1	1	0	0	0	0	1
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	0
4	1	2	0	0	0	1	1
4	0	2	0	0	0	0	0
4	0	1	0	0	0	0	0
4	0	2	0	0	0	0	1
4	1	2	0	0	0	0	0
4	1	1	0	0	0	0	0
4	0	2	0	0	0	0	0
4	0	2	0	1	0	1	0
4	1	1	0	0	0	0	0
4	0	2	0	1	0	1	1
4	0	1	0	1	0	1	1
4	1	1	0	1	1	1	0
4	1	1	0	0	0	0	0
4	0	2	0	0	0	0	1
4	0	1	0	1	1	1	1
4	1	2	0	0	0	1	0
4	1	2	0	1	0	1	1
4	0	2	0	0	0	1	1
4	1	2	0	0	0	1	1
4	0	1	0	1	0	0	1
4	0	2	0	1	0	1	0
4	1	2	0	0	0	0	1
4	0	2	0	1	0	0	0
4	0	2	0	0	0	0	1
4	0	2	0	0	0	1	0
4	0	2	0	0	0	0	0
4	1	2	0	0	0	0	0
4	1	2	0	0	0	1	0
4	0	1	0	0	0	0	1
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	0
4	1	1	0	1	0	1	0
4	0	2	0	1	0	0	1
4	0	2	0	0	0	1	1
4	0	1	0	0	0	1	0
4	0	2	0	1	1	1	1
4	0	2	0	1	0	0	1
4	1	2	0	0	0	1	1
4	1	1	0	0	0	0	0
4	0	2	0	0	0	1	0
4	0	2	0	0	0	1	1
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	1
4	0	2	0	0	0	1	1
4	0	2	0	0	0	0	0
4	0	1	0	1	0	0	0
4	1	1	0	1	1	1	0
4	0	2	0	0	0	0	1
4	0	2	0	1	1	0	0
4	0	2	0	0	0	0	0
4	0	1	0	1	0	0	1
4	0	2	0	1	0	1	1
4	0	2	0	0	0	0	1
4	0	2	0	0	0	0	1
4	1	1	0	1	1	1	1
4	1	1	0	0	0	0	1
4	0	2	0	1	0	1	0
4	0	2	0	0	0	0	0
4	1	1	0	0	0	0	1
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	0
4	0	1	0	1	1	1	0
4	1	2	0	0	0	0	0
4	0	2	0	0	0	0	1
4	0	2	0	1	0	0	0
4	0	2	0	0	0	0	0
4	0	2	0	0	0	0	1
4	0	2	0	1	0	0	1
4	1	2	0	1	0	0	0
4	0	2	0	0	0	0	1
4	0	1	0	0	0	1	1
4	0	2	0	0	0	0	1
4	0	2	0	1	0	1	1
4	0	1	0	1	1	0	1
4	0	1	0	0	0	1	0
4	0	2	0	0	0	0	0
4	1	2	0	1	0	0	1
4	0	2	0	0	0	0	0
4	0	2	0	1	1	0	0
4	0	2	0	0	0	1	1
4	1	2	0	0	0	0	0
2	1	0	2	0	0	0	1
2	1	0	1	1	0	0	1
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	1
2	0	0	2	0	0	1	0
2	1	0	1	0	0	0	0
2	1	0	2	0	0	1	0
2	0	0	2	0	0	0	0
2	0	0	1	0	0	0	0
2	0	0	2	0	0	0	1
2	1	0	1	0	0	0	0
2	0	0	2	0	0	0	0
2	1	0	2	0	0	0	0
2	0	0	2	0	0	0	1
2	1	0	2	0	0	0	1
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	0	0	1	1	0	0	0
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	1	0	1	1	0	0	0
2	0	0	2	0	0	0	0
2	1	0	2	0	0	0	0
2	1	0	1	1	0	1	0
2	0	0	1	0	0	0	0
2	0	0	2	1	0	0	0
2	1	0	1	1	0	0	0
2	1	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	1	0	2	0	0	0	1
2	1	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	1
2	1	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	1	0	1	1	0	0	0
2	0	0	2	1	0	1	1
2	0	0	2	0	0	0	1
2	0	0	1	0	0	0	0
2	0	0	2	0	0	1	0
2	0	0	2	0	0	0	1
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	1
2	1	0	2	0	0	0	0
2	1	0	2	0	0	0	1
2	1	0	2	1	0	0	0
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	0	0	2	0	0	0	0
2	1	0	2	1	0	1	1
2	1	0	1	1	0	1	1
2	0	0	1	0	0	0	0
2	0	0	2	0	0	0	0
2	0	0	2	1	1	0	1
2	0	0	1	1	0	0	1
2	1	0	2	0	0	0	0
2	0	0	2	0	0	1	1
2	0	0	2	0	0	1	0
2	0	0	1	0	0	0	1
2	0	0	1	1	0	0	0
2	0	0	1	0	0	0	0
2	1	0	2	0	0	0	0
2	0	0	2	0	0	1	1
2	0	0	2	0	0	0	1
2	1	0	2	1	1	0	0
2	1	0	2	1	1	1	0
2	1	0	2	1	0	0	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
CorrectAnalysis_1[t] = -1.15798149687543 + 0.351151565220221Weeks[t] -0.00199330863477795uselimit[t] -0.163697515521597T40[t] + 0.150676124978063T20[t] + 0.248752117406973used[t] + 0.0440401232909736useful[t] -0.0414080650037894outcome[t] + 0.00149668514555213t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
CorrectAnalysis_1[t] =  -1.15798149687543 +  0.351151565220221Weeks[t] -0.00199330863477795uselimit[t] -0.163697515521597T40[t] +  0.150676124978063T20[t] +  0.248752117406973used[t] +  0.0440401232909736useful[t] -0.0414080650037894outcome[t] +  0.00149668514555213t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]CorrectAnalysis_1[t] =  -1.15798149687543 +  0.351151565220221Weeks[t] -0.00199330863477795uselimit[t] -0.163697515521597T40[t] +  0.150676124978063T20[t] +  0.248752117406973used[t] +  0.0440401232909736useful[t] -0.0414080650037894outcome[t] +  0.00149668514555213t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
CorrectAnalysis_1[t] = -1.15798149687543 + 0.351151565220221Weeks[t] -0.00199330863477795uselimit[t] -0.163697515521597T40[t] + 0.150676124978063T20[t] + 0.248752117406973used[t] + 0.0440401232909736useful[t] -0.0414080650037894outcome[t] + 0.00149668514555213t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-1.157981496875430.306867-3.77360.0002340.000117
Weeks0.3511515652202210.0853224.11566.5e-053.2e-05
uselimit-0.001993308634777950.041366-0.04820.9616330.480817
T40-0.1636975155215970.058194-2.8130.005590.002795
T200.1506761249780630.067412.23520.0269310.013466
used0.2487521174069730.0452865.49300
useful0.04404012329097360.0452790.97260.3323520.166176
outcome-0.04140806500378940.039384-1.05140.2948230.147412
t0.001496685145552130.0008451.77150.0785860.039293

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -1.15798149687543 & 0.306867 & -3.7736 & 0.000234 & 0.000117 \tabularnewline
Weeks & 0.351151565220221 & 0.085322 & 4.1156 & 6.5e-05 & 3.2e-05 \tabularnewline
uselimit & -0.00199330863477795 & 0.041366 & -0.0482 & 0.961633 & 0.480817 \tabularnewline
T40 & -0.163697515521597 & 0.058194 & -2.813 & 0.00559 & 0.002795 \tabularnewline
T20 & 0.150676124978063 & 0.06741 & 2.2352 & 0.026931 & 0.013466 \tabularnewline
used & 0.248752117406973 & 0.045286 & 5.493 & 0 & 0 \tabularnewline
useful & 0.0440401232909736 & 0.045279 & 0.9726 & 0.332352 & 0.166176 \tabularnewline
outcome & -0.0414080650037894 & 0.039384 & -1.0514 & 0.294823 & 0.147412 \tabularnewline
t & 0.00149668514555213 & 0.000845 & 1.7715 & 0.078586 & 0.039293 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-1.15798149687543[/C][C]0.306867[/C][C]-3.7736[/C][C]0.000234[/C][C]0.000117[/C][/ROW]
[ROW][C]Weeks[/C][C]0.351151565220221[/C][C]0.085322[/C][C]4.1156[/C][C]6.5e-05[/C][C]3.2e-05[/C][/ROW]
[ROW][C]uselimit[/C][C]-0.00199330863477795[/C][C]0.041366[/C][C]-0.0482[/C][C]0.961633[/C][C]0.480817[/C][/ROW]
[ROW][C]T40[/C][C]-0.163697515521597[/C][C]0.058194[/C][C]-2.813[/C][C]0.00559[/C][C]0.002795[/C][/ROW]
[ROW][C]T20[/C][C]0.150676124978063[/C][C]0.06741[/C][C]2.2352[/C][C]0.026931[/C][C]0.013466[/C][/ROW]
[ROW][C]used[/C][C]0.248752117406973[/C][C]0.045286[/C][C]5.493[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]useful[/C][C]0.0440401232909736[/C][C]0.045279[/C][C]0.9726[/C][C]0.332352[/C][C]0.166176[/C][/ROW]
[ROW][C]outcome[/C][C]-0.0414080650037894[/C][C]0.039384[/C][C]-1.0514[/C][C]0.294823[/C][C]0.147412[/C][/ROW]
[ROW][C]t[/C][C]0.00149668514555213[/C][C]0.000845[/C][C]1.7715[/C][C]0.078586[/C][C]0.039293[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-1.157981496875430.306867-3.77360.0002340.000117
Weeks0.3511515652202210.0853224.11566.5e-053.2e-05
uselimit-0.001993308634777950.041366-0.04820.9616330.480817
T40-0.1636975155215970.058194-2.8130.005590.002795
T200.1506761249780630.067412.23520.0269310.013466
used0.2487521174069730.0452865.49300
useful0.04404012329097360.0452790.97260.3323520.166176
outcome-0.04140806500378940.039384-1.05140.2948230.147412
t0.001496685145552130.0008451.77150.0785860.039293







Multiple Linear Regression - Regression Statistics
Multiple R0.546977776330514
R-squared0.299184687799473
Adjusted R-squared0.260519015402203
F-TEST (value)7.73773399633402
F-TEST (DF numerator)8
F-TEST (DF denominator)145
p-value1.30143621435153e-08
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.231255582180693
Sum Squared Residuals7.75447592201102

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.546977776330514 \tabularnewline
R-squared & 0.299184687799473 \tabularnewline
Adjusted R-squared & 0.260519015402203 \tabularnewline
F-TEST (value) & 7.73773399633402 \tabularnewline
F-TEST (DF numerator) & 8 \tabularnewline
F-TEST (DF denominator) & 145 \tabularnewline
p-value & 1.30143621435153e-08 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.231255582180693 \tabularnewline
Sum Squared Residuals & 7.75447592201102 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.546977776330514[/C][/ROW]
[ROW][C]R-squared[/C][C]0.299184687799473[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.260519015402203[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]7.73773399633402[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]8[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]145[/C][/ROW]
[ROW][C]p-value[/C][C]1.30143621435153e-08[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.231255582180693[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]7.75447592201102[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.546977776330514
R-squared0.299184687799473
Adjusted R-squared0.260519015402203
F-TEST (value)7.73773399633402
F-TEST (DF numerator)8
F-TEST (DF denominator)145
p-value1.30143621435153e-08
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.231255582180693
Sum Squared Residuals7.75447592201102







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.0410225599908448-0.0410225599908448
20-0.0777768967466340.077776896746634
30-0.07628021160108160.0762802116010816
40-0.07478352645552950.0747835264555295
50-0.07328684130997720.0732868413099772
60-0.07115140651201890.0711514065120189
70-0.0702934710188730.070293471018873
800.0949007296482764-0.0949007296482764
90-0.1087081657315580.108708165731558
100-0.06779672421699460.0677967242169946
1100.0973974764501549-0.0973974764501549
120-0.06281004529111240.0628100452911124
1300.231478880552387-0.231478880552387
1400.101887531886811-0.101887531886811
1500.193064185839701-0.193064185839701
1600.358258386506851-0.358258386506851
1710.3991698280214150.600830171978585
1800.10787427246902-0.10787427246902
190-0.0937413142760370.093741314276037
2010.364245127089060.63575487291094
210-0.007293064324947650.00729306432494765
2200.201547673223788-0.201547673223788
230-0.04371445040285490.0437144504028549
240-0.04421107389208070.0442110738920807
2500.327688429525846-0.327688429525846
2600.250935787444564-0.250935787444564
270-0.08376114174639790.0837611417463979
2800.209889034444695-0.209889034444695
290-0.07877446282051570.0787744628205157
3000.00817041061979947-0.00817041061979947
310-0.0343730275256220.034373027525622
320-0.03486965101484780.0348696510148478
3300.0106671574216779-0.0106671574216779
3400.0924064784288423-0.0924064784288423
350-0.02838628694341350.0283862869434135
360-0.02688960179786130.0268896017978613
3700.429103530932457-0.429103530932457
3800.183447820896427-0.183447820896427
390-0.01976748807402080.0197674880740208
4000.186834777596918-0.186834777596918
