Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 05 Jul 2013 08:34:41 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Jul/05/t1373028389sq6097lvqskwpj6.htm/, Retrieved Thu, 31 Oct 2024 23:00:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=210782, Retrieved Thu, 31 Oct 2024 23:00:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsJeroen Biesemans
Estimated Impact246
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Tijdreeks 1 stap 20] [2013-07-05 12:34:41] [09688f513f3d2798cb35a3603f8bd204] [Current]
Feedback Forum

Post a new message
Dataseries X:
1155168
1144638
1133976
1111920
1330188
1318626
1155168
1046484
1056978
1056978
1068672
1089696
1155168
1133976
1166694
1220472
1526400
1526400
1461096
1395624
1449402
1514838
1526400
1559118
1657302
1591836
1591836
1690020
1962198
1984254
1929480
1798572
1896726
1896726
1907256
1962198
2005446
2027502
2027502
2092938
2344086
2409390
2419884
2256426
2344086
2311368
2245902
2387334
2419884
2365110
2376672
2452638
2736510
2877744
2877744
2812440
2910492
2812440
2757528
2965434
2997984
2920992
3117198
3194196
3423126
3575052
3554034
3542334
3629994
3619332
3488592
3684768
3750240
3684768
3956946
4087854
4392612
4512858
4480272
4414800
4469610
4535046
4316646
4490766
4600518
4556238
4839942
4937958
5352606
5428566
5330544
5385324
5418042
5450760
5242854
5439066
5547744
5439066
5755650
5853708
6278808
6344280
6365304
6475020
6475020
6518268
6322056
6420246
6485550
6365304
6714474
6779916
7215582
7292580
7401258
7499448
7509942
7521504
7325298
7521504




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210782&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210782&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210782&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'George Udny Yule' @ yule.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.97471910.67750
20.95039510.41110
30.92351610.11660
40.8958759.81380
50.8690729.52020
60.8423119.22710
70.8164468.94370
80.78988.65180
90.7667178.3990
100.7435868.14560
110.7229077.9190
120.7006377.67510
130.6751797.39620
140.6498337.11860
150.6222466.81640
160.5944656.5120
170.5678056.220
180.5415115.9320
190.5156225.64840
200.4892585.35960
210.4665475.11081e-06
220.4446294.87072e-06
230.4250494.65624e-06
240.4040814.42651.1e-05
250.3812884.17682.8e-05
260.3591693.93457e-05
270.3347323.66680.000184
280.3102513.39860.00046
290.2869823.14370.001051
300.2639372.89130.002278
310.2401662.63090.004817
320.2159112.36520.009812
330.1953362.13980.017198
340.1754081.92150.02852
350.1575811.72620.043441
360.1390181.52290.065211
370.1191111.30480.09723
380.1001561.09720.137386
390.0790280.86570.194188
400.0579960.63530.263217
410.0382730.41930.337887
420.0181420.19870.421404
43-0.001973-0.02160.491395
44-0.022262-0.24390.403874
