Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 19 Nov 2008 12:19:18 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/19/t1227122436fd28hqs5moooen5.htm/, Retrieved Fri, 01 Nov 2024 00:37:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=25053, Retrieved Fri, 01 Nov 2024 00:37:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact281
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
F    D  [Multiple Regression] [Q1] [2008-11-13 18:17:22] [1e1d8320a8a1170c475bf6e4ce119de6]
-   PD    [Multiple Regression] [Q3 geen seasonal ...] [2008-11-19 18:53:58] [1e1d8320a8a1170c475bf6e4ce119de6]
-   P         [Multiple Regression] [Q3 seasonal dummi...] [2008-11-19 19:19:18] [fdd69703d301fae09456f660b2f52997] [Current]
Feedback Forum

Post a new message
Dataseries X:
1332.7	0
1343.8	0
1421.6	0
1329.8	0
1306.8	0
1412.8	0
1358.1	0
1163.9	0
1467.9	0
1433.7	0
1362.2	0
1299	0
1291.5	0
1452.7	0
1555.4	0
1402.5	0
1242.9	0
1514.6	0
1308.6	0
1239.3	0
1519.9	0
1659.4	0
1597.6	0
1340.6	0
1427.2	0
1438.1	0
1616.2	0
1392.8	0
1318.7	0
1420.9	0
1221	0
1310	0
1466.7	0
1299.3	0
1640	0
1506.3	0
1530.2	0
1661.9	0
1880.3	1
1230.8	0
1406.5	0
1523.5	0
1323.2	0
1319.2	0
1500.7	0
1483	0
1497	0
1219.8	0
1472.9	0
1423.9	0
1629.6	0
1353.4	0
1366.8	0
1527.1	0
1487.6	0
1478.6	0
1536.7	0
1682.1	0
1576.5	0
1280.5	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25053&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25053&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25053&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ 72.249.76.132







Multiple Linear Regression - Estimated Regression Equation
y[t] = + 1246.04084210526 + 289.933684210526x[t] + 107.081964912280M1[t] + 157.950877192982M2[t] + 254.193052631579M3[t] + 31.1087017543861M4[t] + 15.2776140350878M5[t] + 164.406526315790M6[t] + 22.0154385964912M7[t] -17.7956491228071M8[t] + 176.073263157895M9[t] + 186.882175438597M10[t] + 207.731087719298M11[t] + 2.31108771929825t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
y[t] =  +  1246.04084210526 +  289.933684210526x[t] +  107.081964912280M1[t] +  157.950877192982M2[t] +  254.193052631579M3[t] +  31.1087017543861M4[t] +  15.2776140350878M5[t] +  164.406526315790M6[t] +  22.0154385964912M7[t] -17.7956491228071M8[t] +  176.073263157895M9[t] +  186.882175438597M10[t] +  207.731087719298M11[t] +  2.31108771929825t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25053&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]y[t] =  +  1246.04084210526 +  289.933684210526x[t] +  107.081964912280M1[t] +  157.950877192982M2[t] +  254.193052631579M3[t] +  31.1087017543861M4[t] +  15.2776140350878M5[t] +  164.406526315790M6[t] +  22.0154385964912M7[t] -17.7956491228071M8[t] +  176.073263157895M9[t] +  186.882175438597M10[t] +  207.731087719298M11[t] +  2.31108771929825t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25053&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25053&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
y[t] = + 1246.04084210526 + 289.933684210526x[t] + 107.081964912280M1[t] + 157.950877192982M2[t] + 254.193052631579M3[t] + 31.1087017543861M4[t] + 15.2776140350878M5[t] + 164.406526315790M6[t] + 22.0154385964912M7[t] -17.7956491228071M8[t] + 176.073263157895M9[t] + 186.882175438597M10[t] + 207.731087719298M11[t] + 2.31108771929825t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1246.0408421052647.20726.395300