4110.2319779996240570.768022000375943
4200.189434561478635-0.189434561478635
430-0.01577405612659030.0157740561265903
4400.146788086253375-0.146788086253375
4500.0306206878030814-0.0306206878030814
460-0.009290692055155920.00929069205515592
470-0.01042606519678790.0104260651967879
480-0.05033744505502520.0503374450550252
490-0.004800636618499540.00480063661849954
500-0.005936009760131560.00593600976013156
5100.408010308313991-0.408010308313991
5210.4515538081157390.548446191884261
530-0.04285401932726460.0428540193272646
5410.248802848229050.75119715177095
5500.00154741596762908-0.00154741596762908
5600.374085669037962-0.374085669037962
5700.255924961952891-0.255924961952891
580-0.0353705935995040.035370593599504
590-0.03387390845395180.0338739084539518
6010.4221192242763670.577880775723633
6100.130823668723972-0.130823668723972
6200.304816452684441-0.304816452684441
6300.0135208971320461-0.0135208971320461
6400.135313724160628-0.135313724160628
6500.0165142674231504-0.0165142674231504
6600.0180109525687025-0.0180109525687025
6710.4759973939337990.524002606066201
6800.0190110142250288-0.0190110142250288
690-0.01890705699843060.0189070569984306
7000.272749810557884-0.272749810557884
7100.0254943782964631-0.0254943782964631
720-0.01441700156177420.0144170015617742
7300.235831800990751-0.235831800990751
7400.276743242505315-0.276743242505315
750-0.009926946125117810.00992694612511781
7600.199307377833005-0.199307377833005
770-0.006933575834013550.00693357583401355
7800.287355350009486-0.287355350009486
7910.4085094273856620.591490572614338
8000.246702183419003-0.246702183419003
8100.0404612297519844-0.0404612297519844
8200.247308658665942-0.247308658665942
8300.0434546000430886-0.0434546000430886
8410.2937034025956140.706296597404386
8500.049080028621377-0.049080028621377
8600.0459513468449671-0.0459513468449671
870-0.06751588245439290.0675158824543929
8800.0320567951200698-0.0320567951200698
890-0.02112113852472120.0211211385247212
900-0.06103251838295850.0610325183829585
9100.0259123550573566-0.0259123550573566
920-0.1693005167009060.169300516700906
9300.0269124167136829-0.0269124167136829
940-0.01363771279696060.0136377127969606
950-0.1628171526294710.162817152629471
960-0.05205240750964580.0520524075096458
970-0.1618170909731450.161817090973145
980-0.007650972214752060.00765097221475206
990-0.008147595703977870.00814759570397787
1000-0.04606566692743730.0460656669274373
1010-0.04656229041666310.0465622904166631
1020-0.001664231632543540.00166423163254354
1030-0.0001675464869914160.000167546486991416
10400.00132913865856071-0.00132913865856071
10500.100901816233023-0.100901816233023
10600.00432250894966497-0.00432250894966497
10700.0058191940952171-0.0058191940952171
10800.103398563034902-0.103398563034902
10900.00881256438632135-0.00881256438632135
11000.00831594089709553-0.00831594089709553
11100.151928741762532-0.151928741762532
1120-0.1373735051550850.137373505155085
11300.263551422375503-0.263551422375503
11400.112378673908215-0.112378673908215
11500.0157993666248562-0.0157993666248562
11600.0192893604051862-0.0192893604051862
1170-0.0226153280878290.022615328087829
11800.0202894220615126-0.0202894220615126
11900.0237794158418426-0.0237794158418426
1200-0.01613196401639470.0161319640163947
12100.0247794774981689-0.0247794774981689
12200.028269471278499-0.028269471278499
12300.125848840218184-0.125848840218184
12400.282647017263761-0.282647017263761
1250-0.008648538288634050.00864853828863405
1260-0.1164199131173550.116419913117355
12700.0797930202972332-0.0797930202972332
1280-0.004158482851977660.00415848285197766
12900.0387462672973639-0.0387462672973639
1300-0.00116511256087340.0011651125608734
13100.0397463289536902-0.0397463289536902
1320-0.0001650509045470970.000165050904547097
13300.291491816651768-0.291491816651768
13400.0462296930251245-0.0462296930251245
13500.0477263781706767-0.0477263781706767
13600.0492230633162288-0.0492230633162288
13700.30011061552116-0.30011061552116
13800.15093117568865-0.15093117568865
1390-0.09696300622517760.0969630062251776
14000.0552098038984373-0.0552098038984373
14110.2640505414471730.735949458552827
14200.114871101614663-0.114871101614663
14300.0577065507003158-0.0577065507003158
14400.06382860276783-0.06382860276783
14500.106733352917172-0.106733352917172
1460-0.1278942752101020.127894275210102
14700.163762592346213-0.163762592346213
1480-0.08349283991520850.0834928399152085
14900.0666866615736285-0.0666866615736285
15000.0728087136411427-0.0728087136411427
15100.0302652754957213-0.0302652754957213
15210.3199288344172580.680071165582742
15310.3654656428537840.634534357146216
15400.322922204708363-0.322922204708363

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 0 & 0.0410225599908448 & -0.0410225599908448 \tabularnewline
2 & 0 & -0.077776896746634 & 0.077776896746634 \tabularnewline
3 & 0 & -0.0762802116010816 & 0.0762802116010816 \tabularnewline
4 & 0 & -0.0747835264555295 & 0.0747835264555295 \tabularnewline
5 & 0 & -0.0732868413099772 & 0.0732868413099772 \tabularnewline
6 & 0 & -0.0711514065120189 & 0.0711514065120189 \tabularnewline
7 & 0 & -0.070293471018873 & 0.070293471018873 \tabularnewline
8 & 0 & 0.0949007296482764 & -0.0949007296482764 \tabularnewline
9 & 0 & -0.108708165731558 & 0.108708165731558 \tabularnewline
10 & 0 & -0.0677967242169946 & 0.0677967242169946 \tabularnewline
11 & 0 & 0.0973974764501549 & -0.0973974764501549 \tabularnewline
12 & 0 & -0.0628100452911124 & 0.0628100452911124 \tabularnewline
13 & 0 & 0.231478880552387 & -0.231478880552387 \tabularnewline
14 & 0 & 0.101887531886811 & -0.101887531886811 \tabularnewline
15 & 0 & 0.193064185839701 & -0.193064185839701 \tabularnewline
16 & 0 & 0.358258386506851 & -0.358258386506851 \tabularnewline
17 & 1 & 0.399169828021415 & 0.600830171978585 \tabularnewline
18 & 0 & 0.10787427246902 & -0.10787427246902 \tabularnewline
19 & 0 & -0.093741314276037 & 0.093741314276037 \tabularnewline
20 & 1 & 0.36424512708906 & 0.63575487291094 \tabularnewline
21 & 0 & -0.00729306432494765 & 0.00729306432494765 \tabularnewline
22 & 0 & 0.201547673223788 & -0.201547673223788 \tabularnewline
23 & 0 & -0.0437144504028549 & 0.0437144504028549 \tabularnewline
24 & 0 & -0.0442110738920807 & 0.0442110738920807 \tabularnewline
25 & 0 & 0.327688429525846 & -0.327688429525846 \tabularnewline
26 & 0 & 0.250935787444564 & -0.250935787444564 \tabularnewline
27 & 0 & -0.0837611417463979 & 0.0837611417463979 \tabularnewline
28 & 0 & 0.209889034444695 & -0.209889034444695 \tabularnewline
29 & 0 & -0.0787744628205157 & 0.0787744628205157 \tabularnewline
30 & 0 & 0.00817041061979947 & -0.00817041061979947 \tabularnewline
31 & 0 & -0.034373027525622 & 0.034373027525622 \tabularnewline
32 & 0 & -0.0348696510148478 & 0.0348696510148478 \tabularnewline
33 & 0 & 0.0106671574216779 & -0.0106671574216779 \tabularnewline
34 & 0 & 0.0924064784288423 & -0.0924064784288423 \tabularnewline
35 & 0 & -0.0283862869434135 & 0.0283862869434135 \tabularnewline
36 & 0 & -0.0268896017978613 & 0.0268896017978613 \tabularnewline
37 & 0 & 0.429103530932457 & -0.429103530932457 \tabularnewline
38 & 0 & 0.183447820896427 & -0.183447820896427 \tabularnewline
39 & 0 & -0.0197674880740208 & 0.0197674880740208 \tabularnewline
40 & 0 & 0.186834777596918 & -0.186834777596918 \tabularnewline
41 & 1 & 0.231977999624057 & 0.768022000375943 \tabularnewline
42 & 0 & 0.189434561478635 & -0.189434561478635 \tabularnewline
43 & 0 & -0.0157740561265903 & 0.0157740561265903 \tabularnewline
44 & 0 & 0.146788086253375 & -0.146788086253375 \tabularnewline
45 & 0 & 0.0306206878030814 & -0.0306206878030814 \tabularnewline
46 & 0 & -0.00929069205515592 & 0.00929069205515592 \tabularnewline
47 & 0 & -0.0104260651967879 & 0.0104260651967879 \tabularnewline
48 & 0 & -0.0503374450550252 & 0.0503374450550252 \tabularnewline
49 & 0 & -0.00480063661849954 & 0.00480063661849954 \tabularnewline
50 & 0 & -0.00593600976013156 & 0.00593600976013156 \tabularnewline
51 & 0 & 0.408010308313991 & -0.408010308313991 \tabularnewline
52 & 1 & 0.451553808115739 & 0.548446191884261 \tabularnewline
53 & 0 & -0.0428540193272646 & 0.0428540193272646 \tabularnewline
54 & 1 & 0.24880284822905 & 0.75119715177095 \tabularnewline
55 & 0 & 0.00154741596762908 & -0.00154741596762908 \tabularnewline
56 & 0 & 0.374085669037962 & -0.374085669037962 \tabularnewline
57 & 0 & 0.255924961952891 & -0.255924961952891 \tabularnewline
58 & 0 & -0.035370593599504 & 0.035370593599504 \tabularnewline
59 & 0 & -0.0338739084539518 & 0.0338739084539518 \tabularnewline
60 & 1 & 0.422119224276367 & 0.577880775723633 \tabularnewline
61 & 0 & 0.130823668723972 & -0.130823668723972 \tabularnewline
62 & 0 & 0.304816452684441 & -0.304816452684441 \tabularnewline
63 & 0 & 0.0135208971320461 & -0.0135208971320461 \tabularnewline
64 & 0 & 0.135313724160628 & -0.135313724160628 \tabularnewline
65 & 0 & 0.0165142674231504 & -0.0165142674231504 \tabularnewline
66 & 0 & 0.0180109525687025 & -0.0180109525687025 \tabularnewline
67 & 1 & 0.475997393933799 & 0.524002606066201 \tabularnewline
68 & 0 & 0.0190110142250288 & -0.0190110142250288 \tabularnewline
69 & 0 & -0.0189070569984306 & 0.0189070569984306 \tabularnewline
70 & 0 & 0.272749810557884 & -0.272749810557884 \tabularnewline
71 & 0 & 0.0254943782964631 & -0.0254943782964631 \tabularnewline
72 & 0 & -0.0144170015617742 & 0.0144170015617742 \tabularnewline
73 & 0 & 0.235831800990751 & -0.235831800990751 \tabularnewline
74 & 0 & 0.276743242505315 & -0.276743242505315 \tabularnewline
75 & 0 & -0.00992694612511781 & 0.00992694612511781 \tabularnewline
76 & 0 & 0.199307377833005 & -0.199307377833005 \tabularnewline
77 & 0 & -0.00693357583401355 & 0.00693357583401355 \tabularnewline
78 & 0 & 0.287355350009486 & -0.287355350009486 \tabularnewline
79 & 1 & 0.408509427385662 & 0.591490572614338 \tabularnewline
80 & 0 & 0.246702183419003 & -0.246702183419003 \tabularnewline
81 & 0 & 0.0404612297519844 & -0.0404612297519844 \tabularnewline
82 & 0 & 0.247308658665942 & -0.247308658665942 \tabularnewline
83 & 0 & 0.0434546000430886 & -0.0434546000430886 \tabularnewline
84 & 1 & 0.293703402595614 & 0.706296597404386 \tabularnewline