45-0.03994-0.43750.331261
46-0.056616-0.62020.268153
47-0.071657-0.7850.21701
48-0.087163-0.95480.170793
49-0.103814-1.13720.128856
50-0.119635-1.31050.096259
51-0.136567-1.4960.068637
52-0.15392-1.68610.047186
53-0.169468-1.85640.032923
54-0.184435-2.02040.022785
55-0.199431-2.18470.015429
56-0.213685-2.34080.010446
57-0.225838-2.47390.007381
58-0.237558-2.60230.005213
59-0.248249-2.71940.003755
60-0.259059-2.83790.002667

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.974719 & 10.6775 & 0 \tabularnewline
2 & 0.950395 & 10.4111 & 0 \tabularnewline
3 & 0.923516 & 10.1166 & 0 \tabularnewline
4 & 0.895875 & 9.8138 & 0 \tabularnewline
5 & 0.869072 & 9.5202 & 0 \tabularnewline
6 & 0.842311 & 9.2271 & 0 \tabularnewline
7 & 0.816446 & 8.9437 & 0 \tabularnewline
8 & 0.7898 & 8.6518 & 0 \tabularnewline
9 & 0.766717 & 8.399 & 0 \tabularnewline
10 & 0.743586 & 8.1456 & 0 \tabularnewline
11 & 0.722907 & 7.919 & 0 \tabularnewline
12 & 0.700637 & 7.6751 & 0 \tabularnewline
13 & 0.675179 & 7.3962 & 0 \tabularnewline
14 & 0.649833 & 7.1186 & 0 \tabularnewline
15 & 0.622246 & 6.8164 & 0 \tabularnewline
16 & 0.594465 & 6.512 & 0 \tabularnewline
17 & 0.567805 & 6.22 & 0 \tabularnewline
18 & 0.541511 & 5.932 & 0 \tabularnewline
19 & 0.515622 & 5.6484 & 0 \tabularnewline
20 & 0.489258 & 5.3596 & 0 \tabularnewline
21 & 0.466547 & 5.1108 & 1e-06 \tabularnewline
22 & 0.444629 & 4.8707 & 2e-06 \tabularnewline
23 & 0.425049 & 4.6562 & 4e-06 \tabularnewline
24 & 0.404081 & 4.4265 & 1.1e-05 \tabularnewline
25 & 0.381288 & 4.1768 & 2.8e-05 \tabularnewline
26 & 0.359169 & 3.9345 & 7e-05 \tabularnewline
27 & 0.334732 & 3.6668 & 0.000184 \tabularnewline
28 & 0.310251 & 3.3986 & 0.00046 \tabularnewline
29 & 0.286982 & 3.1437 & 0.001051 \tabularnewline
30 & 0.263937 & 2.8913 & 0.002278 \tabularnewline
31 & 0.240166 & 2.6309 & 0.004817 \tabularnewline
32 & 0.215911 & 2.3652 & 0.009812 \tabularnewline
33 & 0.195336 & 2.1398 & 0.017198 \tabularnewline
34 & 0.175408 & 1.9215 & 0.02852 \tabularnewline
35 & 0.157581 & 1.7262 & 0.043441 \tabularnewline
36 & 0.139018 & 1.5229 & 0.065211 \tabularnewline
37 & 0.119111 & 1.3048 & 0.09723 \tabularnewline
38 & 0.100156 & 1.0972 & 0.137386 \tabularnewline
39 & 0.079028 & 0.8657 & 0.194188 \tabularnewline
40 & 0.057996 & 0.6353 & 0.263217 \tabularnewline
41 & 0.038273 & 0.4193 & 0.337887 \tabularnewline
42 & 0.018142 & 0.1987 & 0.421404 \tabularnewline
43 & -0.001973 & -0.0216 & 0.491395 \tabularnewline
44 & -0.022262 & -0.2439 & 0.403874 \tabularnewline
45 & -0.03994 & -0.4375 & 0.331261 \tabularnewline
46 & -0.056616 & -0.6202 & 0.268153 \tabularnewline
47 & -0.071657 & -0.785 & 0.21701 \tabularnewline
48 & -0.087163 & -0.9548 & 0.170793 \tabularnewline
49 & -0.103814 & -1.1372 & 0.128856 \tabularnewline
