Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 01 Dec 2014 15:21:20 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/01/t1417447441h8j7guzwf8cy8os.htm/, Retrieved Fri, 01 Nov 2024 01:01:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=261918, Retrieved Fri, 01 Nov 2024 01:01:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact116
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2014-12-01 15:21:20] [18673d63f90870b9c004059cd6229007] [Current]
Feedback Forum

Post a new message
Dataseries X:
'7.5' 68 18 149 21 0 26 50 4 2011
'6.5' 32 39 148 22 0 37 54 5 2011
'1.0' 62 46 158 18 1 67 71 4 2011
'1.0' 33 31 128 23 1 43 54 4 2011
'5.5' 52 67 224 12 1 52 65 9 2011
'8.5' 62 35 159 20 0 52 73 8 2011
'6.5' 77 52 105 22 1 43 52 11 2011
'4.5' 76 77 159 21 1 84 84 4 2011
'2.0' 41 37 167 19 1 67 42 4 2011
'5.0' 48 32 165 22 1 49 66 6 2011
'0.5' 63 36 159 15 1 70 65 4 2011
'5.0' 78 69 176 19 0 58 73 4 2011
'2.5' 19 21 54 18 0 68 75 4 2011
'5.0' 31 26 91 15 0 62 72 11 2011
'5.5' 66 54 163 20 1 43 66 4 2011
'3.5' 35 36 124 21 0 56 70 4 2011
'4.0' 45 23 121 15 0 74 81 6 2011
'6.5' 25 112 148 23 1 63 69 8 2011
'4.5' 44 35 221 21 0 58 71 5 2011
'5.5' 54 47 149 25 1 63 68 9 2011
'4.0' 74 37 244 9 1 53 70 4 2011
'7.5' 80 109 148 30 1 57 68 7 2011
'7.0' 42 24 92 20 0 51 61 10 2011
'4.0' 61 20 150 23 1 64 67 4 2011
'5.5' 41 22 153 16 0 53 76 4 2011
'2.5' 46 23 94 16 0 29 70 7 2011
'5.5' 39 32 156 19 0 54 60 12 2011
'3.5' 34 30 132 25 1 58 72 7 2011
'2.5' 51 92 161 18 1 43 69 5 2011
'4.5' 42 43 105 23 1 51 71 8 2011
'4.5' 31 55 97 21 1 53 62 5 2011
'4.5' 39 16 151 10 0 54 70 4 2011
'6.0' 20 49 131 14 1 56 64 9 2011
'2.5' 49 71 166 22 1 61 58 7 2011
'5.0' 53 43 157 26 0 47 76 4 2011
'6.5' 54 46 162 24 1 50 68 4 2011
'5.0' 49 19 163 24 1 35 76 4 2011
'6.0' 34 23 59 18 1 30 65 7 2011
'4.5' 46 59 187 23 0 68 67 4 2011
'5.0' 37 32 116 23 1 56 75 4 2011
'1.0' 25 16 42 17 1 50 63 8 2011
'5.0' 30 19 148 19 1 43 60 4 2011
'6.5' 28 22 155 21 1 67 73 4 2011
'7.0' 45 48 125 18 1 62 63 4 2011
'4.5' 35 23 116 27 1 57 70 4 2011
'0.0' 28 26 128 21 0 41 75 7 2011
'8.5' 41 33 138 13 1 54 66 12 2011
'3.5' 6 9 49 8 0 45 63 4 2011
'7.5' 45 24 96 29 1 48 63 4 2011
'3.5' 73 34 164 28 1 61 64 4 2011
'6.0' 17 48 162 23 0 56 70 5 2011
'1.5' 40 18 99 21 0 41 75 15 2011
'9.0' 64 43 202 19 1 43 61 5 2011
'3.5' 37 33 186 19 0 53 60 10 2011
'3.5' 25 28 66 20 1 44 62 9 2011
'4.0' 65 71 183 18 0 66 73 8 2011
'6.5' 100 26 214 19 1 58 61 4 2011
'7.5' 28 67 188 17 1 46 66 5 2011
'6.0' 35 34 104 19 0 37 64 4 2011
'5.0' 56 80 177 25 0 51 59 9 2011
'5.5' 29 29 126 19 0 51 64 4 2011
'3.5' 43 16 76 22 0 56 60 10 2011
'7.5' 59 59 99 23 1 66 56 4 2011
'6.5' 50 32 139 14 0 37 78 4 2011
'6.5' 59 43 162 16 0 42 67 7 2011
'6.5' 27 38 108 24 1 38 59 5 2011
'7.0' 61 29 159 20 0 66 66 4 2011
'3.5' 28 36 74 12 0 34 68 4 2011
'1.5' 51 32 110 24 1 53 71 4 2011
'4.0' 35 35 96 22 0 49 66 4 2011
'7.5' 29 21 116 12 0 55 73 4 2011
'4.5' 48 29 87 22 0 49 72 4 2011
'0.0' 25 12 97 20 1 59 71 6 2011
'3.5' 44 37 127 10 0 40 59 10 2011
'5.5' 64 37 106 23 1 58 64 7 2011
'5.0' 32 47 80 17 1 60 66 4 2011
'4.5' 20 51 74 22 0 63 78 4 2011
'2.5' 28 32 91 24 0 56 68 7 2011
'7.5' 34 21 133 18 0 54 73 4 2011
'7.0' 31 13 74 21 1 52 62 8 2011
'0.0' 26 14 114 20 1 34 65 11 2011
'3.0' 23 20 95 22 0 32 65 14 2011
'3.5' 21 11 121 20 0 67 71 4 2011
'3.0' 41 35 130 17 1 61 72 4 2011
'1.0' 22 8 52 18 0 60 66 5 2011
'5.5' 27 24 118 19 0 63 69 4 2011
'0.5' 12 23 48 23 1 52 51 6 2012
'7.5' 45 16 50 22 1 16 56 4 2012
9 37 33 150 21 1 46 67 8 2012
'9.5' 37 32 154 25 1 56 69 5 2012
'8.5' 108 37 109 30 0 52 57 4 2012
7 10 14 68 17 1 55 56 17 2012
8 68 52 194 27 1 50 55 4 2012
10 72 75 158 23 0 59 63 4 2012
7 143 72 159 23 1 60 67 8 2012
'8.5' 9 15 67 18 0 52 65 4 2012
9 55 29 147 18 0 44 47 7 2012
'9.5' 17 13 39 23 1 67 76 4 2012
4 37 40 100 19 1 52 64 4 2012
6 27 19 111 15 1 55 68 5 2012
8 37 24 138 20 1 37 64 7 2012
'5.5' 58 121 101 16 1 54 65 4 2012
'9.5' 66 93 131 24 1 72 71 4 2012
'7.5' 21 36 101 25 1 51 63 7 2012
7 19 23 114 25 1 48 60 11 2012
'7.5' 78 85 165 19 0 60 68 7 2012
8 35 41 114 19 1 50 72 4 2012
7 48 46 111 16 1 63 70 4 2012
7 27 18 75 19 1 33 61 4 2012
6 43 35 82 19 1 67 61 4 2012
10 30 17 121 23 1 46 62 4 2012
'2.5' 25 4 32 21 1 54 71 4 2012
9 69 28 150 22 0 59 71 6 2012
8 72 44 117 19 1 61 51 8 2012
6 23 10 71 20 1 33 56 23 2012
'8.5' 13 38 165 20 1 47 70 4 2012
6 61 57 154 3 1 69 73 8 2012
9 43 23 126 23 1 52 76 6 2012
8 51 36 149 23 0 55 68 4 2012
9 67 22 145 20 0 41 48 7 2012
'5.5' 36 40 120 15 1 73 52 4 2012
7 44 31 109 16 0 52 60 4 2012
'5.5' 45 11 132 7 0 50 59 4 2012