85 & 0 & 0.049080028621377 & -0.049080028621377 \tabularnewline
86 & 0 & 0.0459513468449671 & -0.0459513468449671 \tabularnewline
87 & 0 & -0.0675158824543929 & 0.0675158824543929 \tabularnewline
88 & 0 & 0.0320567951200698 & -0.0320567951200698 \tabularnewline
89 & 0 & -0.0211211385247212 & 0.0211211385247212 \tabularnewline
90 & 0 & -0.0610325183829585 & 0.0610325183829585 \tabularnewline
91 & 0 & 0.0259123550573566 & -0.0259123550573566 \tabularnewline
92 & 0 & -0.169300516700906 & 0.169300516700906 \tabularnewline
93 & 0 & 0.0269124167136829 & -0.0269124167136829 \tabularnewline
94 & 0 & -0.0136377127969606 & 0.0136377127969606 \tabularnewline
95 & 0 & -0.162817152629471 & 0.162817152629471 \tabularnewline
96 & 0 & -0.0520524075096458 & 0.0520524075096458 \tabularnewline
97 & 0 & -0.161817090973145 & 0.161817090973145 \tabularnewline
98 & 0 & -0.00765097221475206 & 0.00765097221475206 \tabularnewline
99 & 0 & -0.00814759570397787 & 0.00814759570397787 \tabularnewline
100 & 0 & -0.0460656669274373 & 0.0460656669274373 \tabularnewline
101 & 0 & -0.0465622904166631 & 0.0465622904166631 \tabularnewline
102 & 0 & -0.00166423163254354 & 0.00166423163254354 \tabularnewline
103 & 0 & -0.000167546486991416 & 0.000167546486991416 \tabularnewline
104 & 0 & 0.00132913865856071 & -0.00132913865856071 \tabularnewline
105 & 0 & 0.100901816233023 & -0.100901816233023 \tabularnewline
106 & 0 & 0.00432250894966497 & -0.00432250894966497 \tabularnewline
107 & 0 & 0.0058191940952171 & -0.0058191940952171 \tabularnewline
108 & 0 & 0.103398563034902 & -0.103398563034902 \tabularnewline
109 & 0 & 0.00881256438632135 & -0.00881256438632135 \tabularnewline
110 & 0 & 0.00831594089709553 & -0.00831594089709553 \tabularnewline
111 & 0 & 0.151928741762532 & -0.151928741762532 \tabularnewline
112 & 0 & -0.137373505155085 & 0.137373505155085 \tabularnewline
113 & 0 & 0.263551422375503 & -0.263551422375503 \tabularnewline
114 & 0 & 0.112378673908215 & -0.112378673908215 \tabularnewline
115 & 0 & 0.0157993666248562 & -0.0157993666248562 \tabularnewline
116 & 0 & 0.0192893604051862 & -0.0192893604051862 \tabularnewline
117 & 0 & -0.022615328087829 & 0.022615328087829 \tabularnewline
118 & 0 & 0.0202894220615126 & -0.0202894220615126 \tabularnewline
119 & 0 & 0.0237794158418426 & -0.0237794158418426 \tabularnewline
120 & 0 & -0.0161319640163947 & 0.0161319640163947 \tabularnewline
121 & 0 & 0.0247794774981689 & -0.0247794774981689 \tabularnewline
122 & 0 & 0.028269471278499 & -0.028269471278499 \tabularnewline
123 & 0 & 0.125848840218184 & -0.125848840218184 \tabularnewline
124 & 0 & 0.282647017263761 & -0.282647017263761 \tabularnewline
125 & 0 & -0.00864853828863405 & 0.00864853828863405 \tabularnewline
126 & 0 & -0.116419913117355 & 0.116419913117355 \tabularnewline
127 & 0 & 0.0797930202972332 & -0.0797930202972332 \tabularnewline
128 & 0 & -0.00415848285197766 & 0.00415848285197766 \tabularnewline
129 & 0 & 0.0387462672973639 & -0.0387462672973639 \tabularnewline
130 & 0 & -0.0011651125608734 & 0.0011651125608734 \tabularnewline
131 & 0 & 0.0397463289536902 & -0.0397463289536902 \tabularnewline
132 & 0 & -0.000165050904547097 & 0.000165050904547097 \tabularnewline
133 & 0 & 0.291491816651768 & -0.291491816651768 \tabularnewline
134 & 0 & 0.0462296930251245 & -0.0462296930251245 \tabularnewline
135 & 0 & 0.0477263781706767 & -0.0477263781706767 \tabularnewline
136 & 0 & 0.0492230633162288 & -0.0492230633162288 \tabularnewline
137 & 0 & 0.30011061552116 & -0.30011061552116 \tabularnewline
138 & 0 & 0.15093117568865 & -0.15093117568865 \tabularnewline
139 & 0 & -0.0969630062251776 & 0.0969630062251776 \tabularnewline
140 & 0 & 0.0552098038984373 & -0.0552098038984373 \tabularnewline
141 & 1 & 0.264050541447173 & 0.735949458552827 \tabularnewline
142 & 0 & 0.114871101614663 & -0.114871101614663 \tabularnewline
143 & 0 & 0.0577065507003158 & -0.0577065507003158 \tabularnewline
144 & 0 & 0.06382860276783 & -0.06382860276783 \tabularnewline
145 & 0 & 0.106733352917172 & -0.106733352917172 \tabularnewline
146 & 0 & -0.127894275210102 & 0.127894275210102 \tabularnewline
147 & 0 & 0.163762592346213 & -0.163762592346213 \tabularnewline
148 & 0 & -0.0834928399152085 & 0.0834928399152085 \tabularnewline
149 & 0 & 0.0666866615736285 & -0.0666866615736285 \tabularnewline
150 & 0 & 0.0728087136411427 & -0.0728087136411427 \tabularnewline
151 & 0 & 0.0302652754957213 & -0.0302652754957213 \tabularnewline
152 & 1 & 0.319928834417258 & 0.680071165582742 \tabularnewline
153 & 1 & 0.365465642853784 & 0.634534357146216 \tabularnewline
154 & 0 & 0.322922204708363 & -0.322922204708363 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]0[/C][C]0.0410225599908448[/C][C]-0.0410225599908448[/C][/ROW]
[ROW][C]2[/C][C]0[/C][C]-0.077776896746634[/C][C]0.077776896746634[/C][/ROW]
[ROW][C]3[/C][C]0[/C][C]-0.0762802116010816[/C][C]0.0762802116010816[/C][/ROW]
[ROW][C]4[/C][C]0[/C][C]-0.0747835264555295[/C][C]0.0747835264555295[/C][/ROW]
[ROW][C]5[/C][C]0[/C][C]-0.0732868413099772[/C][C]0.0732868413099772[/C][/ROW]
[ROW][C]6[/C][C]0[/C][C]-0.0711514065120189[/C][C]0.0711514065120189[/C][/ROW]
[ROW][C]7[/C][C]0[/C][C]-0.070293471018873[/C][C]0.070293471018873[/C][/ROW]
[ROW][C]8[/C][C]0[/C][C]0.0949007296482764[/C][C]-0.0949007296482764[/C][/ROW]
[ROW][C]9[/C][C]0[/C][C]-0.108708165731558[/C][C]0.108708165731558[/C][/ROW]
[ROW][C]10[/C][C]0[/C][C]-0.0677967242169946[/C][C]0.0677967242169946[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]0.0973974764501549[/C][C]-0.0973974764501549[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]-0.0628100452911124[/C][C]0.0628100452911124[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0.231478880552387[/C][C]-0.231478880552387[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0.101887531886811[/C][C]-0.101887531886811[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0.193064185839701[/C][C]-0.193064185839701[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0.358258386506851[/C][C]-0.358258386506851[/C][/ROW]
[ROW][C]17[/C][C]1[/C][C]0.399169828021415[/C][C]0.600830171978585[/C][/ROW]
[ROW][C]18[/C][C]0[/C][C]0.10787427246902[/C][C]-0.10787427246902[/C][/ROW]
[ROW][C]19[/C][C]0[/C][C]-0.093741314276037[/C][C]0.093741314276037[/C][/ROW]
[ROW][C]20[/C][C]1[/C][C]0.36424512708906[/C][C]0.63575487291094[/C][/ROW]
[ROW][C]21[/C][C]0[/C][C]-0.00729306432494765[/C][C]0.00729306432494765[/C][/ROW]
[ROW][C]22[/C][C]0[/C][C]0.201547673223788[/C][C]-0.201547673223788[/C][/ROW]
[ROW][C]23[/C][C]0[/C][C]-0.0437144504028549[/C][C]0.0437144504028549[/C][/ROW]
[ROW][C]24[/C][C]0[/C][C]-0.0442110738920807[/C][C]0.0442110738920807[/C][/ROW]
[ROW][C]25[/C][C]0[/C][C]0.327688429525846[/C][C]-0.327688429525846[/C][/ROW]
[ROW][C]26[/C][C]0[/C][C]0.250935787444564[/C][C]-0.250935787444564[/C][/ROW]
[ROW][C]27[/C][C]0[/C][C]-0.0837611417463979[/C][C]0.0837611417463979[/C][/ROW]
[ROW][C]28[/C][C]0[/C][C]0.209889034444695[/C][C]-0.209889034444695[/C][/ROW]
[ROW][C]29[/C][C]0[/C][C]-0.0787744628205157[/C][C]0.0787744628205157[/C][/ROW]
[ROW][C]30[/C][C]0[/C][C]0.00817041061979947[/C][C]-0.00817041061979947[/C][/ROW]
[ROW][C]31[/C][C]0[/C][C]-0.034373027525622[/C][C]0.034373027525622[/C][/ROW]
[ROW][C]32[/C][C]0[/C][C]-0.0348696510148478[/C][C]0.0348696510148478[/C][/ROW]
[ROW][C]33[/C][C]0[/C][C]0.0106671574216779[/C][C]-0.0106671574216779[/C][/ROW]
[ROW][C]34[/C][C]0[/C][C]0.0924064784288423[/C][C]-0.0924064784288423[/C][/ROW]
[ROW][C]35[/C][C]0[/C][C]-0.0283862869434135[/C][C]0.0283862869434135[/C][/ROW]
[ROW][C]36[/C][C]0[/C][C]-0.0268896017978613[/C][C]0.0268896017978613[/C][/ROW]
[ROW][C]37[/C][C]0[/C][C]0.429103530932457[/C][C]-0.429103530932457[/C][/ROW]
[ROW][C]38[/C][C]0[/C][C]0.183447820896427[/C][C]-0.183447820896427[/C][/ROW]
[ROW][C]39[/C][C]0[/C][C]-0.0197674880740208[/C][C]0.0197674880740208[/C][/ROW]
[ROW][C]40[/C][C]0[/C][C]0.186834777596918[/C][C]-0.186834777596918[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]0.231977999624057[/C][C]0.768022000375943[/C][/ROW]
[ROW][C]42[/C][C]0[/C][C]0.189434561478635[/C][C]-0.189434561478635[/C][/ROW]
[ROW][C]43[/C][C]0[/C][C]-0.0157740561265903[/C][C]0.0157740561265903[/C][/ROW]
[ROW][C]44[/C][C]0[/C][C]0.146788086253375[/C][C]-0.146788086253375[/C][/ROW]
[ROW][C]45[/C][C]0[/C][C]0.0306206878030814[/C][C]-0.0306206878030814[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]-0.00929069205515592[/C][C]0.00929069205515592[/C][/ROW]
[ROW][C]47[/C][C]0[/C][C]-0.0104260651967879[/C][C]0.0104260651967879[/C][/ROW]
[ROW][C]48[/C][C]0[/C][C]-0.0503374450550252[/C][C]0.0503374450550252[/C][/ROW]
[ROW][C]49[/C][C]0[/C][C]-0.00480063661849954[/C][C]0.00480063661849954[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]-0.00593600976013156[/C][C]0.00593600976013156[/C][/ROW]
[ROW][C]51[/C][C]0[/C][C]0.408010308313991[/C][C]-0.408010308313991[/C][/ROW]
[ROW][C]52[/C][C]1[/C][C]0.451553808115739[/C][C]0.548446191884261[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]-0.0428540193272646[/C][C]0.0428540193272646[/C][/ROW]
[ROW][C]54[/C][C]1[/C][C]0.24880284822905[/C][C]0.75119715177095[/C][/ROW]
[ROW][C]55[/C][C]0[/C][C]0.00154741596762908[/C][C]-0.00154741596762908[/C][/ROW]
[ROW][C]56[/C][C]0[/C][C]0.374085669037962[/C][C]-0.374085669037962[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]0.255924961952891[/C][C]-0.255924961952891[/C][/ROW]
[ROW][C]58[/C][C]0[/C][C]-0.035370593599504[/C][C]0.035370593599504[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]-0.0338739084539518[/C][C]0.0338739084539518[/C][/ROW]
[ROW][C]60[/C][C]1[/C][C]0.422119224276367[/C][C]0.577880775723633[/C][/ROW]
[ROW][C]61[/C][C]0[/C][C]0.130823668723972[/C][C]-0.130823668723972[/C][/ROW]
[ROW][C]62[/C][C]0[/C][C]0.304816452684441[/C][C]-0.304816452684441[/C][/ROW]
[ROW][C]63[/C][C]0[/C][C]0.0135208971320461[/C][C]-0.0135208971320461[/C][/ROW]
[ROW][C]64[/C][C]0[/C][C]0.135313724160628[/C][C]-0.135313724160628[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]0.0165142674231504[/C][C]-0.0165142674231504[/C][/ROW]
[ROW][C]66[/C][C]0[/C][C]0.0180109525687025[/C][C]-0.0180109525687025[/C][/ROW]
[ROW][C]67[/C][C]1[/C][C]0.475997393933799[/C][C]0.524002606066201[/C][/ROW]