50 & -0.119635 & -1.3105 & 0.096259 \tabularnewline
51 & -0.136567 & -1.496 & 0.068637 \tabularnewline
52 & -0.15392 & -1.6861 & 0.047186 \tabularnewline
53 & -0.169468 & -1.8564 & 0.032923 \tabularnewline
54 & -0.184435 & -2.0204 & 0.022785 \tabularnewline
55 & -0.199431 & -2.1847 & 0.015429 \tabularnewline
56 & -0.213685 & -2.3408 & 0.010446 \tabularnewline
57 & -0.225838 & -2.4739 & 0.007381 \tabularnewline
58 & -0.237558 & -2.6023 & 0.005213 \tabularnewline
59 & -0.248249 & -2.7194 & 0.003755 \tabularnewline
60 & -0.259059 & -2.8379 & 0.002667 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210782&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.974719[/C][C]10.6775[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.950395[/C][C]10.4111[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.923516[/C][C]10.1166[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.895875[/C][C]9.8138[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.869072[/C][C]9.5202[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.842311[/C][C]9.2271[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.816446[/C][C]8.9437[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.7898[/C][C]8.6518[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.766717[/C][C]8.399[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.743586[/C][C]8.1456[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.722907[/C][C]7.919[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.700637[/C][C]7.6751[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.675179[/C][C]7.3962[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.649833[/C][C]7.1186[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.622246[/C][C]6.8164[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.594465[/C][C]6.512[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.567805[/C][C]6.22[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.541511[/C][C]5.932[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.515622[/C][C]5.6484[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.489258[/C][C]5.3596[/C][C]0[/C][/ROW]
[ROW][C]21[/C][C]0.466547[/C][C]5.1108[/C][C]1e-06[/C][/ROW]
[ROW][C]22[/C][C]0.444629[/C][C]4.8707[/C][C]2e-06[/C][/ROW]
[ROW][C]23[/C][C]0.425049[/C][C]4.6562[/C][C]4e-06[/C][/ROW]
[ROW][C]24[/C][C]0.404081[/C][C]4.4265[/C][C]1.1e-05[/C][/ROW]
[ROW][C]25[/C][C]0.381288[/C][C]4.1768[/C][C]2.8e-05[/C][/ROW]
[ROW][C]26[/C][C]0.359169[/C][C]3.9345[/C][C]7e-05[/C][/ROW]
[ROW][C]27[/C][C]0.334732[/C][C]3.6668[/C][C]0.000184[/C][/ROW]
[ROW][C]28[/C][C]0.310251[/C][C]3.3986[/C][C]0.00046[/C][/ROW]
[ROW][C]29[/C][C]0.286982[/C][C]3.1437[/C][C]0.001051[/C][/ROW]
[ROW][C]30[/C][C]0.263937[/C][C]2.8913[/C][C]0.002278[/C][/ROW]
[ROW][C]31[/C][C]0.240166[/C][C]2.6309[/C][C]0.004817[/C][/ROW]