9 34 38 172 24 1 51 57 10 2012
2 36 24 169 17 0 60 79 6 2012
'8.5' 72 37 114 24 1 56 60 5 2012
9 39 37 156 24 1 56 60 5 2012
'8.5' 43 22 172 19 0 29 59 4 2012
9 25 15 68 25 1 66 62 4 2012
'7.5' 56 2 89 20 1 66 59 5 2012
10 80 43 167 28 1 73 61 5 2012
9 40 31 113 23 0 55 71 5 2012
'7.5' 73 29 115 27 0 64 57 5 2012
6 34 45 78 18 0 40 66 4 2012
'10.5' 72 25 118 28 0 46 63 6 2012
'8.5' 42 4 87 21 1 58 69 4 2012
8 61 31 173 19 0 43 58 4 2012
10 23 -4 2 23 1 61 59 4 2012
'10.5' 74 66 162 27 0 51 48 9 2012
'6.5' 16 61 49 22 1 50 66 18 2012
'9.5' 66 32 122 28 0 52 73 6 2012
'8.5' 9 31 96 25 1 54 67 5 2012
'7.5' 41 39 100 21 0 66 61 4 2012
5 57 19 82 22 0 61 68 11 2012
8 48 31 100 28 1 80 75 4 2012
10 51 36 115 20 0 51 62 10 2012
7 53 42 141 29 1 56 69 6 2012
'7.5' 29 21 165 25 1 56 58 8 2012
'7.5' 29 21 165 25 1 56 60 8 2012
'9.5' 55 25 110 20 1 53 74 6 2012
6 54 32 118 20 1 47 55 8 2012
10 43 26 158 16 0 25 62 4 2012
7 51 28 146 20 1 47 63 4 2012
3 20 32 49 20 0 46 69 9 2012
6 79 41 90 23 0 50 58 9 2012
7 39 29 121 18 0 39 58 5 2012
10 61 33 155 25 1 51 68 4 2012
7 55 17 104 18 0 58 72 4 2012
'3.5' 30 13 147 19 1 35 62 15 2012
8 55 32 110 25 0 58 62 10 2012
10 22 30 108 25 0 60 65 9 2012
'5.5' 37 34 113 25 0 62 69 7 2012
6 2 59 115 24 0 63 66 9 2012
'6.5' 38 13 61 19 1 53 72 6 2012
'6.5' 27 23 60 26 1 46 62 4 2012
'8.5' 56 10 109 10 1 67 75 7 2012
4 25 5 68 17 1 59 58 4 2012
'9.5' 39 31 111 13 0 64 66 7 2012
8 33 19 77 17 0 38 55 4 2012
'8.5' 43 32 73 30 1 50 47 15 2012
'5.5' 57 30 151 25 0 48 72 4 2012
7 43 25 89 4 0 48 62 9 2012
9 23 48 78 16 0 47 64 4 2012
8 44 35 110 21 0 66 64 4 2012
10 54 67 220 23 1 47 19 28 2012
8 28 15 65 22 1 63 50 4 2012
6 36 22 141 17 0 58 68 4 2012
8 39 18 117 20 0 44 70 4 2012
5 16 33 122 20 1 51 79 5 2012
9 23 46 63 22 0 43 69 4 2012
'4.5' 40 24 44 16 1 55 71 4 2012
'8.5' 24 14 52 23 1 38 48 12 2012
'9.5' 78 12 131 0 0 45 73 4 2012
'8.5' 57 38 101 18 1 50 74 6 2012
'7.5' 37 12 42 25 1 54 66 6 2012
'7.5' 27 28 152 23 1 57 71 5 2012
5 61 41 107 12 0 60 74 4 2012
7 27 12 77 18 0 55 78 4 2012
8 69 31 154 24 0 56 75 4 2012
'5.5' 34 33 103 11 1 49 53 10 2012
'8.5' 44 34 96 18 1 37 60 7 2012
'9.5' 34 21 175 23 1 59 70 4 2012
7 39 20 57 24 1 46 69 7 2012
8 51 44 112 29 0 51 65 4 2012
'8.5' 34 52 143 18 0 58 78 4 2012
'3.5' 31 7 49 15 0 64 78 12 2012
'6.5' 13 29 110 29 1 53 59 5 2012
'6.5' 12 11 131 16 1 48 72 8 2012
'10.5' 51 26 167 19 0 51 70 6 2012
'8.5' 24 24 56 22 0 47 63 17 2012
8 19 7 137 16 0 59 63 4 2012
10 30 60 86 23 1 62 71 5 2012
10 81 13 121 23 1 62 74 4 2012
'9.5' 42 20 149 19 0 51 67 5 2012
9 22 52 168 4 0 64 66 5 2012
10 85 28 140 20 0 52 62 6 2012
'7.5' 27 25 88 24 1 67 80 4 2012
'4.5' 25 39 168 20 1 50 73 4 2012
'4.5' 22 9 94 4 1 54 67 4 2012
'0.5' 19 19 51 24 1 58 61 6 2012
'6.5' 14 13 48 22 0 56 73 8 2012
'4.5' 45 60 145 16 1 63 74 10 2012
'5.5' 45 19 66 3 1 31 32 4 2012
5 28 34 85 15 1 65 69 5 2012
6 51 14 109 24 0 71 69 4 2012
4 41 17 63 17 0 50 84 4 2012
8 31 45 102 20 1 57 64 4 2012
'10.5' 74 66 162 27 0 47 58 16 2012
'6.5' 19 48 86 26 1 47 59 7 2012
8 51 29 114 23 1 57 78 4 2012
'8.5' 73 -2 164 17 0 43 57 4 2012
'5.5' 24 51 119 20 1 41 60 14 2012
7 61 2 126 22 0 63 68 5 2012
5 23 24 132 19 1 63 68 5 2012
'3.5' 14 40 142 24 1 56 73 5 2012
5 54 20 83 19 0 51 69 5 2012
9 51 19 94 23 1 50 67 7 2012
'8.5' 62 16 81 15 0 22 60 19 2012
5 36 20 166 27 1 41 65 16 2012
'9.5' 59 40 110 26 0 59 66 4 2012
3 24 27 64 22 1 56 74 4 2012
'1.5' 26 25 93 22 0 66 81 7 2012
6 54 49 104 18 0 53 72 9 2012
'0.5' 39 39 105 15 1 42 55 5 2012
'6.5' 16 61 49 22 1 52 49 14 2012
'7.5' 36 19 88 27 0 54 74 4 2012
'4.5' 31 67 95 10 1 44 53 16 2012
8 31 45 102 20 1 62 64 10 2012
9 42 30 99 17 0 53 65 5 2012
'7.5' 39 8 63 23 1 50 57 6 2012
'8.5' 25 19 76 19 0 36 51 4 2012
7 31 52 109 13 0 76 80 4 2012
'9.5' 38 22 117 27 1 66 67 4 2012
'6.5' 31 17 57 23 1 62 70 5 2012
'9.5' 17 33 120 16 0 59 74 4 2012
6 22 34 73 25 1 47 75 4 2012
8 55 22 91 2 0 55 70 5 2012
'9.5' 62 30 108 26 0 58 69 4 2012
8 51 25 105 20 1 60 65 4 2012
8 30 38 117 23 0 44 55 5 2012
9 49 26 119 22 0 57 71 8 2012
5 16 13 31 24 1 45 65 15 2012





Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 10 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
R Framework error message & 
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=261918&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]10 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[ROW][C]R Framework error message[/C][C]
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=261918&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.