[ROW][C]68[/C][C]0[/C][C]0.0190110142250288[/C][C]-0.0190110142250288[/C][/ROW]
[ROW][C]69[/C][C]0[/C][C]-0.0189070569984306[/C][C]0.0189070569984306[/C][/ROW]
[ROW][C]70[/C][C]0[/C][C]0.272749810557884[/C][C]-0.272749810557884[/C][/ROW]
[ROW][C]71[/C][C]0[/C][C]0.0254943782964631[/C][C]-0.0254943782964631[/C][/ROW]
[ROW][C]72[/C][C]0[/C][C]-0.0144170015617742[/C][C]0.0144170015617742[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]0.235831800990751[/C][C]-0.235831800990751[/C][/ROW]
[ROW][C]74[/C][C]0[/C][C]0.276743242505315[/C][C]-0.276743242505315[/C][/ROW]
[ROW][C]75[/C][C]0[/C][C]-0.00992694612511781[/C][C]0.00992694612511781[/C][/ROW]
[ROW][C]76[/C][C]0[/C][C]0.199307377833005[/C][C]-0.199307377833005[/C][/ROW]
[ROW][C]77[/C][C]0[/C][C]-0.00693357583401355[/C][C]0.00693357583401355[/C][/ROW]
[ROW][C]78[/C][C]0[/C][C]0.287355350009486[/C][C]-0.287355350009486[/C][/ROW]
[ROW][C]79[/C][C]1[/C][C]0.408509427385662[/C][C]0.591490572614338[/C][/ROW]
[ROW][C]80[/C][C]0[/C][C]0.246702183419003[/C][C]-0.246702183419003[/C][/ROW]
[ROW][C]81[/C][C]0[/C][C]0.0404612297519844[/C][C]-0.0404612297519844[/C][/ROW]
[ROW][C]82[/C][C]0[/C][C]0.247308658665942[/C][C]-0.247308658665942[/C][/ROW]
[ROW][C]83[/C][C]0[/C][C]0.0434546000430886[/C][C]-0.0434546000430886[/C][/ROW]
[ROW][C]84[/C][C]1[/C][C]0.293703402595614[/C][C]0.706296597404386[/C][/ROW]
[ROW][C]85[/C][C]0[/C][C]0.049080028621377[/C][C]-0.049080028621377[/C][/ROW]
[ROW][C]86[/C][C]0[/C][C]0.0459513468449671[/C][C]-0.0459513468449671[/C][/ROW]
[ROW][C]87[/C][C]0[/C][C]-0.0675158824543929[/C][C]0.0675158824543929[/C][/ROW]
[ROW][C]88[/C][C]0[/C][C]0.0320567951200698[/C][C]-0.0320567951200698[/C][/ROW]
[ROW][C]89[/C][C]0[/C][C]-0.0211211385247212[/C][C]0.0211211385247212[/C][/ROW]
[ROW][C]90[/C][C]0[/C][C]-0.0610325183829585[/C][C]0.0610325183829585[/C][/ROW]
[ROW][C]91[/C][C]0[/C][C]0.0259123550573566[/C][C]-0.0259123550573566[/C][/ROW]
[ROW][C]92[/C][C]0[/C][C]-0.169300516700906[/C][C]0.169300516700906[/C][/ROW]
[ROW][C]93[/C][C]0[/C][C]0.0269124167136829[/C][C]-0.0269124167136829[/C][/ROW]
[ROW][C]94[/C][C]0[/C][C]-0.0136377127969606[/C][C]0.0136377127969606[/C][/ROW]
[ROW][C]95[/C][C]0[/C][C]-0.162817152629471[/C][C]0.162817152629471[/C][/ROW]
[ROW][C]96[/C][C]0[/C][C]-0.0520524075096458[/C][C]0.0520524075096458[/C][/ROW]
[ROW][C]97[/C][C]0[/C][C]-0.161817090973145[/C][C]0.161817090973145[/C][/ROW]
[ROW][C]98[/C][C]0[/C][C]-0.00765097221475206[/C][C]0.00765097221475206[/C][/ROW]
[ROW][C]99[/C][C]0[/C][C]-0.00814759570397787[/C][C]0.00814759570397787[/C][/ROW]
[ROW][C]100[/C][C]0[/C][C]-0.0460656669274373[/C][C]0.0460656669274373[/C][/ROW]
[ROW][C]101[/C][C]0[/C][C]-0.0465622904166631[/C][C]0.0465622904166631[/C][/ROW]
[ROW][C]102[/C][C]0[/C][C]-0.00166423163254354[/C][C]0.00166423163254354[/C][/ROW]
[ROW][C]103[/C][C]0[/C][C]-0.000167546486991416[/C][C]0.000167546486991416[/C][/ROW]
[ROW][C]104[/C][C]0[/C][C]0.00132913865856071[/C][C]-0.00132913865856071[/C][/ROW]
[ROW][C]105[/C][C]0[/C][C]0.100901816233023[/C][C]-0.100901816233023[/C][/ROW]
[ROW][C]106[/C][C]0[/C][C]0.00432250894966497[/C][C]-0.00432250894966497[/C][/ROW]
[ROW][C]107[/C][C]0[/C][C]0.0058191940952171[/C][C]-0.0058191940952171[/C][/ROW]
[ROW][C]108[/C][C]0[/C][C]0.103398563034902[/C][C]-0.103398563034902[/C][/ROW]
[ROW][C]109[/C][C]0[/C][C]0.00881256438632135[/C][C]-0.00881256438632135[/C][/ROW]
[ROW][C]110[/C][C]0[/C][C]0.00831594089709553[/C][C]-0.00831594089709553[/C][/ROW]
[ROW][C]111[/C][C]0[/C][C]0.151928741762532[/C][C]-0.151928741762532[/C][/ROW]
[ROW][C]112[/C][C]0[/C][C]-0.137373505155085[/C][C]0.137373505155085[/C][/ROW]
[ROW][C]113[/C][C]0[/C][C]0.263551422375503[/C][C]-0.263551422375503[/C][/ROW]
[ROW][C]114[/C][C]0[/C][C]0.112378673908215[/C][C]-0.112378673908215[/C][/ROW]
[ROW][C]115[/C][C]0[/C][C]0.0157993666248562[/C][C]-0.0157993666248562[/C][/ROW]
[ROW][C]116[/C][C]0[/C][C]0.0192893604051862[/C][C]-0.0192893604051862[/C][/ROW]
[ROW][C]117[/C][C]0[/C][C]-0.022615328087829[/C][C]0.022615328087829[/C][/ROW]
[ROW][C]118[/C][C]0[/C][C]0.0202894220615126[/C][C]-0.0202894220615126[/C][/ROW]
[ROW][C]119[/C][C]0[/C][C]0.0237794158418426[/C][C]-0.0237794158418426[/C][/ROW]
[ROW][C]120[/C][C]0[/C][C]-0.0161319640163947[/C][C]0.0161319640163947[/C][/ROW]
[ROW][C]121[/C][C]0[/C][C]0.0247794774981689[/C][C]-0.0247794774981689[/C][/ROW]
[ROW][C]122[/C][C]0[/C][C]0.028269471278499[/C][C]-0.028269471278499[/C][/ROW]
[ROW][C]123[/C][C]0[/C][C]0.125848840218184[/C][C]-0.125848840218184[/C][/ROW]
[ROW][C]124[/C][C]0[/C][C]0.282647017263761[/C][C]-0.282647017263761[/C][/ROW]
[ROW][C]125[/C][C]0[/C][C]-0.00864853828863405[/C][C]0.00864853828863405[/C][/ROW]
[ROW][C]126[/C][C]0[/C][C]-0.116419913117355[/C][C]0.116419913117355[/C][/ROW]
[ROW][C]127[/C][C]0[/C][C]0.0797930202972332[/C][C]-0.0797930202972332[/C][/ROW]
[ROW][C]128[/C][C]0[/C][C]-0.00415848285197766[/C][C]0.00415848285197766[/C][/ROW]
[ROW][C]129[/C][C]0[/C][C]0.0387462672973639[/C][C]-0.0387462672973639[/C][/ROW]
[ROW][C]130[/C][C]0[/C][C]-0.0011651125608734[/C][C]0.0011651125608734[/C][/ROW]
[ROW][C]131[/C][C]0[/C][C]0.0397463289536902[/C][C]-0.0397463289536902[/C][/ROW]
[ROW][C]132[/C][C]0[/C][C]-0.000165050904547097[/C][C]0.000165050904547097[/C][/ROW]
[ROW][C]133[/C][C]0[/C][C]0.291491816651768[/C][C]-0.291491816651768[/C][/ROW]
[ROW][C]134[/C][C]0[/C][C]0.0462296930251245[/C][C]-0.0462296930251245[/C][/ROW]
[ROW][C]135[/C][C]0[/C][C]0.0477263781706767[/C][C]-0.0477263781706767[/C][/ROW]
[ROW][C]136[/C][C]0[/C][C]0.0492230633162288[/C][C]-0.0492230633162288[/C][/ROW]
[ROW][C]137[/C][C]0[/C][C]0.30011061552116[/C][C]-0.30011061552116[/C][/ROW]
[ROW][C]138[/C][C]0[/C][C]0.15093117568865[/C][C]-0.15093117568865[/C][/ROW]
[ROW][C]139[/C][C]0[/C][C]-0.0969630062251776[/C][C]0.0969630062251776[/C][/ROW]
[ROW][C]140[/C][C]0[/C][C]0.0552098038984373[/C][C]-0.0552098038984373[/C][/ROW]
[ROW][C]141[/C][C]1[/C][C]0.264050541447173[/C][C]0.735949458552827[/C][/ROW]
[ROW][C]142[/C][C]0[/C][C]0.114871101614663[/C][C]-0.114871101614663[/C][/ROW]
[ROW][C]143[/C][C]0[/C][C]0.0577065507003158[/C][C]-0.0577065507003158[/C][/ROW]
[ROW][C]144[/C][C]0[/C][C]0.06382860276783[/C][C]-0.06382860276783[/C][/ROW]
[ROW][C]145[/C][C]0[/C][C]0.106733352917172[/C][C]-0.106733352917172[/C][/ROW]
[ROW][C]146[/C][C]0[/C][C]-0.127894275210102[/C][C]0.127894275210102[/C][/ROW]
[ROW][C]147[/C][C]0[/C][C]0.163762592346213[/C][C]-0.163762592346213[/C][/ROW]
[ROW][C]148[/C][C]0[/C][C]-0.0834928399152085[/C][C]0.0834928399152085[/C][/ROW]
[ROW][C]149[/C][C]0[/C][C]0.0666866615736285[/C][C]-0.0666866615736285[/C][/ROW]
[ROW][C]150[/C][C]0[/C][C]0.0728087136411427[/C][C]-0.0728087136411427[/C][/ROW]
[ROW][C]151[/C][C]0[/C][C]0.0302652754957213[/C][C]-0.0302652754957213[/C][/ROW]
[ROW][C]152[/C][C]1[/C][C]0.319928834417258[/C][C]0.680071165582742[/C][/ROW]
[ROW][C]153[/C][C]1[/C][C]0.365465642853784[/C][C]0.634534357146216[/C][/ROW]
[ROW][C]154[/C][C]0[/C][C]0.322922204708363[/C][C]-0.322922204708363[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.0410225599908448-0.0410225599908448
20-0.0777768967466340.077776896746634
30-0.07628021160108160.0762802116010816
40-0.07478352645552950.0747835264555295
50-0.07328684130997720.0732868413099772
60-0.07115140651201890.0711514065120189
70-0.0702934710188730.070293471018873
800.0949007296482764-0.0949007296482764
90-0.1087081657315580.108708165731558
100-0.06779672421699460.0677967242169946
1100.0973974764501549-0.0973974764501549
120-0.06281004529111240.0628100452911124
1300.231478880552387-0.231478880552387
1400.101887531886811-0.101887531886811
1500.193064185839701-0.193064185839701
1600.358258386506851-0.358258386506851
1710.3991698280214150.600830171978585
1800.10787427246902-0.10787427246902
190-0.0937413142760370.093741314276037
2010.364245127089060.63575487291094
210-0.007293064324947650.00729306432494765
2200.201547673223788-0.201547673223788
230-0.04371445040285490.0437144504028549
240-0.04421107389208070.0442110738920807
2500.327688429525846-0.327688429525846
2600.250935787444564-0.250935787444564
270-0.08376114174639790.0837611417463979
2800.209889034444695-0.209889034444695
290-0.07877446282051570.0787744628205157
3000.00817041061979947-0.00817041061979947
310-0.0343730275256220.034373027525622
320-0.03486965101484780.0348696510148478
3300.0106671574216779-0.0106671574216779
3400.0924064784288423-0.0924064784288423
350-0.02838628694341350.0283862869434135
360-0.02688960179786130.0268896017978613
3700.429103530932457-0.429103530932457
3800.183447820896427-0.183447820896427
390-0.01976748807402080.0197674880740208
4000.186834777596918-0.186834777596918
4110.2319779996240570.768022000375943
4200.189434561478635-0.189434561478635
430-0.01577405612659030.0157740561265903
4400.146788086253375-0.146788086253375
4500.0306206878030814-0.0306206878030814
460-0.009290692055155920.00929069205515592
470-0.01042606519678790.0104260651967879
480-0.05033744505502520.0503374450550252
490-0.004800636618499540.00480063661849954
500-0.005936009760131560.00593600976013156
5100.408010308313991-0.408010308313991
5210.4515538081157390.548446191884261
530-0.04285401932726460.0428540193272646
5410.248802848229050.75119715177095
5500.00154741596762908-0.00154741596762908
5600.374085669037962-0.374085669037962
5700.255924961952891-0.255924961952891
580-0.0353705935995040.035370593599504
590-0.03387390845395180.0338739084539518
6010.4221192242763670.577880775723633
6100.130823668723972-0.130823668723972
6200.304816452684441-0.304816452684441
6300.0135208971320461-0.0135208971320461
6400.135313724160628-0.135313724160628
6500.0165142674231504-0.0165142674231504
6600.0180109525687025-0.0180109525687025
6710.4759973939337990.524002606066201
6800.0190110142250288-0.0190110142250288
690-0.01890705699843060.0189070569984306
7000.272749810557884-0.272749810557884
7100.0254943782964631-0.0254943782964631
720-0.01441700156177420.0144170015617742
7300.235831800990751-0.235831800990751
7400.276743242505315-0.276743242505315
750-0.009926946125117810.00992694612511781
7600.199307377833005-0.199307377833005
770-0.006933575834013550.00693357583401355
7800.287355350009486-0.287355350009486