x289.933684210526101.0290752.86980.0061860.003093
M1107.08196491228057.3528921.86710.0682720.034136
M2157.95087719298257.2663152.75820.0083110.004156
M3254.19305263157960.8625074.17650.0001316.5e-05
M431.108701754386157.1175920.54460.588630.294315
M515.277614035087857.055510.26780.7900750.395038
M6164.40652631579057.0016512.88420.0059510.002976
M722.015438596491256.9560380.38650.7008840.350442
M8-17.795649122807156.918691-0.31270.7559590.37798
M9176.07326315789556.8896273.0950.0033450.001673
M10186.88217543859756.8688573.28620.0019490.000974
M11207.73108771929856.8563923.65360.0006610.00033
t2.311087719298250.6874163.3620.0015660.000783

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 1246.04084210526 & 47.207 & 26.3953 & 0 & 0 \tabularnewline
x & 289.933684210526 & 101.029075 & 2.8698 & 0.006186 & 0.003093 \tabularnewline
M1 & 107.081964912280 & 57.352892 & 1.8671 & 0.068272 & 0.034136 \tabularnewline
M2 & 157.950877192982 & 57.266315 & 2.7582 & 0.008311 & 0.004156 \tabularnewline
M3 & 254.193052631579 & 60.862507 & 4.1765 & 0.000131 & 6.5e-05 \tabularnewline
M4 & 31.1087017543861 & 57.117592 & 0.5446 & 0.58863 & 0.294315 \tabularnewline
M5 & 15.2776140350878 & 57.05551 & 0.2678 & 0.790075 & 0.395038 \tabularnewline
M6 & 164.406526315790 & 57.001651 & 2.8842 & 0.005951 & 0.002976 \tabularnewline
M7 & 22.0154385964912 & 56.956038 & 0.3865 & 0.700884 & 0.350442 \tabularnewline
M8 & -17.7956491228071 & 56.918691 & -0.3127 & 0.755959 & 0.37798 \tabularnewline
M9 & 176.073263157895 & 56.889627 & 3.095 & 0.003345 & 0.001673 \tabularnewline
M10 & 186.882175438597 & 56.868857 & 3.2862 & 0.001949 & 0.000974 \tabularnewline
M11 & 207.731087719298 & 56.856392 & 3.6536 & 0.000661 & 0.00033 \tabularnewline
t & 2.31108771929825 & 0.687416 & 3.362 & 0.001566 & 0.000783 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25053&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]1246.04084210526[/C][C]47.207[/C][C]26.3953[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]x[/C][C]289.933684210526[/C][C]101.029075[/C][C]2.8698[/C][C]0.006186[/C][C]0.003093[/C][/ROW]
[ROW][C]M1[/C][C]107.081964912280[/C][C]57.352892[/C][C]1.8671[/C][C]0.068272[/C][C]0.034136[/C][/ROW]
[ROW][C]M2[/C][C]157.950877192982[/C][C]57.266315[/C][C]2.7582[/C][C]0.008311[/C][C]0.004156[/C][/ROW]
[ROW][C]M3[/C][C]254.193052631579[/C][C]60.862507[/C][C]4.1765[/C][C]0.000131[/C][C]6.5e-05[/C][/ROW]
[ROW][C]M4[/C][C]31.1087017543861[/C][C]57.117592[/C][C]0.5446[/C][C]0.58863[/C][C]0.294315[/C][/ROW]
[ROW][C]M5[/C][C]15.2776140350878[/C][C]57.05551[/C][C]0.2678[/C][C]0.790075[/C][C]0.395038[/C][/ROW]
[ROW][C]M6[/C][C]164.406526315790[/C][C]57.001651[/C][C]2.8842[/C][C]0.005951[/C][C]0.002976[/C][/ROW]
[ROW][C]M7[/C][C]22.0154385964912[/C][C]56.956038[/C][C]0.3865[/C][C]0.700884[/C][C]0.350442[/C][/ROW]
[ROW][C]M8[/C][C]-17.7956491228071[/C][C]56.918691[/C][C]-0.3127[/C][C]0.755959[/C][C]0.37798[/C][/ROW]
[ROW][C]M9[/C][C]176.073263157895[/C][C]56.889627[/C][C]3.095[/C][C]0.003345[/C][C]0.001673[/C][/ROW]
[ROW][C]M10[/C][C]186.882175438597[/C][C]56.868857[/C][C]3.2862[/C][C]0.001949[/C][C]0.000974[/C][/ROW]