Multiple Linear Regression - Estimated Regression Equation
Ex[t] = -5688.86 + 0.0185533CH[t] + 0.00280587PRH[t] + 0.00975628LFM[t] + 0.0662256NUMERACYTOT[t] -0.525054gender[t] -0.0106559AMS.I[t] -0.0280944AMS.E[t] -0.0508911AMS.A[t] + 2.83096Year[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Ex[t] =  -5688.86 +  0.0185533CH[t] +  0.00280587PRH[t] +  0.00975628LFM[t] +  0.0662256NUMERACYTOT[t] -0.525054gender[t] -0.0106559AMS.I[t] -0.0280944AMS.E[t] -0.0508911AMS.A[t] +  2.83096Year[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=261918&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Ex[t] =  -5688.86 +  0.0185533CH[t] +  0.00280587PRH[t] +  0.00975628LFM[t] +  0.0662256NUMERACYTOT[t] -0.525054gender[t] -0.0106559AMS.I[t] -0.0280944AMS.E[t] -0.0508911AMS.A[t] +  2.83096Year[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=261918&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Ex[t] = -5688.86 + 0.0185533CH[t] + 0.00280587PRH[t] + 0.00975628LFM[t] + 0.0662256NUMERACYTOT[t] -0.525054gender[t] -0.0106559AMS.I[t] -0.0280944AMS.E[t] -0.0508911AMS.A[t] + 2.83096Year[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-5688.86555.495-10.241.11009e-205.55046e-21
CH0.01855330.00736742.5180.01243880.00621939
PRH0.002805870.007343030.38210.7027120.351356
LFM0.009756280.003645432.6760.007952520.00397626
NUMERACYTOT0.06622560.02467642.6840.00778250.00389125
gender-0.5250540.260413-2.0160.04488050.0224403
AMS.I-0.01065590.0133246-0.79970.4246620.212331
AMS.E-0.02809440.017085-1.6440.1013950.0506974
AMS.A-0.05089110.0378475-1.3450.1800020.0900011
Year2.830960.27607310.251.00853e-205.04263e-21

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -5688.86 & 555.495 & -10.24 & 1.11009e-20 & 5.55046e-21 \tabularnewline
CH & 0.0185533 & 0.0073674 & 2.518 & 0.0124388 & 0.00621939 \tabularnewline
PRH & 0.00280587 & 0.00734303 & 0.3821 & 0.702712 & 0.351356 \tabularnewline
LFM & 0.00975628 & 0.00364543 & 2.676 & 0.00795252 & 0.00397626 \tabularnewline
NUMERACYTOT & 0.0662256 & 0.0246764 & 2.684 & 0.0077825 & 0.00389125 \tabularnewline
gender & -0.525054 & 0.260413 & -2.016 & 0.0448805 & 0.0224403 \tabularnewline
AMS.I & -0.0106559 & 0.0133246 & -0.7997 & 0.424662 & 0.212331 \tabularnewline
AMS.E & -0.0280944 & 0.017085 & -1.644 & 0.101395 & 0.0506974 \tabularnewline
AMS.A & -0.0508911 & 0.0378475 & -1.345 & 0.180002 & 0.0900011 \tabularnewline
Year & 2.83096 & 0.276073 & 10.25 & 1.00853e-20 & 5.04263e-21 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=261918&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-5688.86[/C][C]555.495[/C][C]-10.24[/C][C]1.11009e-20[/C][C]5.55046e-21[/C][/ROW]
[ROW][C]CH[/C][C]0.0185533[/C][C]0.0073674[/C][C]2.518[/C][C]0.0124388[/C][C]0.00621939[/C][/ROW]
[ROW][C]PRH[/C][C]0.00280587[/C][C]0.00734303[/C][C]0.3821[/C][C]0.702712[/C][C]0.351356[/C][/ROW]
[ROW][C]LFM[/C][C]0.00975628[/C][C]0.00364543[/C][C]2.676[/C][C]0.00795252[/C][C]0.00397626[/C][/ROW]
[ROW][C]NUMERACYTOT[/C][C]0.0662256[/C][C]0.0246764[/C][C]2.684[/C][C]0.0077825[/C][C]0.00389125[/C][/ROW]
[ROW][C]gender[/C][C]-0.525054[/C][C]0.260413[/C][C]-2.016[/C][C]0.0448805[/C][C]0.0224403[/C][/ROW]
[ROW][C]AMS.I[/C][C]-0.0106559[/C][C]0.0133246[/C][C]-0.7997[/C][C]0.424662[/C][C]0.212331[/C][/ROW]
[ROW][C]AMS.E[/C][C]-0.0280944[/C][C]0.017085[/C][C]-1.644[/C][C]0.101395[/C][C]0.0506974[/C][/ROW]
[ROW][C]AMS.A[/C][C]-0.0508911[/C][C]0.0378475[/C][C]-1.345[/C][C]0.180002[/C][C]0.0900011[/C][/ROW]
[ROW][C]Year[/C][C]2.83096[/C][C]0.276073[/C][C]10.25[/C][C]1.00853e-20[/C][C]5.04263e-21[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=261918&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-5688.86555.495-10.241.11009e-205.55046e-21
CH0.01855330.00736742.5180.01243880.00621939
PRH0.002805870.007343030.38210.7027120.351356
LFM0.009756280.003645432.6760.007952520.00397626
NUMERACYTOT0.06622560.02467642.6840.00778250.00389125
gender-0.5250540.260413-2.0160.04488050.0224403
AMS.I-0.01065590.0133246-0.79970.4246620.212331
AMS.E-0.02809440.017085-1.6440.1013950.0506974
AMS.A-0.05089110.0378475-1.3450.1800020.0900011
Year2.830960.27607310.251.00853e-205.04263e-21







Multiple Linear Regression - Regression Statistics
Multiple R0.614657
R-squared0.377804
Adjusted R-squared0.354664
F-TEST (value)16.3272
F-TEST (DF numerator)9
F-TEST (DF denominator)242
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.968