[ROW][C]32[/C][C]0.215911[/C][C]2.3652[/C][C]0.009812[/C][/ROW]
[ROW][C]33[/C][C]0.195336[/C][C]2.1398[/C][C]0.017198[/C][/ROW]
[ROW][C]34[/C][C]0.175408[/C][C]1.9215[/C][C]0.02852[/C][/ROW]
[ROW][C]35[/C][C]0.157581[/C][C]1.7262[/C][C]0.043441[/C][/ROW]
[ROW][C]36[/C][C]0.139018[/C][C]1.5229[/C][C]0.065211[/C][/ROW]
[ROW][C]37[/C][C]0.119111[/C][C]1.3048[/C][C]0.09723[/C][/ROW]
[ROW][C]38[/C][C]0.100156[/C][C]1.0972[/C][C]0.137386[/C][/ROW]
[ROW][C]39[/C][C]0.079028[/C][C]0.8657[/C][C]0.194188[/C][/ROW]
[ROW][C]40[/C][C]0.057996[/C][C]0.6353[/C][C]0.263217[/C][/ROW]
[ROW][C]41[/C][C]0.038273[/C][C]0.4193[/C][C]0.337887[/C][/ROW]
[ROW][C]42[/C][C]0.018142[/C][C]0.1987[/C][C]0.421404[/C][/ROW]
[ROW][C]43[/C][C]-0.001973[/C][C]-0.0216[/C][C]0.491395[/C][/ROW]
[ROW][C]44[/C][C]-0.022262[/C][C]-0.2439[/C][C]0.403874[/C][/ROW]
[ROW][C]45[/C][C]-0.03994[/C][C]-0.4375[/C][C]0.331261[/C][/ROW]
[ROW][C]46[/C][C]-0.056616[/C][C]-0.6202[/C][C]0.268153[/C][/ROW]
[ROW][C]47[/C][C]-0.071657[/C][C]-0.785[/C][C]0.21701[/C][/ROW]
[ROW][C]48[/C][C]-0.087163[/C][C]-0.9548[/C][C]0.170793[/C][/ROW]
[ROW][C]49[/C][C]-0.103814[/C][C]-1.1372[/C][C]0.128856[/C][/ROW]
[ROW][C]50[/C][C]-0.119635[/C][C]-1.3105[/C][C]0.096259[/C][/ROW]
[ROW][C]51[/C][C]-0.136567[/C][C]-1.496[/C][C]0.068637[/C][/ROW]
[ROW][C]52[/C][C]-0.15392[/C][C]-1.6861[/C][C]0.047186[/C][/ROW]
[ROW][C]53[/C][C]-0.169468[/C][C]-1.8564[/C][C]0.032923[/C][/ROW]
[ROW][C]54[/C][C]-0.184435[/C][C]-2.0204[/C][C]0.022785[/C][/ROW]
[ROW][C]55[/C][C]-0.199431[/C][C]-2.1847[/C][C]0.015429[/C][/ROW]
[ROW][C]56[/C][C]-0.213685[/C][C]-2.3408[/C][C]0.010446[/C][/ROW]
[ROW][C]57[/C][C]-0.225838[/C][C]-2.4739[/C][C]0.007381[/C][/ROW]
[ROW][C]58[/C][C]-0.237558[/C][C]-2.6023[/C][C]0.005213[/C][/ROW]
[ROW][C]59[/C][C]-0.248249[/C][C]-2.7194[/C][C]0.003755[/C][/ROW]
[ROW][C]60[/C][C]-0.259059[/C][C]-2.8379[/C][C]0.002667[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210782&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210782&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.97471910.67750
20.95039510.41110
30.92351610.11660
40.8958759.81380
50.8690729.52020
60.8423119.22710
70.8164468.94370
80.78988.65180
90.7667178.3990
100.7435868.14560
110.7229077.9190
120.7006377.67510
130.6751797.39620
140.6498337.11860
150.6222466.81640
160.5944656.5120
170.5678056.220
180.5415115.9320
190.5156225.64840
200.4892585.35960
210.4665475.11081e-06
220.4446294.87072e-06
230.4250494.65624e-06
240.4040814.42651.1e-05
250.3812884.17682.8e-05
260.3591693.93457e-05
270.3347323.66680.000184
280.3102513.39860.00046
290.2869823.14370.001051
300.2639372.89130.002278
310.2401662.63090.004817
320.2159112.36520.009812
330.1953362.13980.017198
340.1754081.92150.02852
350.1575811.72620.043441
360.1390181.52290.065211
370.1191111.30480.09723