7910.4085094273856620.591490572614338
8000.246702183419003-0.246702183419003
8100.0404612297519844-0.0404612297519844
8200.247308658665942-0.247308658665942
8300.0434546000430886-0.0434546000430886
8410.2937034025956140.706296597404386
8500.049080028621377-0.049080028621377
8600.0459513468449671-0.0459513468449671
870-0.06751588245439290.0675158824543929
8800.0320567951200698-0.0320567951200698
890-0.02112113852472120.0211211385247212
900-0.06103251838295850.0610325183829585
9100.0259123550573566-0.0259123550573566
920-0.1693005167009060.169300516700906
9300.0269124167136829-0.0269124167136829
940-0.01363771279696060.0136377127969606
950-0.1628171526294710.162817152629471
960-0.05205240750964580.0520524075096458
970-0.1618170909731450.161817090973145
980-0.007650972214752060.00765097221475206
990-0.008147595703977870.00814759570397787
1000-0.04606566692743730.0460656669274373
1010-0.04656229041666310.0465622904166631
1020-0.001664231632543540.00166423163254354
1030-0.0001675464869914160.000167546486991416
10400.00132913865856071-0.00132913865856071
10500.100901816233023-0.100901816233023
10600.00432250894966497-0.00432250894966497
10700.0058191940952171-0.0058191940952171
10800.103398563034902-0.103398563034902
10900.00881256438632135-0.00881256438632135
11000.00831594089709553-0.00831594089709553
11100.151928741762532-0.151928741762532
1120-0.1373735051550850.137373505155085
11300.263551422375503-0.263551422375503
11400.112378673908215-0.112378673908215
11500.0157993666248562-0.0157993666248562
11600.0192893604051862-0.0192893604051862
1170-0.0226153280878290.022615328087829
11800.0202894220615126-0.0202894220615126
11900.0237794158418426-0.0237794158418426
1200-0.01613196401639470.0161319640163947
12100.0247794774981689-0.0247794774981689
12200.028269471278499-0.028269471278499
12300.125848840218184-0.125848840218184
12400.282647017263761-0.282647017263761
1250-0.008648538288634050.00864853828863405
1260-0.1164199131173550.116419913117355
12700.0797930202972332-0.0797930202972332
1280-0.004158482851977660.00415848285197766
12900.0387462672973639-0.0387462672973639
1300-0.00116511256087340.0011651125608734
13100.0397463289536902-0.0397463289536902
1320-0.0001650509045470970.000165050904547097
13300.291491816651768-0.291491816651768
13400.0462296930251245-0.0462296930251245
13500.0477263781706767-0.0477263781706767
13600.0492230633162288-0.0492230633162288
13700.30011061552116-0.30011061552116
13800.15093117568865-0.15093117568865
1390-0.09696300622517760.0969630062251776
14000.0552098038984373-0.0552098038984373
14110.2640505414471730.735949458552827
14200.114871101614663-0.114871101614663
14300.0577065507003158-0.0577065507003158
14400.06382860276783-0.06382860276783
14500.106733352917172-0.106733352917172
1460-0.1278942752101020.127894275210102
14700.163762592346213-0.163762592346213
1480-0.08349283991520850.0834928399152085
14900.0666866615736285-0.0666866615736285
15000.0728087136411427-0.0728087136411427
15100.0302652754957213-0.0302652754957213
15210.3199288344172580.680071165582742
15310.3654656428537840.634534357146216
15400.322922204708363-0.322922204708363







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
12001
13001
14001
15001
16001
170.6453969235771830.7092061528456350.354603076422817
180.5641523425319780.8716953149360440.435847657468022
190.5546027812881480.8907944374237030.445397218711852
200.9305898744977230.1388202510045540.0694101255022771
210.9023780835331510.1952438329336990.0976219164668494
220.8937590021833330.2124819956333350.106240997816667
230.8539579739215170.2920840521569660.146042026078483
240.8065197531285660.3869604937428690.193480246871434
250.8016856651442350.396628669711530.198314334855765
260.7889446898011430.4221106203977140.211055310198857
270.7652047788446240.4695904423107510.234795221155376
280.7162643459362740.5674713081274530.283735654063726
290.6712743134128330.6574513731743350.328725686587167
300.6129369997849170.7741260004301650.387063000215083
310.5538722376071190.8922555247857610.44612776239288
320.4931882057014480.9863764114028960.506811794298552
330.4330064178375510.8660128356751030.566993582162449
340.3789491564596760.7578983129193520.621050843540324
350.3250163675536470.6500327351072950.674983632446353
360.2737475796175130.5474951592350260.726252420382487
370.3453587228953650.690717445790730.654641277104635
380.2997810410826720.5995620821653440.700218958917328
390.2495828503550330.4991657007100650.750417149644967
400.2301126874369130.4602253748738260.769887312563087
410.7965195367056720.4069609265886560.203480463294328
420.7695899655950640.4608200688098730.230410034404936
430.7274780896915490.5450438206169010.272521910308451
440.6911257344960530.6177485310078940.308874265503947
450.6420109251605260.7159781496789490.357989074839474
460.5925277585303390.8149444829393210.407472241469661
470.5428848892019890.9142302215960210.457115110798011
480.4929615972424020.9859231944848030.507038402757598
490.4428871861126980.8857743722253950.557112813887302
500.3933576129732080.7867152259464170.606642387026792
510.4627870779103180.9255741558206350.537212922089682
520.7359729413694670.5280541172610660.264027058630533
530.6955723221048250.608855355790350.304427677895175
540.9551372422501940.08972551549961230.0448627577498062
550.9422609874373890.1154780251252220.0577390125626109
560.9677715596356060.06445688072878840.0322284403643942
570.9678404821089280.06431903578214320.0321595178910716
580.9586382346265990.08272353074680140.0413617653734007
590.9474820727373090.1050358545253820.052517927262691
600.9847310756190750.03053784876185030.0152689243809251
610.9828484613487410.03430307730251770.0171515386512588
620.9849361031794590.03012779364108210.0150638968205411
630.9796067244033070.04078655119338520.0203932755966926
640.9792986150008070.04140276999838680.0207013849991934
650.9723910123704570.05521797525908580.0276089876295429
660.9636714946450110.07265701070997890.0363285053549894
670.9864585045873310.02708299082533790.0135414954126689
680.9819078320206240.03618433595875230.0180921679793761
690.9759499688016740.04810006239665150.0240500311983257
700.9771524852849090.04569502943018150.0228475147150907
710.9696879734203050.06062405315939020.0303120265796951
720.9605134227027310.07897315459453780.0394865772972689
730.9598694567048990.08026108659020110.0401305432951006
740.9631691034361930.07366179312761470.0368308965638074
750.9523454109674350.09530917806513060.0476545890325653
760.952869452304630.09426109539074050.0471305476953702
770.9398857149051040.1202285701897930.0601142850948964
780.9442545064649630.1114909870700740.0557454935350368
790.986393362426440.0272132751471190.0136066375735595
800.9838680591553050.03226388168939070.0161319408446953
810.9792646131204850.04147077375902990.0207353868795149
820.9842875836776750.03142483264464910.0157124163223246
830.9828921745951440.03421565080971290.0171078254048565
840.9986192722220310.002761455555938020.00138072777796901
850.9979623741645550.004075251670889240.00203762583544462
860.9969939356266920.006012128746616910.00300606437330845
870.9956883421772120.008623315645576940.00431165782278847
880.9937967848343480.01240643033130470.00620321516565237
890.9912768660633570.01744626787328520.0087231339366426
900.988033860089810.02393227982038020.0119661399101901
910.9840070949837910.03198581003241720.0159929050162086
920.9816237520155720.03675249596885640.0183762479844282
930.9759264188155120.04814716236897560.0240735811844878
940.9679431293294940.06411374134101220.0320568706705061
950.9644404820709730.07111903585805360.0355595179290268
960.9544045287323530.09119094253529480.0455954712676474
970.9520798328730910.09584033425381830.0479201671269091
980.9385105078677150.1229789842645690.0614894921322846
990.9224551602227860.1550896795544280.077544839777214
1000.9046415824463510.1907168351072980.0953584175536492
1010.8860855125324450.227828974935110.113914487467555
1020.8605122415489110.2789755169021780.139487758451089
1030.831271923040960.3374561539180790.16872807695904
1040.798377332042870.4032453359142610.20162266795713
1050.7659387399232330.4681225201535350.234061260076767
1060.7257014685517240.5485970628965520.274298531448276
1070.6823912425853140.6352175148293710.317608757414686
1080.6380187292294980.7239625415410040.361981270770502
1090.5891992830660480.8216014338679040.410800716933952
1100.5395331542728230.9209336914543540.460466845727177
1110.4951050471883410.9902100943766820.504894952811659
1120.4976657215509380.9953314431018760.502334278449062
1130.4891600716399550.9783201432799110.510839928360045
1140.4349575903842450.8699151807684890.565042409615755
1150.3834764402419680.7669528804839370.616523559758032
1160.330574613274010.6611492265480210.66942538672599
1170.2896322898918180.5792645797836370.710367710108182
1180.2472610341904790.4945220683809580.752738965809521
1190.2034630851694430.4069261703388860.796536914830557
1200.1674587697743770.3349175395487550.832541230225623
1210.1375480884099730.2750961768199460.862451911590027
1220.1072834272352620.2145668544705250.892716572764738
1230.08198925925867380.1639785185173480.918010740741326
1240.07803405122830390.1560681024566080.921965948771696
1250.05761905654539920.1152381130907980.942380943454601
1260.05768320095212740.1153664019042550.942316799047873
1270.04272743083193270.08545486166386540.957272569168067
1280.02987055816767550.0597411163353510.970129441832325
1290.02011222057618090.04022444115236180.979887779423819
1300.01319063913893670.02638127827787340.986809360861063
1310.009104115650839840.01820823130167970.99089588434916
1320.00717159534907380.01434319069814760.992828404650926
1330.006864745061186830.01372949012237370.993135254938813
1340.003909833898196080.007819667796392160.996090166101804
1350.002123993292567650.004247986585135290.997876006707432
1360.001108198373524640.002216396747049280.998891801626475
1370.001539227283651890.003078454567303780.998460772716348
1380.001435169369619450.00287033873923890.998564830630381
1390.0009033460836126790.001806692167225360.999096653916387
1400.0003728799930479220.0007457599860958450.999627120006952
1410.01082827223794160.02165654447588320.989171727762058