Sum Squared Residuals937.27

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.614657 \tabularnewline
R-squared & 0.377804 \tabularnewline
Adjusted R-squared & 0.354664 \tabularnewline
F-TEST (value) & 16.3272 \tabularnewline
F-TEST (DF numerator) & 9 \tabularnewline
F-TEST (DF denominator) & 242 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.968 \tabularnewline
Sum Squared Residuals & 937.27 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=261918&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.614657[/C][/ROW]
[ROW][C]R-squared[/C][C]0.377804[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.354664[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]16.3272[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]9[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]242[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.968[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]937.27[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=261918&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.614657
R-squared0.377804
Adjusted R-squared0.354664
F-TEST (value)16.3272
F-TEST (DF numerator)9
F-TEST (DF denominator)242
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.968
Sum Squared Residuals937.27







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
17.56.464891.03511
26.55.631880.868118
314.76934-3.76934
414.96099-3.96099
55.54.963240.536761
68.55.305823.19418
76.55.245591.25441
84.54.77812-0.278122
925.32324-3.32324
1055.034-0.0340023
110.54.70751-4.20751
1255.93733-0.937332
132.53.28877-0.788768
1453.479721.52028
155.55.443440.0565562
163.54.77767-1.27767
1743.897470.102526
186.54.396872.10313
194.55.7879-1.2879
205.54.871940.628058
2145.38701-1.38701
227.56.015381.48462
2374.496232.50377
2445.07526-1.07526
255.54.664910.83509
262.54.4565-1.9565
275.54.915530.584466
283.54.33-0.830004
292.54.98463-2.48463
304.54.170830.32917
314.54.174120.325876
324.54.352010.147988
3363.529622.47038
342.55.21773-2.71773
3555.71169-0.711689
366.55.322721.17728
3755.09904-0.099038
3863.62962.3704
394.55.7498-1.2498
4054.192430.807574
4113.00308-2.00308
4254.633320.366683
436.54.184412.31559
4474.415622.58438
454.54.52478-0.024785
4604.52545-4.52545
478.53.688864.81114
483.52.885090.614915
497.54.943012.55699
503.55.92114-2.42114
5164.929681.07032
521.54.03558-2.53558
5395.779323.22068
543.55.28636-1.78636
553.53.51071-0.0107145
5645.41501-1.41501
576.56.407670.0923309
587.54.737272.76273
5964.815511.18449
6056.18059-1.18059
615.54.755610.744386
623.54.4435-0.943498
637.54.937732.56227
646.54.705211.79479
656.55.362991.13701
666.54.602331.89767
6775.521471.47853
683.53.85457-0.354567
691.54.6042-3.1042
7044.75488-0.75488
717.53.876553.62345
724.54.72286-0.222864
7303.50825-3.50825
743.54.42243-0.922425
755.54.744880.755116
7653.603391.39661
774.53.820520.679479
782.54.41681-1.91681
797.54.543182.95682
8073.689873.31013
8103.87878-3.87878
8234.18073-1.18073
833.54.20697-0.706971
8434.04529-1.04529
8513.57564-2.57564
865.54.358081.14192
870.56.48598-5.98598
887.57.37680.123197
8997.35321.6468
909.57.644251.85575
918.59.82336-1.32336
9275.489151.51085
9389.30637-1.30637
94109.033380.966617
9579.50035-2.50035
968.56.495632.00437
9798.607140.392865
989.55.702463.79754
9946.97649-2.97649
10066.37921-0.379213
10187.375720.624276
1025.57.35506-1.85506
1039.57.887041.61296
1047.56.96160.5384
10576.927540.0724642
1067.58.67235-1.17235
10786.875331.12467
10876.820270.179729
10976.772060.227935
11066.82261-0.822611
111107.371992.62801
1122.55.90389-3.40389
11398.375030.624967
11487.868690.131306
11565.876150.123853
1168.57.11071.3893
11766.29913-0.299132
11897.119761.88024
11988.34868-0.34868
12098.926950.073055
1215.57.00152-1.50152
12277.60767-0.60767
1235.57.24788-1.74788
12497.850771.14923
12527.37038-5.37038
1268.58.104010.395985
12797.901521.09848
1288.58.65037-0.150366
12996.675862.32414
1307.57.121680.378317
131108.842021.15798
13297.644161.35584
1337.58.83264-1.33264
13467.25073-1.25073
13510.58.870711.62929
1368.56.769461.73054
13788.89825-0.898246
138105.946644.05336
13910.59.601370.898628
1406.55.599550.900452
1419.58.473181.02682
1428.56.633591.86641
1437.57.6405-0.140502
14457.27223-2.27223
14587.143950.85605
146107.724132.27587
14778.05634-1.05634
1487.57.72864-0.228642
1497.57.67245-0.172453
1509.57.038772.46123
15167.61385-1.61385
152108.284661.71534
15377.79895-0.798952
15436.40135-3.40135