380.1001561.09720.137386
390.0790280.86570.194188
400.0579960.63530.263217
410.0382730.41930.337887
420.0181420.19870.421404
43-0.001973-0.02160.491395
44-0.022262-0.24390.403874
45-0.03994-0.43750.331261
46-0.056616-0.62020.268153
47-0.071657-0.7850.21701
48-0.087163-0.95480.170793
49-0.103814-1.13720.128856
50-0.119635-1.31050.096259
51-0.136567-1.4960.068637
52-0.15392-1.68610.047186
53-0.169468-1.85640.032923
54-0.184435-2.02040.022785
55-0.199431-2.18470.015429
56-0.213685-2.34080.010446
57-0.225838-2.47390.007381
58-0.237558-2.60230.005213
59-0.248249-2.71940.003755
60-0.259059-2.83790.002667







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.97471910.67750
20.0063680.06980.472253
3-0.063311-0.69350.244657
4-0.031197-0.34170.36657
50.0041570.04550.481876
6-0.011185-0.12250.451342
70.0020640.02260.490998
8-0.030063-0.32930.371244
90.0548150.60050.274664
10-0.010431-0.11430.454609
110.0302580.33150.37044
12-0.04571-0.50070.308739
13-0.080954-0.88680.188479
14-0.014005-0.15340.439162
15-0.049488-0.54210.294372
16-0.02328-0.2550.399574
170.0129710.14210.443625
18-0.00874-0.09570.461945
19-0.006114-0.0670.473356
20-0.030349-0.33250.37006
210.0483570.52970.298642
220.0021780.02390.490502
230.0173620.19020.42474
24-0.043154-0.47270.318634
25-0.053015-0.58070.28125
26-7.7e-05-8e-040.499664
27-0.046988-0.51470.303845
28-0.025061-0.27450.392076
290.0165220.1810.42834
30-0.011396-0.12480.450431
31-0.026337-0.28850.386728
32-0.03544-0.38820.349267
330.0459470.50330.307831
34-0.002612-0.02860.488612
350.0042850.04690.481322
36-0.032199-0.35270.362458
37-0.045079-0.49380.311169
380.0056710.06210.475285
39-0.04436-0.48590.313948
40-0.028294-0.30990.37857
410.0185480.20320.419669
42-0.022868-0.25050.401312
43-0.008316-0.09110.463782
44-0.02998-0.32840.371585
450.0216220.23690.406585
460.0039550.04330.482757
47-0.009773-0.10710.45746
48-0.030051-0.32920.371291
49-0.042057-0.46070.322921
500.0011170.01220.495127
51-0.022237-0.24360.403981
52-0.043897-0.48090.315744
530.0268860.29450.384434
540.0021130.02310.490786
55-0.010624-0.11640.453773
56-0.013229-0.14490.442512
570.0116460.12760.449351
58-0.007905-0.08660.465571
59-0.022425-0.24570.403185
60-0.025408-0.27830.390617

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.974719 & 10.6775 & 0 \tabularnewline
2 & 0.006368 & 0.0698 & 0.472253 \tabularnewline
3 & -0.063311 & -0.6935 & 0.244657 \tabularnewline
4 & -0.031197 & -0.3417 & 0.36657 \tabularnewline
5 & 0.004157 & 0.0455 & 0.481876 \tabularnewline
6 & -0.011185 & -0.1225 & 0.451342 \tabularnewline
7 & 0.002064 & 0.0226 & 0.490998 \tabularnewline
8 & -0.030063 & -0.3293 & 0.371244 \tabularnewline
9 & 0.054815 & 0.6005 & 0.274664 \tabularnewline
10 & -0.010431 & -0.1143 & 0.454609 \tabularnewline
11 & 0.030258 & 0.3315 & 0.37044 \tabularnewline