[ROW][C]M11[/C][C]207.731087719298[/C][C]56.856392[/C][C]3.6536[/C][C]0.000661[/C][C]0.00033[/C][/ROW]
[ROW][C]t[/C][C]2.31108771929825[/C][C]0.687416[/C][C]3.362[/C][C]0.001566[/C][C]0.000783[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25053&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25053&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1246.0408421052647.20726.395300
x289.933684210526101.0290752.86980.0061860.003093
M1107.08196491228057.3528921.86710.0682720.034136
M2157.95087719298257.2663152.75820.0083110.004156
M3254.19305263157960.8625074.17650.0001316.5e-05
M431.108701754386157.1175920.54460.588630.294315
M515.277614035087857.055510.26780.7900750.395038
M6164.40652631579057.0016512.88420.0059510.002976
M722.015438596491256.9560380.38650.7008840.350442
M8-17.795649122807156.918691-0.31270.7559590.37798
M9176.07326315789556.8896273.0950.0033450.001673
M10186.88217543859756.8688573.28620.0019490.000974
M11207.73108771929856.8563923.65360.0006610.00033
t2.311087719298250.6874163.3620.0015660.000783







Multiple Linear Regression - Regression Statistics
Multiple R0.81812908221286
R-squared0.669335195162457
Adjusted R-squared0.575886445969239
F-TEST (value)7.16259126998598
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value2.39594351247874e-07
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation89.8912785062456
Sum Squared Residuals371700.329768421

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.81812908221286 \tabularnewline
R-squared & 0.669335195162457 \tabularnewline
Adjusted R-squared & 0.575886445969239 \tabularnewline
F-TEST (value) & 7.16259126998598 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 46 \tabularnewline
p-value & 2.39594351247874e-07 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 89.8912785062456 \tabularnewline
Sum Squared Residuals & 371700.329768421 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25053&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.81812908221286[/C][/ROW]
[ROW][C]R-squared[/C][C]0.669335195162457[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.575886445969239[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]7.16259126998598[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]46[/C][/ROW]
[ROW][C]p-value[/C][C]2.39594351247874e-07[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]89.8912785062456[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]371700.329768421[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25053&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25053&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.81812908221286
R-squared0.669335195162457
Adjusted R-squared0.575886445969239
F-TEST (value)7.16259126998598
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value2.39594351247874e-07
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation89.8912785062456
Sum Squared Residuals371700.329768421







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11332.71355.43389473684-22.7338947368429
21343.81408.61389473684-64.8138947368421
31421.61507.16715789474-85.5671578947368
41329.81286.3938947368443.4061052631581
51306.81272.8738947368433.9261052631577
61412.81424.31389473684-11.5138947368421
71358.11284.2338947368473.8661052631578
81163.91246.73389473684-82.8338947368422