15568.38635-2.38635
15677.90264-0.902642
157108.234351.76565
15877.45508-0.455075
1593.56.90694-3.40694
16087.994880.00512183
161107.302792.69721
1625.57.60919-2.10919
16366.9551-0.955104
1646.56.20160.298405
1656.56.93671-0.436709
1668.56.115052.38495
16746.30497-2.30497
1689.56.886632.61337
16987.413590.586408
1708.57.469541.03046
1715.58.55734-3.05734
17276.314430.685573
17396.904212.09579
17487.698220.301782
175108.899451.10055
17686.872681.12732
17767.52373-1.52373
17887.625680.374317
17956.38644-1.38644
18097.051761.94824
1814.56.0136-1.5136
1828.56.650511.84949
1839.57.049562.45044
1848.56.924061.57594
1857.56.550130.949869
1867.57.228680.271316
18757.18815-2.18815
18876.521540.478464
18988.5763-0.576299
1905.56.43631-0.936312
1918.57.103821.39618
1929.57.620981.87902
19376.639880.360124
19488.5344-0.534405
1958.57.375591.12441
1963.55.60684-2.10684
1976.57.33909-0.83909
1986.56.149360.350641
19910.58.115982.38402
2008.56.404652.09535
20187.19080.809201
202106.676943.32306
203107.799362.20064
2049.57.891731.60827
20596.692012.30799
206108.769311.23069
2077.56.353571.14643
2084.57.24916-2.74916
2094.55.45369-0.953691
2100.56.35524-5.85524
2116.56.191370.308628
2124.56.71788-2.21788
2135.56.79746-1.29746
21456.05154-1.05154
21567.76434-1.76434
21646.47721-2.47721
21786.911661.08834
21810.59.006811.49319
2196.57.03305-0.533047
22087.160260.839741
2218.58.83613-0.336128
2225.56.73844-1.23844
22378.01205-1.01205
22456.70357-1.70357
2253.56.94429-3.44429
22657.41427-2.41427
22797.168031.83197
2288.57.116451.38355
22957.55397-2.55397
2309.58.340081.15992
23136.2227-3.2227
2321.56.60629-5.10629
23367.32513-1.32513
2340.57.10319-6.60319
2356.56.259410.240594
2367.57.53454-0.0345397
2374.56.07971-1.57971
23886.553031.44697
23997.33441.6656
2407.56.943920.556082
2418.57.521550.978449
24276.409090.590905
2439.57.406732.09327
2446.56.320.179999
2459.56.751752.74825
24666.55953-0.55953
24786.319931.68007
2489.58.274541.22546
24987.195810.804188
25088.08402-0.0840229
25197.615441.38456
25255.65575-0.655752

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 7.5 & 6.46489 & 1.03511 \tabularnewline
2 & 6.5 & 5.63188 & 0.868118 \tabularnewline
3 & 1 & 4.76934 & -3.76934 \tabularnewline
4 & 1 & 4.96099 & -3.96099 \tabularnewline
5 & 5.5 & 4.96324 & 0.536761 \tabularnewline
6 & 8.5 & 5.30582 & 3.19418 \tabularnewline
7 & 6.5 & 5.24559 & 1.25441 \tabularnewline
8 & 4.5 & 4.77812 & -0.278122 \tabularnewline
9 & 2 & 5.32324 & -3.32324 \tabularnewline
10 & 5 & 5.034 & -0.0340023 \tabularnewline
11 & 0.5 & 4.70751 & -4.20751 \tabularnewline
12 & 5 & 5.93733 & -0.937332 \tabularnewline
13 & 2.5 & 3.28877 & -0.788768 \tabularnewline
14 & 5 & 3.47972 & 1.52028 \tabularnewline
15 & 5.5 & 5.44344 & 0.0565562 \tabularnewline
16 & 3.5 & 4.77767 & -1.27767 \tabularnewline
17 & 4 & 3.89747 & 0.102526 \tabularnewline
18 & 6.5 & 4.39687 & 2.10313 \tabularnewline
19 & 4.5 & 5.7879 & -1.2879 \tabularnewline
20 & 5.5 & 4.87194 & 0.628058 \tabularnewline
21 & 4 & 5.38701 & -1.38701 \tabularnewline
22 & 7.5 & 6.01538 & 1.48462 \tabularnewline
23 & 7 & 4.49623 & 2.50377 \tabularnewline
24 & 4 & 5.07526 & -1.07526 \tabularnewline
25 & 5.5 & 4.66491 & 0.83509 \tabularnewline
26 & 2.5 & 4.4565 & -1.9565 \tabularnewline
27 & 5.5 & 4.91553 & 0.584466 \tabularnewline
28 & 3.5 & 4.33 & -0.830004 \tabularnewline
29 & 2.5 & 4.98463 & -2.48463 \tabularnewline
30 & 4.5 & 4.17083 & 0.32917 \tabularnewline
31 & 4.5 & 4.17412 & 0.325876 \tabularnewline
32 & 4.5 & 4.35201 & 0.147988 \tabularnewline
33 & 6 & 3.52962 & 2.47038 \tabularnewline
34 & 2.5 & 5.21773 & -2.71773 \tabularnewline
35 & 5 & 5.71169 & -0.711689 \tabularnewline
36 & 6.5 & 5.32272 & 1.17728 \tabularnewline
37 & 5 & 5.09904 & -0.099038 \tabularnewline
38 & 6 & 3.6296 & 2.3704 \tabularnewline
39 & 4.5 & 5.7498 & -1.2498 \tabularnewline
40 & 5 & 4.19243 & 0.807574 \tabularnewline
41 & 1 & 3.00308 & -2.00308 \tabularnewline
42 & 5 & 4.63332 & 0.366683 \tabularnewline
43 & 6.5 & 4.18441 & 2.31559 \tabularnewline
44 & 7 & 4.41562 & 2.58438 \tabularnewline
45 & 4.5 & 4.52478 & -0.024785 \tabularnewline
46 & 0 & 4.52545 & -4.52545 \tabularnewline
47 & 8.5 & 3.68886 & 4.81114 \tabularnewline
48 & 3.5 & 2.88509 & 0.614915 \tabularnewline
49 & 7.5 & 4.94301 & 2.55699 \tabularnewline
50 & 3.5 & 5.92114 & -2.42114 \tabularnewline
51 & 6 & 4.92968 & 1.07032 \tabularnewline
52 & 1.5 & 4.03558 & -2.53558 \tabularnewline