12 & -0.04571 & -0.5007 & 0.308739 \tabularnewline
13 & -0.080954 & -0.8868 & 0.188479 \tabularnewline
14 & -0.014005 & -0.1534 & 0.439162 \tabularnewline
15 & -0.049488 & -0.5421 & 0.294372 \tabularnewline
16 & -0.02328 & -0.255 & 0.399574 \tabularnewline
17 & 0.012971 & 0.1421 & 0.443625 \tabularnewline
18 & -0.00874 & -0.0957 & 0.461945 \tabularnewline
19 & -0.006114 & -0.067 & 0.473356 \tabularnewline
20 & -0.030349 & -0.3325 & 0.37006 \tabularnewline
21 & 0.048357 & 0.5297 & 0.298642 \tabularnewline
22 & 0.002178 & 0.0239 & 0.490502 \tabularnewline
23 & 0.017362 & 0.1902 & 0.42474 \tabularnewline
24 & -0.043154 & -0.4727 & 0.318634 \tabularnewline
25 & -0.053015 & -0.5807 & 0.28125 \tabularnewline
26 & -7.7e-05 & -8e-04 & 0.499664 \tabularnewline
27 & -0.046988 & -0.5147 & 0.303845 \tabularnewline
28 & -0.025061 & -0.2745 & 0.392076 \tabularnewline
29 & 0.016522 & 0.181 & 0.42834 \tabularnewline
30 & -0.011396 & -0.1248 & 0.450431 \tabularnewline
31 & -0.026337 & -0.2885 & 0.386728 \tabularnewline
32 & -0.03544 & -0.3882 & 0.349267 \tabularnewline
33 & 0.045947 & 0.5033 & 0.307831 \tabularnewline
34 & -0.002612 & -0.0286 & 0.488612 \tabularnewline
35 & 0.004285 & 0.0469 & 0.481322 \tabularnewline
36 & -0.032199 & -0.3527 & 0.362458 \tabularnewline
37 & -0.045079 & -0.4938 & 0.311169 \tabularnewline
38 & 0.005671 & 0.0621 & 0.475285 \tabularnewline
39 & -0.04436 & -0.4859 & 0.313948 \tabularnewline
40 & -0.028294 & -0.3099 & 0.37857 \tabularnewline
41 & 0.018548 & 0.2032 & 0.419669 \tabularnewline
42 & -0.022868 & -0.2505 & 0.401312 \tabularnewline
43 & -0.008316 & -0.0911 & 0.463782 \tabularnewline
44 & -0.02998 & -0.3284 & 0.371585 \tabularnewline
45 & 0.021622 & 0.2369 & 0.406585 \tabularnewline
46 & 0.003955 & 0.0433 & 0.482757 \tabularnewline
47 & -0.009773 & -0.1071 & 0.45746 \tabularnewline
48 & -0.030051 & -0.3292 & 0.371291 \tabularnewline
49 & -0.042057 & -0.4607 & 0.322921 \tabularnewline
50 & 0.001117 & 0.0122 & 0.495127 \tabularnewline
51 & -0.022237 & -0.2436 & 0.403981 \tabularnewline
52 & -0.043897 & -0.4809 & 0.315744 \tabularnewline
53 & 0.026886 & 0.2945 & 0.384434 \tabularnewline
54 & 0.002113 & 0.0231 & 0.490786 \tabularnewline
55 & -0.010624 & -0.1164 & 0.453773 \tabularnewline
56 & -0.013229 & -0.1449 & 0.442512 \tabularnewline
57 & 0.011646 & 0.1276 & 0.449351 \tabularnewline
58 & -0.007905 & -0.0866 & 0.465571 \tabularnewline
59 & -0.022425 & -0.2457 & 0.403185 \tabularnewline
60 & -0.025408 & -0.2783 & 0.390617 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210782&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.974719[/C][C]10.6775[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.006368[/C][C]0.0698[/C][C]0.472253[/C][/ROW]
[ROW][C]3[/C][C]-0.063311[/C][C]-0.6935[/C][C]0.244657[/C][/ROW]