1420.004722696934720420.009445393869440850.99527730306528

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
12 & 0 & 0 & 1 \tabularnewline
13 & 0 & 0 & 1 \tabularnewline
14 & 0 & 0 & 1 \tabularnewline
15 & 0 & 0 & 1 \tabularnewline
16 & 0 & 0 & 1 \tabularnewline
17 & 0.645396923577183 & 0.709206152845635 & 0.354603076422817 \tabularnewline
18 & 0.564152342531978 & 0.871695314936044 & 0.435847657468022 \tabularnewline
19 & 0.554602781288148 & 0.890794437423703 & 0.445397218711852 \tabularnewline
20 & 0.930589874497723 & 0.138820251004554 & 0.0694101255022771 \tabularnewline
21 & 0.902378083533151 & 0.195243832933699 & 0.0976219164668494 \tabularnewline
22 & 0.893759002183333 & 0.212481995633335 & 0.106240997816667 \tabularnewline
23 & 0.853957973921517 & 0.292084052156966 & 0.146042026078483 \tabularnewline
24 & 0.806519753128566 & 0.386960493742869 & 0.193480246871434 \tabularnewline
25 & 0.801685665144235 & 0.39662866971153 & 0.198314334855765 \tabularnewline
26 & 0.788944689801143 & 0.422110620397714 & 0.211055310198857 \tabularnewline
27 & 0.765204778844624 & 0.469590442310751 & 0.234795221155376 \tabularnewline
28 & 0.716264345936274 & 0.567471308127453 & 0.283735654063726 \tabularnewline
29 & 0.671274313412833 & 0.657451373174335 & 0.328725686587167 \tabularnewline
30 & 0.612936999784917 & 0.774126000430165 & 0.387063000215083 \tabularnewline
31 & 0.553872237607119 & 0.892255524785761 & 0.44612776239288 \tabularnewline
32 & 0.493188205701448 & 0.986376411402896 & 0.506811794298552 \tabularnewline
33 & 0.433006417837551 & 0.866012835675103 & 0.566993582162449 \tabularnewline
34 & 0.378949156459676 & 0.757898312919352 & 0.621050843540324 \tabularnewline
35 & 0.325016367553647 & 0.650032735107295 & 0.674983632446353 \tabularnewline
36 & 0.273747579617513 & 0.547495159235026 & 0.726252420382487 \tabularnewline
37 & 0.345358722895365 & 0.69071744579073 & 0.654641277104635 \tabularnewline
38 & 0.299781041082672 & 0.599562082165344 & 0.700218958917328 \tabularnewline
39 & 0.249582850355033 & 0.499165700710065 & 0.750417149644967 \tabularnewline
40 & 0.230112687436913 & 0.460225374873826 & 0.769887312563087 \tabularnewline
41 & 0.796519536705672 & 0.406960926588656 & 0.203480463294328 \tabularnewline
42 & 0.769589965595064 & 0.460820068809873 & 0.230410034404936 \tabularnewline
43 & 0.727478089691549 & 0.545043820616901 & 0.272521910308451 \tabularnewline
44 & 0.691125734496053 & 0.617748531007894 & 0.308874265503947 \tabularnewline
45 & 0.642010925160526 & 0.715978149678949 & 0.357989074839474 \tabularnewline
46 & 0.592527758530339 & 0.814944482939321 & 0.407472241469661 \tabularnewline
47 & 0.542884889201989 & 0.914230221596021 & 0.457115110798011 \tabularnewline
48 & 0.492961597242402 & 0.985923194484803 & 0.507038402757598 \tabularnewline
49 & 0.442887186112698 & 0.885774372225395 & 0.557112813887302 \tabularnewline
50 & 0.393357612973208 & 0.786715225946417 & 0.606642387026792 \tabularnewline
51 & 0.462787077910318 & 0.925574155820635 & 0.537212922089682 \tabularnewline
52 & 0.735972941369467 & 0.528054117261066 & 0.264027058630533 \tabularnewline
53 & 0.695572322104825 & 0.60885535579035 & 0.304427677895175 \tabularnewline
54 & 0.955137242250194 & 0.0897255154996123 & 0.0448627577498062 \tabularnewline
55 & 0.942260987437389 & 0.115478025125222 & 0.0577390125626109 \tabularnewline
56 & 0.967771559635606 & 0.0644568807287884 & 0.0322284403643942 \tabularnewline
57 & 0.967840482108928 & 0.0643190357821432 & 0.0321595178910716 \tabularnewline
58 & 0.958638234626599 & 0.0827235307468014 & 0.0413617653734007 \tabularnewline
59 & 0.947482072737309 & 0.105035854525382 & 0.052517927262691 \tabularnewline
60 & 0.984731075619075 & 0.0305378487618503 & 0.0152689243809251 \tabularnewline
61 & 0.982848461348741 & 0.0343030773025177 & 0.0171515386512588 \tabularnewline
62 & 0.984936103179459 & 0.0301277936410821 & 0.0150638968205411 \tabularnewline
63 & 0.979606724403307 & 0.0407865511933852 & 0.0203932755966926 \tabularnewline
64 & 0.979298615000807 & 0.0414027699983868 & 0.0207013849991934 \tabularnewline
65 & 0.972391012370457 & 0.0552179752590858 & 0.0276089876295429 \tabularnewline
66 & 0.963671494645011 & 0.0726570107099789 & 0.0363285053549894 \tabularnewline
67 & 0.986458504587331 & 0.0270829908253379 & 0.0135414954126689 \tabularnewline
68 & 0.981907832020624 & 0.0361843359587523 & 0.0180921679793761 \tabularnewline
69 & 0.975949968801674 & 0.0481000623966515 & 0.0240500311983257 \tabularnewline
70 & 0.977152485284909 & 0.0456950294301815 & 0.0228475147150907 \tabularnewline
71 & 0.969687973420305 & 0.0606240531593902 & 0.0303120265796951 \tabularnewline
72 & 0.960513422702731 & 0.0789731545945378 & 0.0394865772972689 \tabularnewline
73 & 0.959869456704899 & 0.0802610865902011 & 0.0401305432951006 \tabularnewline
74 & 0.963169103436193 & 0.0736617931276147 & 0.0368308965638074 \tabularnewline
75 & 0.952345410967435 & 0.0953091780651306 & 0.0476545890325653 \tabularnewline
76 & 0.95286945230463 & 0.0942610953907405 & 0.0471305476953702 \tabularnewline
77 & 0.939885714905104 & 0.120228570189793 & 0.0601142850948964 \tabularnewline
78 & 0.944254506464963 & 0.111490987070074 & 0.0557454935350368 \tabularnewline
79 & 0.98639336242644 & 0.027213275147119 & 0.0136066375735595 \tabularnewline
80 & 0.983868059155305 & 0.0322638816893907 & 0.0161319408446953 \tabularnewline
81 & 0.979264613120485 & 0.0414707737590299 & 0.0207353868795149 \tabularnewline
82 & 0.984287583677675 & 0.0314248326446491 & 0.0157124163223246 \tabularnewline
83 & 0.982892174595144 & 0.0342156508097129 & 0.0171078254048565 \tabularnewline
84 & 0.998619272222031 & 0.00276145555593802 & 0.00138072777796901 \tabularnewline
85 & 0.997962374164555 & 0.00407525167088924 & 0.00203762583544462 \tabularnewline
86 & 0.996993935626692 & 0.00601212874661691 & 0.00300606437330845 \tabularnewline
87 & 0.995688342177212 & 0.00862331564557694 & 0.00431165782278847 \tabularnewline
88 & 0.993796784834348 & 0.0124064303313047 & 0.00620321516565237 \tabularnewline
89 & 0.991276866063357 & 0.0174462678732852 & 0.0087231339366426 \tabularnewline
90 & 0.98803386008981 & 0.0239322798203802 & 0.0119661399101901 \tabularnewline
91 & 0.984007094983791 & 0.0319858100324172 & 0.0159929050162086 \tabularnewline
92 & 0.981623752015572 & 0.0367524959688564 & 0.0183762479844282 \tabularnewline
93 & 0.975926418815512 & 0.0481471623689756 & 0.0240735811844878 \tabularnewline
94 & 0.967943129329494 & 0.0641137413410122 & 0.0320568706705061 \tabularnewline
95 & 0.964440482070973 & 0.0711190358580536 & 0.0355595179290268 \tabularnewline
96 & 0.954404528732353 & 0.0911909425352948 & 0.0455954712676474 \tabularnewline
97 & 0.952079832873091 & 0.0958403342538183 & 0.0479201671269091 \tabularnewline
98 & 0.938510507867715 & 0.122978984264569 & 0.0614894921322846 \tabularnewline
99 & 0.922455160222786 & 0.155089679554428 & 0.077544839777214 \tabularnewline
100 & 0.904641582446351 & 0.190716835107298 & 0.0953584175536492 \tabularnewline
101 & 0.886085512532445 & 0.22782897493511 & 0.113914487467555 \tabularnewline
102 & 0.860512241548911 & 0.278975516902178 & 0.139487758451089 \tabularnewline
103 & 0.83127192304096 & 0.337456153918079 & 0.16872807695904 \tabularnewline
104 & 0.79837733204287 & 0.403245335914261 & 0.20162266795713 \tabularnewline
105 & 0.765938739923233 & 0.468122520153535 & 0.234061260076767 \tabularnewline
106 & 0.725701468551724 & 0.548597062896552 & 0.274298531448276 \tabularnewline
107 & 0.682391242585314 & 0.635217514829371 & 0.317608757414686 \tabularnewline
108 & 0.638018729229498 & 0.723962541541004 & 0.361981270770502 \tabularnewline
109 & 0.589199283066048 & 0.821601433867904 & 0.410800716933952 \tabularnewline
110 & 0.539533154272823 & 0.920933691454354 & 0.460466845727177 \tabularnewline
111 & 0.495105047188341 & 0.990210094376682 & 0.504894952811659 \tabularnewline
112 & 0.497665721550938 & 0.995331443101876 & 0.502334278449062 \tabularnewline
113 & 0.489160071639955 & 0.978320143279911 & 0.510839928360045 \tabularnewline
114 & 0.434957590384245 & 0.869915180768489 & 0.565042409615755 \tabularnewline
115 & 0.383476440241968 & 0.766952880483937 & 0.616523559758032 \tabularnewline
116 & 0.33057461327401 & 0.661149226548021 & 0.66942538672599 \tabularnewline
117 & 0.289632289891818 & 0.579264579783637 & 0.710367710108182 \tabularnewline
118 & 0.247261034190479 & 0.494522068380958 & 0.752738965809521 \tabularnewline
119 & 0.203463085169443 & 0.406926170338886 & 0.796536914830557 \tabularnewline
120 & 0.167458769774377 & 0.334917539548755 & 0.832541230225623 \tabularnewline
121 & 0.137548088409973 & 0.275096176819946 & 0.862451911590027 \tabularnewline
122 & 0.107283427235262 & 0.214566854470525 & 0.892716572764738 \tabularnewline
123 & 0.0819892592586738 & 0.163978518517348 & 0.918010740741326 \tabularnewline
124 & 0.0780340512283039 & 0.156068102456608 & 0.921965948771696 \tabularnewline
125 & 0.0576190565453992 & 0.115238113090798 & 0.942380943454601 \tabularnewline
126 & 0.0576832009521274 & 0.115366401904255 & 0.942316799047873 \tabularnewline
127 & 0.0427274308319327 & 0.0854548616638654 & 0.957272569168067 \tabularnewline
128 & 0.0298705581676755 & 0.059741116335351 & 0.970129441832325 \tabularnewline
129 & 0.0201122205761809 & 0.0402244411523618 & 0.979887779423819 \tabularnewline
130 & 0.0131906391389367 & 0.0263812782778734 & 0.986809360861063 \tabularnewline
131 & 0.00910411565083984 & 0.0182082313016797 & 0.99089588434916 \tabularnewline
132 & 0.0071715953490738 & 0.0143431906981476 & 0.992828404650926 \tabularnewline
133 & 0.00686474506118683 & 0.0137294901223737 & 0.993135254938813 \tabularnewline
134 & 0.00390983389819608 & 0.00781966779639216 & 0.996090166101804 \tabularnewline
135 & 0.00212399329256765 & 0.00424798658513529 & 0.997876006707432 \tabularnewline
136 & 0.00110819837352464 & 0.00221639674704928 & 0.998891801626475 \tabularnewline
137 & 0.00153922728365189 & 0.00307845456730378 & 0.998460772716348 \tabularnewline
138 & 0.00143516936961945 & 0.0028703387392389 & 0.998564830630381 \tabularnewline
139 & 0.000903346083612679 & 0.00180669216722536 & 0.999096653916387 \tabularnewline