53 & 9 & 5.77932 & 3.22068 \tabularnewline
54 & 3.5 & 5.28636 & -1.78636 \tabularnewline
55 & 3.5 & 3.51071 & -0.0107145 \tabularnewline
56 & 4 & 5.41501 & -1.41501 \tabularnewline
57 & 6.5 & 6.40767 & 0.0923309 \tabularnewline
58 & 7.5 & 4.73727 & 2.76273 \tabularnewline
59 & 6 & 4.81551 & 1.18449 \tabularnewline
60 & 5 & 6.18059 & -1.18059 \tabularnewline
61 & 5.5 & 4.75561 & 0.744386 \tabularnewline
62 & 3.5 & 4.4435 & -0.943498 \tabularnewline
63 & 7.5 & 4.93773 & 2.56227 \tabularnewline
64 & 6.5 & 4.70521 & 1.79479 \tabularnewline
65 & 6.5 & 5.36299 & 1.13701 \tabularnewline
66 & 6.5 & 4.60233 & 1.89767 \tabularnewline
67 & 7 & 5.52147 & 1.47853 \tabularnewline
68 & 3.5 & 3.85457 & -0.354567 \tabularnewline
69 & 1.5 & 4.6042 & -3.1042 \tabularnewline
70 & 4 & 4.75488 & -0.75488 \tabularnewline
71 & 7.5 & 3.87655 & 3.62345 \tabularnewline
72 & 4.5 & 4.72286 & -0.222864 \tabularnewline
73 & 0 & 3.50825 & -3.50825 \tabularnewline
74 & 3.5 & 4.42243 & -0.922425 \tabularnewline
75 & 5.5 & 4.74488 & 0.755116 \tabularnewline
76 & 5 & 3.60339 & 1.39661 \tabularnewline
77 & 4.5 & 3.82052 & 0.679479 \tabularnewline
78 & 2.5 & 4.41681 & -1.91681 \tabularnewline
79 & 7.5 & 4.54318 & 2.95682 \tabularnewline
80 & 7 & 3.68987 & 3.31013 \tabularnewline
81 & 0 & 3.87878 & -3.87878 \tabularnewline
82 & 3 & 4.18073 & -1.18073 \tabularnewline
83 & 3.5 & 4.20697 & -0.706971 \tabularnewline
84 & 3 & 4.04529 & -1.04529 \tabularnewline
85 & 1 & 3.57564 & -2.57564 \tabularnewline
86 & 5.5 & 4.35808 & 1.14192 \tabularnewline
87 & 0.5 & 6.48598 & -5.98598 \tabularnewline
88 & 7.5 & 7.3768 & 0.123197 \tabularnewline
89 & 9 & 7.3532 & 1.6468 \tabularnewline
90 & 9.5 & 7.64425 & 1.85575 \tabularnewline
91 & 8.5 & 9.82336 & -1.32336 \tabularnewline
92 & 7 & 5.48915 & 1.51085 \tabularnewline
93 & 8 & 9.30637 & -1.30637 \tabularnewline
94 & 10 & 9.03338 & 0.966617 \tabularnewline
95 & 7 & 9.50035 & -2.50035 \tabularnewline
96 & 8.5 & 6.49563 & 2.00437 \tabularnewline
97 & 9 & 8.60714 & 0.392865 \tabularnewline
98 & 9.5 & 5.70246 & 3.79754 \tabularnewline
99 & 4 & 6.97649 & -2.97649 \tabularnewline
100 & 6 & 6.37921 & -0.379213 \tabularnewline
101 & 8 & 7.37572 & 0.624276 \tabularnewline
102 & 5.5 & 7.35506 & -1.85506 \tabularnewline
103 & 9.5 & 7.88704 & 1.61296 \tabularnewline
104 & 7.5 & 6.9616 & 0.5384 \tabularnewline
105 & 7 & 6.92754 & 0.0724642 \tabularnewline
106 & 7.5 & 8.67235 & -1.17235 \tabularnewline
107 & 8 & 6.87533 & 1.12467 \tabularnewline
108 & 7 & 6.82027 & 0.179729 \tabularnewline
109 & 7 & 6.77206 & 0.227935 \tabularnewline
110 & 6 & 6.82261 & -0.822611 \tabularnewline
111 & 10 & 7.37199 & 2.62801 \tabularnewline
112 & 2.5 & 5.90389 & -3.40389 \tabularnewline
113 & 9 & 8.37503 & 0.624967 \tabularnewline
114 & 8 & 7.86869 & 0.131306 \tabularnewline
115 & 6 & 5.87615 & 0.123853 \tabularnewline
116 & 8.5 & 7.1107 & 1.3893 \tabularnewline
117 & 6 & 6.29913 & -0.299132 \tabularnewline
118 & 9 & 7.11976 & 1.88024 \tabularnewline
119 & 8 & 8.34868 & -0.34868 \tabularnewline
120 & 9 & 8.92695 & 0.073055 \tabularnewline
121 & 5.5 & 7.00152 & -1.50152 \tabularnewline
122 & 7 & 7.60767 & -0.60767 \tabularnewline
123 & 5.5 & 7.24788 & -1.74788 \tabularnewline
124 & 9 & 7.85077 & 1.14923 \tabularnewline
125 & 2 & 7.37038 & -5.37038 \tabularnewline
126 & 8.5 & 8.10401 & 0.395985 \tabularnewline
127 & 9 & 7.90152 & 1.09848 \tabularnewline
128 & 8.5 & 8.65037 & -0.150366 \tabularnewline
129 & 9 & 6.67586 & 2.32414 \tabularnewline
130 & 7.5 & 7.12168 & 0.378317 \tabularnewline
131 & 10 & 8.84202 & 1.15798 \tabularnewline
132 & 9 & 7.64416 & 1.35584 \tabularnewline
133 & 7.5 & 8.83264 & -1.33264 \tabularnewline
134 & 6 & 7.25073 & -1.25073 \tabularnewline
135 & 10.5 & 8.87071 & 1.62929 \tabularnewline
136 & 8.5 & 6.76946 & 1.73054 \tabularnewline
137 & 8 & 8.89825 & -0.898246 \tabularnewline
138 & 10 & 5.94664 & 4.05336 \tabularnewline
139 & 10.5 & 9.60137 & 0.898628 \tabularnewline
140 & 6.5 & 5.59955 & 0.900452 \tabularnewline
141 & 9.5 & 8.47318 & 1.02682 \tabularnewline
142 & 8.5 & 6.63359 & 1.86641 \tabularnewline
143 & 7.5 & 7.6405 & -0.140502 \tabularnewline
144 & 5 & 7.27223 & -2.27223 \tabularnewline
145 & 8 & 7.14395 & 0.85605 \tabularnewline
146 & 10 & 7.72413 & 2.27587 \tabularnewline
147 & 7 & 8.05634 & -1.05634 \tabularnewline
148 & 7.5 & 7.72864 & -0.228642 \tabularnewline
149 & 7.5 & 7.67245 & -0.172453 \tabularnewline