[ROW][C]4[/C][C]-0.031197[/C][C]-0.3417[/C][C]0.36657[/C][/ROW]
[ROW][C]5[/C][C]0.004157[/C][C]0.0455[/C][C]0.481876[/C][/ROW]
[ROW][C]6[/C][C]-0.011185[/C][C]-0.1225[/C][C]0.451342[/C][/ROW]
[ROW][C]7[/C][C]0.002064[/C][C]0.0226[/C][C]0.490998[/C][/ROW]
[ROW][C]8[/C][C]-0.030063[/C][C]-0.3293[/C][C]0.371244[/C][/ROW]
[ROW][C]9[/C][C]0.054815[/C][C]0.6005[/C][C]0.274664[/C][/ROW]
[ROW][C]10[/C][C]-0.010431[/C][C]-0.1143[/C][C]0.454609[/C][/ROW]
[ROW][C]11[/C][C]0.030258[/C][C]0.3315[/C][C]0.37044[/C][/ROW]
[ROW][C]12[/C][C]-0.04571[/C][C]-0.5007[/C][C]0.308739[/C][/ROW]
[ROW][C]13[/C][C]-0.080954[/C][C]-0.8868[/C][C]0.188479[/C][/ROW]
[ROW][C]14[/C][C]-0.014005[/C][C]-0.1534[/C][C]0.439162[/C][/ROW]
[ROW][C]15[/C][C]-0.049488[/C][C]-0.5421[/C][C]0.294372[/C][/ROW]
[ROW][C]16[/C][C]-0.02328[/C][C]-0.255[/C][C]0.399574[/C][/ROW]
[ROW][C]17[/C][C]0.012971[/C][C]0.1421[/C][C]0.443625[/C][/ROW]
[ROW][C]18[/C][C]-0.00874[/C][C]-0.0957[/C][C]0.461945[/C][/ROW]
[ROW][C]19[/C][C]-0.006114[/C][C]-0.067[/C][C]0.473356[/C][/ROW]
[ROW][C]20[/C][C]-0.030349[/C][C]-0.3325[/C][C]0.37006[/C][/ROW]
[ROW][C]21[/C][C]0.048357[/C][C]0.5297[/C][C]0.298642[/C][/ROW]
[ROW][C]22[/C][C]0.002178[/C][C]0.0239[/C][C]0.490502[/C][/ROW]
[ROW][C]23[/C][C]0.017362[/C][C]0.1902[/C][C]0.42474[/C][/ROW]
[ROW][C]24[/C][C]-0.043154[/C][C]-0.4727[/C][C]0.318634[/C][/ROW]
[ROW][C]25[/C][C]-0.053015[/C][C]-0.5807[/C][C]0.28125[/C][/ROW]
[ROW][C]26[/C][C]-7.7e-05[/C][C]-8e-04[/C][C]0.499664[/C][/ROW]
[ROW][C]27[/C][C]-0.046988[/C][C]-0.5147[/C][C]0.303845[/C][/ROW]
[ROW][C]28[/C][C]-0.025061[/C][C]-0.2745[/C][C]0.392076[/C][/ROW]
[ROW][C]29[/C][C]0.016522[/C][C]0.181[/C][C]0.42834[/C][/ROW]
[ROW][C]30[/C][C]-0.011396[/C][C]-0.1248[/C][C]0.450431[/C][/ROW]
[ROW][C]31[/C][C]-0.026337[/C][C]-0.2885[/C][C]0.386728[/C][/ROW]
[ROW][C]32[/C][C]-0.03544[/C][C]-0.3882[/C][C]0.349267[/C][/ROW]
[ROW][C]33[/C][C]0.045947[/C][C]0.5033[/C][C]0.307831[/C][/ROW]
[ROW][C]34[/C][C]-0.002612[/C][C]-0.0286[/C][C]0.488612[/C][/ROW]
[ROW][C]35[/C][C]0.004285[/C][C]0.0469[/C][C]0.481322[/C][/ROW]
[ROW][C]36[/C][C]-0.032199[/C][C]-0.3527[/C][C]0.362458[/C][/ROW]
[ROW][C]37[/C][C]-0.045079[/C][C]-0.4938[/C][C]0.311169[/C][/ROW]
[ROW][C]38[/C][C]0.005671[/C][C]0.0621[/C][C]0.475285[/C][/ROW]
[ROW][C]39[/C][C]-0.04436[/C][C]-0.4859[/C][C]0.313948[/C][/ROW]
[ROW][C]40[/C][C]-0.028294[/C][C]-0.3099[/C][C]0.37857[/C][/ROW]
[ROW][C]41[/C][C]0.018548[/C][C]0.2032[/C][C]0.419669[/C][/ROW]
[ROW][C]42[/C][C]-0.022868[/C][C]-0.2505[/C][C]0.401312[/C][/ROW]
[ROW][C]43[/C][C]-0.008316[/C][C]-0.0911[/C][C]0.463782[/C][/ROW]
[ROW][C]44[/C][C]-0.02998[/C][C]-0.3284[/C][C]0.371585[/C][/ROW]
[ROW][C]45[/C][C]0.021622[/C][C]0.2369[/C][C]0.406585[/C][/ROW]
[ROW][C]46[/C][C]0.003955[/C][C]0.0433[/C][C]0.482757[/C][/ROW]