140 & 0.000372879993047922 & 0.000745759986095845 & 0.999627120006952 \tabularnewline
141 & 0.0108282722379416 & 0.0216565444758832 & 0.989171727762058 \tabularnewline
142 & 0.00472269693472042 & 0.00944539386944085 & 0.99527730306528 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]17[/C][C]0.645396923577183[/C][C]0.709206152845635[/C][C]0.354603076422817[/C][/ROW]
[ROW][C]18[/C][C]0.564152342531978[/C][C]0.871695314936044[/C][C]0.435847657468022[/C][/ROW]
[ROW][C]19[/C][C]0.554602781288148[/C][C]0.890794437423703[/C][C]0.445397218711852[/C][/ROW]
[ROW][C]20[/C][C]0.930589874497723[/C][C]0.138820251004554[/C][C]0.0694101255022771[/C][/ROW]
[ROW][C]21[/C][C]0.902378083533151[/C][C]0.195243832933699[/C][C]0.0976219164668494[/C][/ROW]
[ROW][C]22[/C][C]0.893759002183333[/C][C]0.212481995633335[/C][C]0.106240997816667[/C][/ROW]
[ROW][C]23[/C][C]0.853957973921517[/C][C]0.292084052156966[/C][C]0.146042026078483[/C][/ROW]
[ROW][C]24[/C][C]0.806519753128566[/C][C]0.386960493742869[/C][C]0.193480246871434[/C][/ROW]
[ROW][C]25[/C][C]0.801685665144235[/C][C]0.39662866971153[/C][C]0.198314334855765[/C][/ROW]
[ROW][C]26[/C][C]0.788944689801143[/C][C]0.422110620397714[/C][C]0.211055310198857[/C][/ROW]
[ROW][C]27[/C][C]0.765204778844624[/C][C]0.469590442310751[/C][C]0.234795221155376[/C][/ROW]
[ROW][C]28[/C][C]0.716264345936274[/C][C]0.567471308127453[/C][C]0.283735654063726[/C][/ROW]
[ROW][C]29[/C][C]0.671274313412833[/C][C]0.657451373174335[/C][C]0.328725686587167[/C][/ROW]
[ROW][C]30[/C][C]0.612936999784917[/C][C]0.774126000430165[/C][C]0.387063000215083[/C][/ROW]
[ROW][C]31[/C][C]0.553872237607119[/C][C]0.892255524785761[/C][C]0.44612776239288[/C][/ROW]
[ROW][C]32[/C][C]0.493188205701448[/C][C]0.986376411402896[/C][C]0.506811794298552[/C][/ROW]
[ROW][C]33[/C][C]0.433006417837551[/C][C]0.866012835675103[/C][C]0.566993582162449[/C][/ROW]
[ROW][C]34[/C][C]0.378949156459676[/C][C]0.757898312919352[/C][C]0.621050843540324[/C][/ROW]
[ROW][C]35[/C][C]0.325016367553647[/C][C]0.650032735107295[/C][C]0.674983632446353[/C][/ROW]
[ROW][C]36[/C][C]0.273747579617513[/C][C]0.547495159235026[/C][C]0.726252420382487[/C][/ROW]
[ROW][C]37[/C][C]0.345358722895365[/C][C]0.69071744579073[/C][C]0.654641277104635[/C][/ROW]
[ROW][C]38[/C][C]0.299781041082672[/C][C]0.599562082165344[/C][C]0.700218958917328[/C][/ROW]
[ROW][C]39[/C][C]0.249582850355033[/C][C]0.499165700710065[/C][C]0.750417149644967[/C][/ROW]
[ROW][C]40[/C][C]0.230112687436913[/C][C]0.460225374873826[/C][C]0.769887312563087[/C][/ROW]
[ROW][C]41[/C][C]0.796519536705672[/C][C]0.406960926588656[/C][C]0.203480463294328[/C][/ROW]
[ROW][C]42[/C][C]0.769589965595064[/C][C]0.460820068809873[/C][C]0.230410034404936[/C][/ROW]
[ROW][C]43[/C][C]0.727478089691549[/C][C]0.545043820616901[/C][C]0.272521910308451[/C][/ROW]
[ROW][C]44[/C][C]0.691125734496053[/C][C]0.617748531007894[/C][C]0.308874265503947[/C][/ROW]
[ROW][C]45[/C][C]0.642010925160526[/C][C]0.715978149678949[/C][C]0.357989074839474[/C][/ROW]
[ROW][C]46[/C][C]0.592527758530339[/C][C]0.814944482939321[/C][C]0.407472241469661[/C][/ROW]
[ROW][C]47[/C][C]0.542884889201989[/C][C]0.914230221596021[/C][C]0.457115110798011[/C][/ROW]
[ROW][C]48[/C][C]0.492961597242402[/C][C]0.985923194484803[/C][C]0.507038402757598[/C][/ROW]
[ROW][C]49[/C][C]0.442887186112698[/C][C]0.885774372225395[/C][C]0.557112813887302[/C][/ROW]
[ROW][C]50[/C][C]0.393357612973208[/C][C]0.786715225946417[/C][C]0.606642387026792[/C][/ROW]
[ROW][C]51[/C][C]0.462787077910318[/C][C]0.925574155820635[/C][C]0.537212922089682[/C][/ROW]
[ROW][C]52[/C][C]0.735972941369467[/C][C]0.528054117261066[/C][C]0.264027058630533[/C][/ROW]
[ROW][C]53[/C][C]0.695572322104825[/C][C]0.60885535579035[/C][C]0.304427677895175[/C][/ROW]
[ROW][C]54[/C][C]0.955137242250194[/C][C]0.0897255154996123[/C][C]0.0448627577498062[/C][/ROW]
[ROW][C]55[/C][C]0.942260987437389[/C][C]0.115478025125222[/C][C]0.0577390125626109[/C][/ROW]
[ROW][C]56[/C][C]0.967771559635606[/C][C]0.0644568807287884[/C][C]0.0322284403643942[/C][/ROW]
[ROW][C]57[/C][C]0.967840482108928[/C][C]0.0643190357821432[/C][C]0.0321595178910716[/C][/ROW]
[ROW][C]58[/C][C]0.958638234626599[/C][C]0.0827235307468014[/C][C]0.0413617653734007[/C][/ROW]
[ROW][C]59[/C][C]0.947482072737309[/C][C]0.105035854525382[/C][C]0.052517927262691[/C][/ROW]
[ROW][C]60[/C][C]0.984731075619075[/C][C]0.0305378487618503[/C][C]0.0152689243809251[/C][/ROW]
[ROW][C]61[/C][C]0.982848461348741[/C][C]0.0343030773025177[/C][C]0.0171515386512588[/C][/ROW]
[ROW][C]62[/C][C]0.984936103179459[/C][C]0.0301277936410821[/C][C]0.0150638968205411[/C][/ROW]
[ROW][C]63[/C][C]0.979606724403307[/C][C]0.0407865511933852[/C][C]0.0203932755966926[/C][/ROW]
[ROW][C]64[/C][C]0.979298615000807[/C][C]0.0414027699983868[/C][C]0.0207013849991934[/C][/ROW]
[ROW][C]65[/C][C]0.972391012370457[/C][C]0.0552179752590858[/C][C]0.0276089876295429[/C][/ROW]
[ROW][C]66[/C][C]0.963671494645011[/C][C]0.0726570107099789[/C][C]0.0363285053549894[/C][/ROW]
[ROW][C]67[/C][C]0.986458504587331[/C][C]0.0270829908253379[/C][C]0.0135414954126689[/C][/ROW]
[ROW][C]68[/C][C]0.981907832020624[/C][C]0.0361843359587523[/C][C]0.0180921679793761[/C][/ROW]
[ROW][C]69[/C][C]0.975949968801674[/C][C]0.0481000623966515[/C][C]0.0240500311983257[/C][/ROW]
[ROW][C]70[/C][C]0.977152485284909[/C][C]0.0456950294301815[/C][C]0.0228475147150907[/C][/ROW]
[ROW][C]71[/C][C]0.969687973420305[/C][C]0.0606240531593902[/C][C]0.0303120265796951[/C][/ROW]
[ROW][C]72[/C][C]0.960513422702731[/C][C]0.0789731545945378[/C][C]0.0394865772972689[/C][/ROW]
[ROW][C]73[/C][C]0.959869456704899[/C][C]0.0802610865902011[/C][C]0.0401305432951006[/C][/ROW]
[ROW][C]74[/C][C]0.963169103436193[/C][C]0.0736617931276147[/C][C]0.0368308965638074[/C][/ROW]
[ROW][C]75[/C][C]0.952345410967435[/C][C]0.0953091780651306[/C][C]0.0476545890325653[/C][/ROW]
[ROW][C]76[/C][C]0.95286945230463[/C][C]0.0942610953907405[/C][C]0.0471305476953702[/C][/ROW]
[ROW][C]77[/C][C]0.939885714905104[/C][C]0.120228570189793[/C][C]0.0601142850948964[/C][/ROW]
[ROW][C]78[/C][C]0.944254506464963[/C][C]0.111490987070074[/C][C]0.0557454935350368[/C][/ROW]
[ROW][C]79[/C][C]0.98639336242644[/C][C]0.027213275147119[/C][C]0.0136066375735595[/C][/ROW]
[ROW][C]80[/C][C]0.983868059155305[/C][C]0.0322638816893907[/C][C]0.0161319408446953[/C][/ROW]
[ROW][C]81[/C][C]0.979264613120485[/C][C]0.0414707737590299[/C][C]0.0207353868795149[/C][/ROW]
[ROW][C]82[/C][C]0.984287583677675[/C][C]0.0314248326446491[/C][C]0.0157124163223246[/C][/ROW]
[ROW][C]83[/C][C]0.982892174595144[/C][C]0.0342156508097129[/C][C]0.0171078254048565[/C][/ROW]
[ROW][C]84[/C][C]0.998619272222031[/C][C]0.00276145555593802[/C][C]0.00138072777796901[/C][/ROW]
[ROW][C]85[/C][C]0.997962374164555[/C][C]0.00407525167088924[/C][C]0.00203762583544462[/C][/ROW]
[ROW][C]86[/C][C]0.996993935626692[/C][C]0.00601212874661691[/C][C]0.00300606437330845[/C][/ROW]
[ROW][C]87[/C][C]0.995688342177212[/C][C]0.00862331564557694[/C][C]0.00431165782278847[/C][/ROW]
[ROW][C]88[/C][C]0.993796784834348[/C][C]0.0124064303313047[/C][C]0.00620321516565237[/C][/ROW]
[ROW][C]89[/C][C]0.991276866063357[/C][C]0.0174462678732852[/C][C]0.0087231339366426[/C][/ROW]
[ROW][C]90[/C][C]0.98803386008981[/C][C]0.0239322798203802[/C][C]0.0119661399101901[/C][/ROW]
[ROW][C]91[/C][C]0.984007094983791[/C][C]0.0319858100324172[/C][C]0.0159929050162086[/C][/ROW]
[ROW][C]92[/C][C]0.981623752015572[/C][C]0.0367524959688564[/C][C]0.0183762479844282[/C][/ROW]
[ROW][C]93[/C][C]0.975926418815512[/C][C]0.0481471623689756[/C][C]0.0240735811844878[/C][/ROW]
[ROW][C]94[/C][C]0.967943129329494[/C][C]0.0641137413410122[/C][C]0.0320568706705061[/C][/ROW]
[ROW][C]95[/C][C]0.964440482070973[/C][C]0.0711190358580536[/C][C]0.0355595179290268[/C][/ROW]
[ROW][C]96[/C][C]0.954404528732353[/C][C]0.0911909425352948[/C][C]0.0455954712676474[/C][/ROW]
[ROW][C]97[/C][C]0.952079832873091[/C][C]0.0958403342538183[/C][C]0.0479201671269091[/C][/ROW]
[ROW][C]98[/C][C]0.938510507867715[/C][C]0.122978984264569[/C][C]0.0614894921322846[/C][/ROW]
[ROW][C]99[/C][C]0.922455160222786[/C][C]0.155089679554428[/C][C]0.077544839777214[/C][/ROW]
[ROW][C]100[/C][C]0.904641582446351[/C][C]0.190716835107298[/C][C]0.0953584175536492[/C][/ROW]
[ROW][C]101[/C][C]0.886085512532445[/C][C]0.22782897493511[/C][C]0.113914487467555[/C][/ROW]
[ROW][C]102[/C][C]0.860512241548911[/C][C]0.278975516902178[/C][C]0.139487758451089[/C][/ROW]
[ROW][C]103[/C][C]0.83127192304096[/C][C]0.337456153918079[/C][C]0.16872807695904[/C][/ROW]
[ROW][C]104[/C][C]0.79837733204287[/C][C]0.403245335914261[/C][C]0.20162266795713[/C][/ROW]
[ROW][C]105[/C][C]0.765938739923233[/C][C]0.468122520153535[/C][C]0.234061260076767[/C][/ROW]
[ROW][C]106[/C][C]0.725701468551724[/C][C]0.548597062896552[/C][C]0.274298531448276[/C][/ROW]
[ROW][C]107[/C][C]0.682391242585314[/C][C]0.635217514829371[/C][C]0.317608757414686[/C][/ROW]
[ROW][C]108[/C][C]0.638018729229498[/C][C]0.723962541541004[/C][C]0.361981270770502[/C][/ROW]
[ROW][C]109[/C][C]0.589199283066048[/C][C]0.821601433867904[/C][C]0.410800716933952[/C][/ROW]
[ROW][C]110[/C][C]0.539533154272823[/C][C]0.920933691454354[/C][C]0.460466845727177[/C][/ROW]
[ROW][C]111[/C][C]0.495105047188341[/C][C]0.990210094376682[/C][C]0.504894952811659[/C][/ROW]
[ROW][C]112[/C][C]0.497665721550938[/C][C]0.995331443101876[/C][C]0.502334278449062[/C][/ROW]
[ROW][C]113[/C][C]0.489160071639955[/C][C]0.978320143279911[/C][C]0.510839928360045[/C][/ROW]
[ROW][C]114[/C][C]0.434957590384245[/C][C]0.869915180768489[/C][C]0.565042409615755[/C][/ROW]
[ROW][C]115[/C][C]0.383476440241968[/C][C]0.766952880483937[/C][C]0.616523559758032[/C][/ROW]
[ROW][C]116[/C][C]0.33057461327401[/C][C]0.661149226548021[/C][C]0.66942538672599[/C][/ROW]
[ROW][C]117[/C][C]0.289632289891818[/C][C]0.579264579783637[/C][C]0.710367710108182[/C][/ROW]
[ROW][C]118[/C][C]0.247261034190479[/C][C]0.494522068380958[/C][C]0.752738965809521[/C][/ROW]
[ROW][C]119[/C][C]0.203463085169443[/C][C]0.406926170338886[/C][C]0.796536914830557[/C][/ROW]
[ROW][C]120[/C][C]0.167458769774377[/C][C]0.334917539548755[/C][C]0.832541230225623[/C][/ROW]
[ROW][C]121[/C][C]0.137548088409973[/C][C]0.275096176819946[/C][C]0.862451911590027[/C][/ROW]
[ROW][C]122[/C][C]0.107283427235262[/C][C]0.214566854470525[/C][C]0.892716572764738[/C][/ROW]