91467.91442.9138947368424.9861052631580
101433.71456.03389473684-22.3338947368419
111362.21479.19389473684-116.993894736842
1212991273.7738947368425.2261052631578
131291.51383.16694736842-91.6669473684208
141452.71436.3469473684216.3530526315790
151555.41534.9002105263220.4997894736842
161402.51314.1269473684288.373052631579
171242.91300.60694736842-57.706947368421
181514.61452.0469473684262.553052631579
191308.61311.96694736842-3.36694736842108
201239.31274.46694736842-35.166947368421
211519.91470.6469473684249.253052631579
221659.41483.76694736842175.633052631579
231597.61506.9269473684290.673052631579
241340.61301.5069473684239.0930526315789
251427.21410.916.3000000000002
261438.11464.08-25.9800000000000
271616.21562.6332631578953.5667368421052
281392.81341.8650.9399999999999
291318.71328.34-9.63999999999992
301420.91479.78-58.8799999999998
3112211339.7-118.7
3213101302.27.80000000000004
331466.71498.38-31.68
341299.31511.5-212.2
3516401534.66105.34
361506.31329.24177.06
371530.21438.6330526315891.5669473684213
381661.91491.81305263158170.086947368421
391880.31880.3-2.70894418008538e-14
401230.81369.59305263158-138.793052631579
411406.51356.0730526315850.4269473684211
421523.51507.5130526315815.9869473684211
431323.21367.43305263158-44.2330526315789
441319.21329.93305263158-10.7330526315789
451500.71526.11305263158-25.413052631579
4614831539.23305263158-56.233052631579
4714971562.39305263158-65.3930526315789
481219.81356.97305263158-137.173052631579
491472.91466.366105263166.53389473684233
501423.91519.54610526316-95.6461052631578
511629.61618.0993684210511.5006315789471
521353.41397.32610526316-43.9261052631579
531366.81383.80610526316-17.0061052631579
541527.11535.24610526316-8.14610526315797
551487.61395.1661052631692.433894736842
561478.61357.66610526316120.933894736842
571536.71553.84610526316-17.1461052631579
581682.11566.96610526316115.133894736842
591576.51590.12610526316-13.6261052631579
601280.51384.70610526316-104.206105263158

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1332.7 & 1355.43389473684 & -22.7338947368429 \tabularnewline
2 & 1343.8 & 1408.61389473684 & -64.8138947368421 \tabularnewline
3 & 1421.6 & 1507.16715789474 & -85.5671578947368 \tabularnewline
4 & 1329.8 & 1286.39389473684 & 43.4061052631581 \tabularnewline
5 & 1306.8 & 1272.87389473684 & 33.9261052631577 \tabularnewline
6 & 1412.8 & 1424.31389473684 & -11.5138947368421 \tabularnewline
7 & 1358.1 & 1284.23389473684 & 73.8661052631578 \tabularnewline
8 & 1163.9 & 1246.73389473684 & -82.8338947368422 \tabularnewline
9 & 1467.9 & 1442.91389473684 & 24.9861052631580 \tabularnewline
10 & 1433.7 & 1456.03389473684 & -22.3338947368419 \tabularnewline
11 & 1362.2 & 1479.19389473684 & -116.993894736842 \tabularnewline
12 & 1299 & 1273.77389473684 & 25.2261052631578 \tabularnewline
13 & 1291.5 & 1383.16694736842 & -91.6669473684208 \tabularnewline
14 & 1452.7 & 1436.34694736842 & 16.3530526315790 \tabularnewline
15 & 1555.4 & 1534.90021052632 & 20.4997894736842 \tabularnewline
16 & 1402.5 & 1314.12694736842 & 88.373052631579 \tabularnewline
17 & 1242.9 & 1300.60694736842 & -57.706947368421 \tabularnewline
18 & 1514.6 & 1452.04694736842 & 62.553052631579 \tabularnewline
19 & 1308.6 & 1311.96694736842 & -3.36694736842108 \tabularnewline