[ROW][C]47[/C][C]-0.009773[/C][C]-0.1071[/C][C]0.45746[/C][/ROW]
[ROW][C]48[/C][C]-0.030051[/C][C]-0.3292[/C][C]0.371291[/C][/ROW]
[ROW][C]49[/C][C]-0.042057[/C][C]-0.4607[/C][C]0.322921[/C][/ROW]
[ROW][C]50[/C][C]0.001117[/C][C]0.0122[/C][C]0.495127[/C][/ROW]
[ROW][C]51[/C][C]-0.022237[/C][C]-0.2436[/C][C]0.403981[/C][/ROW]
[ROW][C]52[/C][C]-0.043897[/C][C]-0.4809[/C][C]0.315744[/C][/ROW]
[ROW][C]53[/C][C]0.026886[/C][C]0.2945[/C][C]0.384434[/C][/ROW]
[ROW][C]54[/C][C]0.002113[/C][C]0.0231[/C][C]0.490786[/C][/ROW]
[ROW][C]55[/C][C]-0.010624[/C][C]-0.1164[/C][C]0.453773[/C][/ROW]
[ROW][C]56[/C][C]-0.013229[/C][C]-0.1449[/C][C]0.442512[/C][/ROW]
[ROW][C]57[/C][C]0.011646[/C][C]0.1276[/C][C]0.449351[/C][/ROW]
[ROW][C]58[/C][C]-0.007905[/C][C]-0.0866[/C][C]0.465571[/C][/ROW]
[ROW][C]59[/C][C]-0.022425[/C][C]-0.2457[/C][C]0.403185[/C][/ROW]
[ROW][C]60[/C][C]-0.025408[/C][C]-0.2783[/C][C]0.390617[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210782&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210782&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.97471910.67750
20.0063680.06980.472253
3-0.063311-0.69350.244657
4-0.031197-0.34170.36657
50.0041570.04550.481876
6-0.011185-0.12250.451342
70.0020640.02260.490998
8-0.030063-0.32930.371244
90.0548150.60050.274664
10-0.010431-0.11430.454609
110.0302580.33150.37044
12-0.04571-0.50070.308739
13-0.080954-0.88680.188479
14-0.014005-0.15340.439162
15-0.049488-0.54210.294372
16-0.02328-0.2550.399574
170.0129710.14210.443625
18-0.00874-0.09570.461945
19-0.006114-0.0670.473356
20-0.030349-0.33250.37006
210.0483570.52970.298642
220.0021780.02390.490502
230.0173620.19020.42474
24-0.043154-0.47270.318634
25-0.053015-0.58070.28125
26-7.7e-05-8e-040.499664
27-0.046988-0.51470.303845
28-0.025061-0.27450.392076
290.0165220.1810.42834
30-0.011396-0.12480.450431
31-0.026337-0.28850.386728
32-0.03544-0.38820.349267
330.0459470.50330.307831
34-0.002612-0.02860.488612
350.0042850.04690.481322
36-0.032199-0.35270.362458
37-0.045079-0.49380.311169
380.0056710.06210.475285
39-0.04436-0.48590.313948
40-0.028294-0.30990.37857
410.0185480.20320.419669
42-0.022868-0.25050.401312
43-0.008316-0.09110.463782
44-0.02998-0.32840.371585
450.0216220.23690.406585
460.0039550.04330.482757
47-0.009773-0.10710.45746
48-0.030051-0.32920.371291
49-0.042057-0.46070.322921
500.0011170.01220.495127
51-0.022237-0.24360.403981
52-0.043897-0.48090.315744
530.0268860.29450.384434
540.0021130.02310.490786
55-0.010624-0.11640.453773
56-0.013229-0.14490.442512
570.0116460.12760.449351
58-0.007905-0.08660.465571
59-0.022425-0.24570.403185
60-0.025408-0.27830.390617



Parameters (Session):
par1 = 60 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 60 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')