150 & 9.5 & 7.03877 & 2.46123 \tabularnewline
151 & 6 & 7.61385 & -1.61385 \tabularnewline
152 & 10 & 8.28466 & 1.71534 \tabularnewline
153 & 7 & 7.79895 & -0.798952 \tabularnewline
154 & 3 & 6.40135 & -3.40135 \tabularnewline
155 & 6 & 8.38635 & -2.38635 \tabularnewline
156 & 7 & 7.90264 & -0.902642 \tabularnewline
157 & 10 & 8.23435 & 1.76565 \tabularnewline
158 & 7 & 7.45508 & -0.455075 \tabularnewline
159 & 3.5 & 6.90694 & -3.40694 \tabularnewline
160 & 8 & 7.99488 & 0.00512183 \tabularnewline
161 & 10 & 7.30279 & 2.69721 \tabularnewline
162 & 5.5 & 7.60919 & -2.10919 \tabularnewline
163 & 6 & 6.9551 & -0.955104 \tabularnewline
164 & 6.5 & 6.2016 & 0.298405 \tabularnewline
165 & 6.5 & 6.93671 & -0.436709 \tabularnewline
166 & 8.5 & 6.11505 & 2.38495 \tabularnewline
167 & 4 & 6.30497 & -2.30497 \tabularnewline
168 & 9.5 & 6.88663 & 2.61337 \tabularnewline
169 & 8 & 7.41359 & 0.586408 \tabularnewline
170 & 8.5 & 7.46954 & 1.03046 \tabularnewline
171 & 5.5 & 8.55734 & -3.05734 \tabularnewline
172 & 7 & 6.31443 & 0.685573 \tabularnewline
173 & 9 & 6.90421 & 2.09579 \tabularnewline
174 & 8 & 7.69822 & 0.301782 \tabularnewline
175 & 10 & 8.89945 & 1.10055 \tabularnewline
176 & 8 & 6.87268 & 1.12732 \tabularnewline
177 & 6 & 7.52373 & -1.52373 \tabularnewline
178 & 8 & 7.62568 & 0.374317 \tabularnewline
179 & 5 & 6.38644 & -1.38644 \tabularnewline
180 & 9 & 7.05176 & 1.94824 \tabularnewline
181 & 4.5 & 6.0136 & -1.5136 \tabularnewline
182 & 8.5 & 6.65051 & 1.84949 \tabularnewline
183 & 9.5 & 7.04956 & 2.45044 \tabularnewline
184 & 8.5 & 6.92406 & 1.57594 \tabularnewline
185 & 7.5 & 6.55013 & 0.949869 \tabularnewline
186 & 7.5 & 7.22868 & 0.271316 \tabularnewline
187 & 5 & 7.18815 & -2.18815 \tabularnewline
188 & 7 & 6.52154 & 0.478464 \tabularnewline
189 & 8 & 8.5763 & -0.576299 \tabularnewline
190 & 5.5 & 6.43631 & -0.936312 \tabularnewline
191 & 8.5 & 7.10382 & 1.39618 \tabularnewline
192 & 9.5 & 7.62098 & 1.87902 \tabularnewline
193 & 7 & 6.63988 & 0.360124 \tabularnewline
194 & 8 & 8.5344 & -0.534405 \tabularnewline
195 & 8.5 & 7.37559 & 1.12441 \tabularnewline
196 & 3.5 & 5.60684 & -2.10684 \tabularnewline
197 & 6.5 & 7.33909 & -0.83909 \tabularnewline
198 & 6.5 & 6.14936 & 0.350641 \tabularnewline
199 & 10.5 & 8.11598 & 2.38402 \tabularnewline
200 & 8.5 & 6.40465 & 2.09535 \tabularnewline
201 & 8 & 7.1908 & 0.809201 \tabularnewline
202 & 10 & 6.67694 & 3.32306 \tabularnewline
203 & 10 & 7.79936 & 2.20064 \tabularnewline
204 & 9.5 & 7.89173 & 1.60827 \tabularnewline
205 & 9 & 6.69201 & 2.30799 \tabularnewline
206 & 10 & 8.76931 & 1.23069 \tabularnewline
207 & 7.5 & 6.35357 & 1.14643 \tabularnewline
208 & 4.5 & 7.24916 & -2.74916 \tabularnewline
209 & 4.5 & 5.45369 & -0.953691 \tabularnewline
210 & 0.5 & 6.35524 & -5.85524 \tabularnewline
211 & 6.5 & 6.19137 & 0.308628 \tabularnewline
212 & 4.5 & 6.71788 & -2.21788 \tabularnewline
213 & 5.5 & 6.79746 & -1.29746 \tabularnewline
214 & 5 & 6.05154 & -1.05154 \tabularnewline
215 & 6 & 7.76434 & -1.76434 \tabularnewline
216 & 4 & 6.47721 & -2.47721 \tabularnewline
217 & 8 & 6.91166 & 1.08834 \tabularnewline
218 & 10.5 & 9.00681 & 1.49319 \tabularnewline
219 & 6.5 & 7.03305 & -0.533047 \tabularnewline
220 & 8 & 7.16026 & 0.839741 \tabularnewline
221 & 8.5 & 8.83613 & -0.336128 \tabularnewline
222 & 5.5 & 6.73844 & -1.23844 \tabularnewline
223 & 7 & 8.01205 & -1.01205 \tabularnewline
224 & 5 & 6.70357 & -1.70357 \tabularnewline
225 & 3.5 & 6.94429 & -3.44429 \tabularnewline
226 & 5 & 7.41427 & -2.41427 \tabularnewline
227 & 9 & 7.16803 & 1.83197 \tabularnewline
228 & 8.5 & 7.11645 & 1.38355 \tabularnewline
229 & 5 & 7.55397 & -2.55397 \tabularnewline
230 & 9.5 & 8.34008 & 1.15992 \tabularnewline
231 & 3 & 6.2227 & -3.2227 \tabularnewline
232 & 1.5 & 6.60629 & -5.10629 \tabularnewline
233 & 6 & 7.32513 & -1.32513 \tabularnewline
234 & 0.5 & 7.10319 & -6.60319 \tabularnewline
235 & 6.5 & 6.25941 & 0.240594 \tabularnewline
236 & 7.5 & 7.53454 & -0.0345397 \tabularnewline
237 & 4.5 & 6.07971 & -1.57971 \tabularnewline
238 & 8 & 6.55303 & 1.44697 \tabularnewline
239 & 9 & 7.3344 & 1.6656 \tabularnewline
240 & 7.5 & 6.94392 & 0.556082 \tabularnewline
241 & 8.5 & 7.52155 & 0.978449 \tabularnewline
242 & 7 & 6.40909 & 0.590905 \tabularnewline
243 & 9.5 & 7.40673 & 2.09327 \tabularnewline
244 & 6.5 & 6.32 & 0.179999 \tabularnewline
245 & 9.5 & 6.75175 & 2.74825 \tabularnewline