20 & 1239.3 & 1274.46694736842 & -35.166947368421 \tabularnewline
21 & 1519.9 & 1470.64694736842 & 49.253052631579 \tabularnewline
22 & 1659.4 & 1483.76694736842 & 175.633052631579 \tabularnewline
23 & 1597.6 & 1506.92694736842 & 90.673052631579 \tabularnewline
24 & 1340.6 & 1301.50694736842 & 39.0930526315789 \tabularnewline
25 & 1427.2 & 1410.9 & 16.3000000000002 \tabularnewline
26 & 1438.1 & 1464.08 & -25.9800000000000 \tabularnewline
27 & 1616.2 & 1562.63326315789 & 53.5667368421052 \tabularnewline
28 & 1392.8 & 1341.86 & 50.9399999999999 \tabularnewline
29 & 1318.7 & 1328.34 & -9.63999999999992 \tabularnewline
30 & 1420.9 & 1479.78 & -58.8799999999998 \tabularnewline
31 & 1221 & 1339.7 & -118.7 \tabularnewline
32 & 1310 & 1302.2 & 7.80000000000004 \tabularnewline
33 & 1466.7 & 1498.38 & -31.68 \tabularnewline
34 & 1299.3 & 1511.5 & -212.2 \tabularnewline
35 & 1640 & 1534.66 & 105.34 \tabularnewline
36 & 1506.3 & 1329.24 & 177.06 \tabularnewline
37 & 1530.2 & 1438.63305263158 & 91.5669473684213 \tabularnewline
38 & 1661.9 & 1491.81305263158 & 170.086947368421 \tabularnewline
39 & 1880.3 & 1880.3 & -2.70894418008538e-14 \tabularnewline
40 & 1230.8 & 1369.59305263158 & -138.793052631579 \tabularnewline
41 & 1406.5 & 1356.07305263158 & 50.4269473684211 \tabularnewline
42 & 1523.5 & 1507.51305263158 & 15.9869473684211 \tabularnewline
43 & 1323.2 & 1367.43305263158 & -44.2330526315789 \tabularnewline
44 & 1319.2 & 1329.93305263158 & -10.7330526315789 \tabularnewline
45 & 1500.7 & 1526.11305263158 & -25.413052631579 \tabularnewline
46 & 1483 & 1539.23305263158 & -56.233052631579 \tabularnewline
47 & 1497 & 1562.39305263158 & -65.3930526315789 \tabularnewline
48 & 1219.8 & 1356.97305263158 & -137.173052631579 \tabularnewline
49 & 1472.9 & 1466.36610526316 & 6.53389473684233 \tabularnewline
50 & 1423.9 & 1519.54610526316 & -95.6461052631578 \tabularnewline
51 & 1629.6 & 1618.09936842105 & 11.5006315789471 \tabularnewline
52 & 1353.4 & 1397.32610526316 & -43.9261052631579 \tabularnewline
53 & 1366.8 & 1383.80610526316 & -17.0061052631579 \tabularnewline
54 & 1527.1 & 1535.24610526316 & -8.14610526315797 \tabularnewline
55 & 1487.6 & 1395.16610526316 & 92.433894736842 \tabularnewline
56 & 1478.6 & 1357.66610526316 & 120.933894736842 \tabularnewline
57 & 1536.7 & 1553.84610526316 & -17.1461052631579 \tabularnewline
58 & 1682.1 & 1566.96610526316 & 115.133894736842 \tabularnewline
59 & 1576.5 & 1590.12610526316 & -13.6261052631579 \tabularnewline
60 & 1280.5 & 1384.70610526316 & -104.206105263158 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25053&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1332.7[/C][C]1355.43389473684[/C][C]-22.7338947368429[/C][/ROW]
[ROW][C]2[/C][C]1343.8[/C][C]1408.61389473684[/C][C]-64.8138947368421[/C][/ROW]
[ROW][C]3[/C][C]1421.6[/C][C]1507.16715789474[/C][C]-85.5671578947368[/C][/ROW]
[ROW][C]4[/C][C]1329.8[/C][C]1286.39389473684[/C][C]43.4061052631581[/C][/ROW]
[ROW][C]5[/C][C]1306.8[/C][C]1272.87389473684[/C][C]33.9261052631577[/C][/ROW]
[ROW][C]6[/C][C]1412.8[/C][C]1424.31389473684[/C][C]-11.5138947368421[/C][/ROW]
[ROW][C]7[/C][C]1358.1[/C][C]1284.23389473684[/C][C]73.8661052631578[/C][/ROW]
[ROW][C]8[/C][C]1163.9[/C][C]1246.73389473684[/C][C]-82.8338947368422[/C][/ROW]