[ROW][C]123[/C][C]0.0819892592586738[/C][C]0.163978518517348[/C][C]0.918010740741326[/C][/ROW]
[ROW][C]124[/C][C]0.0780340512283039[/C][C]0.156068102456608[/C][C]0.921965948771696[/C][/ROW]
[ROW][C]125[/C][C]0.0576190565453992[/C][C]0.115238113090798[/C][C]0.942380943454601[/C][/ROW]
[ROW][C]126[/C][C]0.0576832009521274[/C][C]0.115366401904255[/C][C]0.942316799047873[/C][/ROW]
[ROW][C]127[/C][C]0.0427274308319327[/C][C]0.0854548616638654[/C][C]0.957272569168067[/C][/ROW]
[ROW][C]128[/C][C]0.0298705581676755[/C][C]0.059741116335351[/C][C]0.970129441832325[/C][/ROW]
[ROW][C]129[/C][C]0.0201122205761809[/C][C]0.0402244411523618[/C][C]0.979887779423819[/C][/ROW]
[ROW][C]130[/C][C]0.0131906391389367[/C][C]0.0263812782778734[/C][C]0.986809360861063[/C][/ROW]
[ROW][C]131[/C][C]0.00910411565083984[/C][C]0.0182082313016797[/C][C]0.99089588434916[/C][/ROW]
[ROW][C]132[/C][C]0.0071715953490738[/C][C]0.0143431906981476[/C][C]0.992828404650926[/C][/ROW]
[ROW][C]133[/C][C]0.00686474506118683[/C][C]0.0137294901223737[/C][C]0.993135254938813[/C][/ROW]
[ROW][C]134[/C][C]0.00390983389819608[/C][C]0.00781966779639216[/C][C]0.996090166101804[/C][/ROW]
[ROW][C]135[/C][C]0.00212399329256765[/C][C]0.00424798658513529[/C][C]0.997876006707432[/C][/ROW]
[ROW][C]136[/C][C]0.00110819837352464[/C][C]0.00221639674704928[/C][C]0.998891801626475[/C][/ROW]
[ROW][C]137[/C][C]0.00153922728365189[/C][C]0.00307845456730378[/C][C]0.998460772716348[/C][/ROW]
[ROW][C]138[/C][C]0.00143516936961945[/C][C]0.0028703387392389[/C][C]0.998564830630381[/C][/ROW]
[ROW][C]139[/C][C]0.000903346083612679[/C][C]0.00180669216722536[/C][C]0.999096653916387[/C][/ROW]
[ROW][C]140[/C][C]0.000372879993047922[/C][C]0.000745759986095845[/C][C]0.999627120006952[/C][/ROW]
[ROW][C]141[/C][C]0.0108282722379416[/C][C]0.0216565444758832[/C][C]0.989171727762058[/C][/ROW]
[ROW][C]142[/C][C]0.00472269693472042[/C][C]0.00944539386944085[/C][C]0.99527730306528[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
12001
13001
14001
15001
16001
170.6453969235771830.7092061528456350.354603076422817
180.5641523425319780.8716953149360440.435847657468022
190.5546027812881480.8907944374237030.445397218711852
200.9305898744977230.1388202510045540.0694101255022771
210.9023780835331510.1952438329336990.0976219164668494
220.8937590021833330.2124819956333350.106240997816667
230.8539579739215170.2920840521569660.146042026078483
240.8065197531285660.3869604937428690.193480246871434
250.8016856651442350.396628669711530.198314334855765
260.7889446898011430.4221106203977140.211055310198857
270.7652047788446240.4695904423107510.234795221155376
280.7162643459362740.5674713081274530.283735654063726
290.6712743134128330.6574513731743350.328725686587167
300.6129369997849170.7741260004301650.387063000215083
310.5538722376071190.8922555247857610.44612776239288
320.4931882057014480.9863764114028960.506811794298552
330.4330064178375510.8660128356751030.566993582162449
340.3789491564596760.7578983129193520.621050843540324
350.3250163675536470.6500327351072950.674983632446353
360.2737475796175130.5474951592350260.726252420382487
370.3453587228953650.690717445790730.654641277104635
380.2997810410826720.5995620821653440.700218958917328
390.2495828503550330.4991657007100650.750417149644967
400.2301126874369130.4602253748738260.769887312563087
410.7965195367056720.4069609265886560.203480463294328
420.7695899655950640.4608200688098730.230410034404936
430.7274780896915490.5450438206169010.272521910308451
440.6911257344960530.6177485310078940.308874265503947
450.6420109251605260.7159781496789490.357989074839474
460.5925277585303390.8149444829393210.407472241469661
470.5428848892019890.9142302215960210.457115110798011
480.4929615972424020.9859231944848030.507038402757598
490.4428871861126980.8857743722253950.557112813887302
500.3933576129732080.7867152259464170.606642387026792
510.4627870779103180.9255741558206350.537212922089682
520.7359729413694670.5280541172610660.264027058630533
530.6955723221048250.608855355790350.304427677895175
540.9551372422501940.08972551549961230.0448627577498062
550.9422609874373890.1154780251252220.0577390125626109
560.9677715596356060.06445688072878840.0322284403643942
570.9678404821089280.06431903578214320.0321595178910716
580.9586382346265990.08272353074680140.0413617653734007
590.9474820727373090.1050358545253820.052517927262691
600.9847310756190750.03053784876185030.0152689243809251
610.9828484613487410.03430307730251770.0171515386512588
620.9849361031794590.03012779364108210.0150638968205411
630.9796067244033070.04078655119338520.0203932755966926
640.9792986150008070.04140276999838680.0207013849991934
650.9723910123704570.05521797525908580.0276089876295429
660.9636714946450110.07265701070997890.0363285053549894
670.9864585045873310.02708299082533790.0135414954126689
680.9819078320206240.03618433595875230.0180921679793761
690.9759499688016740.04810006239665150.0240500311983257
700.9771524852849090.04569502943018150.0228475147150907
710.9696879734203050.06062405315939020.0303120265796951
720.9605134227027310.07897315459453780.0394865772972689
730.9598694567048990.08026108659020110.0401305432951006
740.9631691034361930.07366179312761470.0368308965638074
750.9523454109674350.09530917806513060.0476545890325653
760.952869452304630.09426109539074050.0471305476953702
770.9398857149051040.1202285701897930.0601142850948964
780.9442545064649630.1114909870700740.0557454935350368
790.986393362426440.0272132751471190.0136066375735595
800.9838680591553050.03226388168939070.0161319408446953
810.9792646131204850.04147077375902990.0207353868795149
820.9842875836776750.03142483264464910.0157124163223246
830.9828921745951440.03421565080971290.0171078254048565
840.9986192722220310.002761455555938020.00138072777796901
850.9979623741645550.004075251670889240.00203762583544462
860.9969939356266920.006012128746616910.00300606437330845
870.9956883421772120.008623315645576940.00431165782278847
880.9937967848343480.01240643033130470.00620321516565237
890.9912768660633570.01744626787328520.0087231339366426
900.988033860089810.02393227982038020.0119661399101901
910.9840070949837910.03198581003241720.0159929050162086
920.9816237520155720.03675249596885640.0183762479844282
930.9759264188155120.04814716236897560.0240735811844878
940.9679431293294940.06411374134101220.0320568706705061
950.9644404820709730.07111903585805360.0355595179290268
960.9544045287323530.09119094253529480.0455954712676474
970.9520798328730910.09584033425381830.0479201671269091
980.9385105078677150.1229789842645690.0614894921322846
990.9224551602227860.1550896795544280.077544839777214
1000.9046415824463510.1907168351072980.0953584175536492
1010.8860855125324450.227828974935110.113914487467555
1020.8605122415489110.2789755169021780.139487758451089
1030.831271923040960.3374561539180790.16872807695904
1040.798377332042870.4032453359142610.20162266795713
1050.7659387399232330.4681225201535350.234061260076767
1060.7257014685517240.5485970628965520.274298531448276
1070.6823912425853140.6352175148293710.317608757414686
1080.6380187292294980.7239625415410040.361981270770502
1090.5891992830660480.8216014338679040.410800716933952
1100.5395331542728230.9209336914543540.460466845727177
1110.4951050471883410.9902100943766820.504894952811659
1120.4976657215509380.9953314431018760.502334278449062
1130.4891600716399550.9783201432799110.510839928360045
1140.4349575903842450.8699151807684890.565042409615755
1150.3834764402419680.7669528804839370.616523559758032
1160.330574613274010.6611492265480210.66942538672599
1170.2896322898918180.5792645797836370.710367710108182
1180.2472610341904790.4945220683809580.752738965809521
1190.2034630851694430.4069261703388860.796536914830557
1200.1674587697743770.3349175395487550.832541230225623
1210.1375480884099730.2750961768199460.862451911590027
1220.1072834272352620.2145668544705250.892716572764738
1230.08198925925867380.1639785185173480.918010740741326
1240.07803405122830390.1560681024566080.921965948771696
1250.05761905654539920.1152381130907980.942380943454601
1260.05768320095212740.1153664019042550.942316799047873
1270.04272743083193270.08545486166386540.957272569168067
1280.02987055816767550.0597411163353510.970129441832325
1290.02011222057618090.04022444115236180.979887779423819
1300.01319063913893670.02638127827787340.986809360861063
1310.009104115650839840.01820823130167970.99089588434916
1320.00717159534907380.01434319069814760.992828404650926
1330.006864745061186830.01372949012237370.993135254938813
1340.003909833898196080.007819667796392160.996090166101804
1350.002123993292567650.004247986585135290.997876006707432
1360.001108198373524640.002216396747049280.998891801626475
1370.001539227283651890.003078454567303780.998460772716348
1380.001435169369619450.00287033873923890.998564830630381
1390.0009033460836126790.001806692167225360.999096653916387
1400.0003728799930479220.0007457599860958450.999627120006952
1410.01082827223794160.02165654447588320.989171727762058
1420.004722696934720420.009445393869440850.99527730306528







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level170.129770992366412NOK
5% type I error level430.32824427480916NOK
10% type I error level610.465648854961832NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 17 & 0.129770992366412 & NOK \tabularnewline
5% type I error level & 43 & 0.32824427480916 & NOK \tabularnewline
10% type I error level & 61 & 0.465648854961832 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=198865&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]17[/C][C]0.129770992366412[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]43[/C][C]0.32824427480916[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]61[/C][C]0.465648854961832[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=198865&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=198865&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level170.129770992366412NOK
5% type I error level430.32824427480916NOK
10% type I error level610.465648854961832NOK



Parameters (Session):
par1 = 6 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 6 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}