[ROW][C]9[/C][C]1467.9[/C][C]1442.91389473684[/C][C]24.9861052631580[/C][/ROW]
[ROW][C]10[/C][C]1433.7[/C][C]1456.03389473684[/C][C]-22.3338947368419[/C][/ROW]
[ROW][C]11[/C][C]1362.2[/C][C]1479.19389473684[/C][C]-116.993894736842[/C][/ROW]
[ROW][C]12[/C][C]1299[/C][C]1273.77389473684[/C][C]25.2261052631578[/C][/ROW]
[ROW][C]13[/C][C]1291.5[/C][C]1383.16694736842[/C][C]-91.6669473684208[/C][/ROW]
[ROW][C]14[/C][C]1452.7[/C][C]1436.34694736842[/C][C]16.3530526315790[/C][/ROW]
[ROW][C]15[/C][C]1555.4[/C][C]1534.90021052632[/C][C]20.4997894736842[/C][/ROW]
[ROW][C]16[/C][C]1402.5[/C][C]1314.12694736842[/C][C]88.373052631579[/C][/ROW]
[ROW][C]17[/C][C]1242.9[/C][C]1300.60694736842[/C][C]-57.706947368421[/C][/ROW]
[ROW][C]18[/C][C]1514.6[/C][C]1452.04694736842[/C][C]62.553052631579[/C][/ROW]
[ROW][C]19[/C][C]1308.6[/C][C]1311.96694736842[/C][C]-3.36694736842108[/C][/ROW]
[ROW][C]20[/C][C]1239.3[/C][C]1274.46694736842[/C][C]-35.166947368421[/C][/ROW]
[ROW][C]21[/C][C]1519.9[/C][C]1470.64694736842[/C][C]49.253052631579[/C][/ROW]
[ROW][C]22[/C][C]1659.4[/C][C]1483.76694736842[/C][C]175.633052631579[/C][/ROW]
[ROW][C]23[/C][C]1597.6[/C][C]1506.92694736842[/C][C]90.673052631579[/C][/ROW]
[ROW][C]24[/C][C]1340.6[/C][C]1301.50694736842[/C][C]39.0930526315789[/C][/ROW]
[ROW][C]25[/C][C]1427.2[/C][C]1410.9[/C][C]16.3000000000002[/C][/ROW]
[ROW][C]26[/C][C]1438.1[/C][C]1464.08[/C][C]-25.9800000000000[/C][/ROW]
[ROW][C]27[/C][C]1616.2[/C][C]1562.63326315789[/C][C]53.5667368421052[/C][/ROW]
[ROW][C]28[/C][C]1392.8[/C][C]1341.86[/C][C]50.9399999999999[/C][/ROW]
[ROW][C]29[/C][C]1318.7[/C][C]1328.34[/C][C]-9.63999999999992[/C][/ROW]
[ROW][C]30[/C][C]1420.9[/C][C]1479.78[/C][C]-58.8799999999998[/C][/ROW]
[ROW][C]31[/C][C]1221[/C][C]1339.7[/C][C]-118.7[/C][/ROW]
[ROW][C]32[/C][C]1310[/C][C]1302.2[/C][C]7.80000000000004[/C][/ROW]
[ROW][C]33[/C][C]1466.7[/C][C]1498.38[/C][C]-31.68[/C][/ROW]
[ROW][C]34[/C][C]1299.3[/C][C]1511.5[/C][C]-212.2[/C][/ROW]
[ROW][C]35[/C][C]1640[/C][C]1534.66[/C][C]105.34[/C][/ROW]
[ROW][C]36[/C][C]1506.3[/C][C]1329.24[/C][C]177.06[/C][/ROW]
[ROW][C]37[/C][C]1530.2[/C][C]1438.63305263158[/C][C]91.5669473684213[/C][/ROW]
[ROW][C]38[/C][C]1661.9[/C][C]1491.81305263158[/C][C]170.086947368421[/C][/ROW]
[ROW][C]39[/C][C]1880.3[/C][C]1880.3[/C][C]-2.70894418008538e-14[/C][/ROW]
[ROW][C]40[/C][C]1230.8[/C][C]1369.59305263158[/C][C]-138.793052631579[/C][/ROW]
[ROW][C]41[/C][C]1406.5[/C][C]1356.07305263158[/C][C]50.4269473684211[/C][/ROW]
[ROW][C]42[/C][C]1523.5[/C][C]1507.51305263158[/C][C]15.9869473684211[/C][/ROW]
[ROW][C]43[/C][C]1323.2[/C][C]1367.43305263158[/C][C]-44.2330526315789[/C][/ROW]
[ROW][C]44[/C][C]1319.2[/C][C]1329.93305263158[/C][C]-10.7330526315789[/C][/ROW]
[ROW][C]45[/C][C]1500.7[/C][C]1526.11305263158[/C][C]-25.413052631579[/C][/ROW]
[ROW][C]46[/C][C]1483[/C][C]1539.23305263158[/C][C]-56.233052631579[/C][/ROW]
[ROW][C]47[/C][C]1497[/C][C]1562.39305263158[/C][C]-65.3930526315789[/C][/ROW]
[ROW][C]48[/C][C]1219.8[/C][C]1356.97305263158[/C][C]-137.173052631579[/C][/ROW]
[ROW][C]49[/C][C]1472.9[/C][C]1466.36610526316[/C][C]6.53389473684233[/C][/ROW]
[ROW][C]50[/C][C]1423.9[/C][C]1519.54610526316[/C][C]-95.6461052631578[/C][/ROW]
[ROW][C]51[/C][C]1629.6[/C][C]1618.09936842105[/C][C]11.5006315789471[/C][/ROW]
[ROW][C]52[/C][C]1353.4[/C][C]1397.32610526316[/C][C]-43.9261052631579[/C][/ROW]
[ROW][C]53[/C][C]1366.8[/C][C]1383.80610526316[/C][C]-17.0061052631579[/C][/ROW]
[ROW][C]54[/C][C]1527.1[/C][C]1535.24610526316[/C][C]-8.14610526315797[/C][/ROW]
[ROW][C]55[/C][C]1487.6[/C][C]1395.16610526316[/C][C]92.433894736842[/C][/ROW]
[ROW][C]56[/C][C]1478.6[/C][C]1357.66610526316[/C][C]120.933894736842[/C][/ROW]
[ROW][C]57[/C][C]1536.7[/C][C]1553.84610526316[/C][C]-17.1461052631579[/C][/ROW]
[ROW][C]58[/C][C]1682.1[/C][C]1566.96610526316[/C][C]115.133894736842[/C][/ROW]
[ROW][C]59[/C][C]1576.5[/C][C]1590.12610526316[/C][C]-13.6261052631579[/C][/ROW]
[ROW][C]60[/C][C]1280.5[/C][C]1384.70610526316[/C][C]-104.206105263158[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25053&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25053&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11332.71355.43389473684-22.7338947368429
21343.81408.61389473684-64.8138947368421
31421.61507.16715789474-85.5671578947368
41329.81286.3938947368443.4061052631581
51306.81272.8738947368433.9261052631577
61412.81424.31389473684-11.5138947368421
71358.11284.2338947368473.8661052631578
81163.91246.73389473684-82.8338947368422
91467.91442.9138947368424.9861052631580
101433.71456.03389473684-22.3338947368419
111362.21479.19389473684-116.993894736842
1212991273.7738947368425.2261052631578
131291.51383.16694736842-91.6669473684208
141452.71436.3469473684216.3530526315790
151555.41534.9002105263220.4997894736842
161402.51314.1269473684288.373052631579
171242.91300.60694736842-57.706947368421
181514.61452.0469473684262.553052631579
191308.61311.96694736842-3.36694736842108
201239.31274.46694736842-35.166947368421
211519.91470.6469473684249.253052631579
221659.41483.76694736842175.633052631579
231597.61506.9269473684290.673052631579
241340.61301.5069473684239.0930526315789
251427.21410.916.3000000000002
261438.11464.08-25.9800000000000
271616.21562.6332631578953.5667368421052
281392.81341.8650.9399999999999
291318.71328.34-9.63999999999992
301420.91479.78-58.8799999999998
3112211339.7-118.7
3213101302.27.80000000000004
331466.71498.38-31.68
341299.31511.5-212.2
3516401534.66105.34
361506.31329.24177.06
371530.21438.6330526315891.5669473684213
381661.91491.81305263158170.086947368421
391880.31880.3-2.70894418008538e-14
401230.81369.59305263158-138.793052631579
411406.51356.0730526315850.4269473684211
421523.51507.5130526315815.9869473684211
431323.21367.43305263158-44.2330526315789
441319.21329.93305263158-10.7330526315789
451500.71526.11305263158-25.413052631579
4614831539.23305263158-56.233052631579
4714971562.39305263158-65.3930526315789
481219.81356.97305263158-137.173052631579
491472.91466.366105263166.53389473684233
501423.91519.54610526316-95.6461052631578
511629.61618.0993684210511.5006315789471
521353.41397.32610526316-43.9261052631579
531366.81383.80610526316-17.0061052631579
541527.11535.24610526316-8.14610526315797
551487.61395.1661052631692.433894736842
561478.61357.66610526316120.933894736842
571536.71553.84610526316-17.1461052631579
581682.11566.96610526316115.133894736842
591576.51590.12610526316-13.6261052631579
601280.51384.70610526316-104.206105263158



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')