246 & 6 & 6.55953 & -0.55953 \tabularnewline
247 & 8 & 6.31993 & 1.68007 \tabularnewline
248 & 9.5 & 8.27454 & 1.22546 \tabularnewline
249 & 8 & 7.19581 & 0.804188 \tabularnewline
250 & 8 & 8.08402 & -0.0840229 \tabularnewline
251 & 9 & 7.61544 & 1.38456 \tabularnewline
252 & 5 & 5.65575 & -0.655752 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=261918&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]7.5[/C][C]6.46489[/C][C]1.03511[/C][/ROW]
[ROW][C]2[/C][C]6.5[/C][C]5.63188[/C][C]0.868118[/C][/ROW]
[ROW][C]3[/C][C]1[/C][C]4.76934[/C][C]-3.76934[/C][/ROW]
[ROW][C]4[/C][C]1[/C][C]4.96099[/C][C]-3.96099[/C][/ROW]
[ROW][C]5[/C][C]5.5[/C][C]4.96324[/C][C]0.536761[/C][/ROW]
[ROW][C]6[/C][C]8.5[/C][C]5.30582[/C][C]3.19418[/C][/ROW]
[ROW][C]7[/C][C]6.5[/C][C]5.24559[/C][C]1.25441[/C][/ROW]
[ROW][C]8[/C][C]4.5[/C][C]4.77812[/C][C]-0.278122[/C][/ROW]
[ROW][C]9[/C][C]2[/C][C]5.32324[/C][C]-3.32324[/C][/ROW]
[ROW][C]10[/C][C]5[/C][C]5.034[/C][C]-0.0340023[/C][/ROW]
[ROW][C]11[/C][C]0.5[/C][C]4.70751[/C][C]-4.20751[/C][/ROW]
[ROW][C]12[/C][C]5[/C][C]5.93733[/C][C]-0.937332[/C][/ROW]
[ROW][C]13[/C][C]2.5[/C][C]3.28877[/C][C]-0.788768[/C][/ROW]
[ROW][C]14[/C][C]5[/C][C]3.47972[/C][C]1.52028[/C][/ROW]
[ROW][C]15[/C][C]5.5[/C][C]5.44344[/C][C]0.0565562[/C][/ROW]
[ROW][C]16[/C][C]3.5[/C][C]4.77767[/C][C]-1.27767[/C][/ROW]
[ROW][C]17[/C][C]4[/C][C]3.89747[/C][C]0.102526[/C][/ROW]
[ROW][C]18[/C][C]6.5[/C][C]4.39687[/C][C]2.10313[/C][/ROW]
[ROW][C]19[/C][C]4.5[/C][C]5.7879[/C][C]-1.2879[/C][/ROW]
[ROW][C]20[/C][C]5.5[/C][C]4.87194[/C][C]0.628058[/C][/ROW]
[ROW][C]21[/C][C]4[/C][C]5.38701[/C][C]-1.38701[/C][/ROW]
[ROW][C]22[/C][C]7.5[/C][C]6.01538[/C][C]1.48462[/C][/ROW]
[ROW][C]23[/C][C]7[/C][C]4.49623[/C][C]2.50377[/C][/ROW]
[ROW][C]24[/C][C]4[/C][C]5.07526[/C][C]-1.07526[/C][/ROW]
[ROW][C]25[/C][C]5.5[/C][C]4.66491[/C][C]0.83509[/C][/ROW]
[ROW][C]26[/C][C]2.5[/C][C]4.4565[/C][C]-1.9565[/C][/ROW]
[ROW][C]27[/C][C]5.5[/C][C]4.91553[/C][C]0.584466[/C][/ROW]
[ROW][C]28[/C][C]3.5[/C][C]4.33[/C][C]-0.830004[/C][/ROW]
[ROW][C]29[/C][C]2.5[/C][C]4.98463[/C][C]-2.48463[/C][/ROW]
[ROW][C]30[/C][C]4.5[/C][C]4.17083[/C][C]0.32917[/C][/ROW]
[ROW][C]31[/C][C]4.5[/C][C]4.17412[/C][C]0.325876[/C][/ROW]
[ROW][C]32[/C][C]4.5[/C][C]4.35201[/C][C]0.147988[/C][/ROW]
[ROW][C]33[/C][C]6[/C][C]3.52962[/C][C]2.47038[/C][/ROW]
[ROW][C]34[/C][C]2.5[/C][C]5.21773[/C][C]-2.71773[/C][/ROW]
[ROW][C]35[/C][C]5[/C][C]5.71169[/C][C]-0.711689[/C][/ROW]
[ROW][C]36[/C][C]6.5[/C][C]5.32272[/C][C]1.17728[/C][/ROW]
[ROW][C]37[/C][C]5[/C][C]5.09904[/C][C]-0.099038[/C][/ROW]
[ROW][C]38[/C][C]6[/C][C]3.6296[/C][C]2.3704[/C][/ROW]
[ROW][C]39[/C][C]4.5[/C][C]5.7498[/C][C]-1.2498[/C][/ROW]
[ROW][C]40[/C][C]5[/C][C]4.19243[/C][C]0.807574[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]3.00308[/C][C]-2.00308[/C][/ROW]
[ROW][C]42[/C][C]5[/C][C]4.63332[/C][C]0.366683[/C][/ROW]
[ROW][C]43[/C][C]6.5[/C][C]4.18441[/C][C]2.31559[/C][/ROW]
[ROW][C]44[/C][C]7[/C][C]4.41562[/C][C]2.58438[/C][/ROW]
[ROW][C]45[/C][C]4.5[/C][C]4.52478[/C][C]-0.024785[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]4.52545[/C][C]-4.52545[/C][/ROW]
[ROW][C]47[/C][C]8.5[/C][C]3.68886[/C][C]4.81114[/C][/ROW]
[ROW][C]48[/C][C]3.5[/C][C]2.88509[/C][C]0.614915[/C][/ROW]
[ROW][C]49[/C][C]7.5[/C][C]4.94301[/C][C]2.55699[/C][/ROW]
[ROW][C]50[/C][C]3.5[/C][C]5.92114[/C][C]-2.42114[/C][/ROW]
[ROW][C]51[/C][C]6[/C][C]4.92968[/C][C]1.07032[/C][/ROW]
[ROW][C]52[/C][C]1.5[/C][C]4.03558[/C][C]-2.53558[/C][/ROW]
[ROW][C]53[/C][C]9[/C][C]5.77932[/C][C]3.22068[/C][/ROW]
[ROW][C]54[/C][C]3.5[/C][C]5.28636[/C][C]-1.78636[/C][/ROW]
[ROW][C]55[/C][C]3.5[/C][C]3.51071[/C][C]-0.0107145[/C][/ROW]
[ROW][C]56[/C][C]4[/C][C]5.41501[/C][C]-1.41501[/C][/ROW]
[ROW][C]57[/C][C]6.5[/C][C]6.40767[/C][C]0.0923309[/C][/ROW]
[ROW][C]58[/C][C]7.5[/C][C]4.73727[/C][C]2.76273[/C][/ROW]
[ROW][C]59[/C][C]6[/C][C]4.81551[/C][C]1.18449[/C][/ROW]
[ROW][C]60[/C][C]5[/C][C]6.18059[/C][C]-1.18059[/C][/ROW]
[ROW][C]61[/C][C]5.5[/C][C]4.75561[/C][C]0.744386[/C][/ROW]
[ROW][C]62[/C][C]3.5[/C][C]4.4435[/C][C]-0.943498[/C][/ROW]
[ROW][C]63[/C][C]7.5[/C][C]4.93773[/C][C]2.56227[/C][/ROW]
[ROW][C]64[/C][C]6.5[/C][C]4.70521[/C][C]1.79479[/C][/ROW]
[ROW][C]65[/C][C]6.5[/C][C]5.36299[/C][C]1.13701[/C][/ROW]
[ROW][C]66[/C][C]6.5[/C][C]4.60233[/C][C]1.89767[/C][/ROW]
[ROW][C]67[/C][C]7[/C][C]5.52147[/C][C]1.47853[/C][/ROW]
[ROW][C]68[/C][C]3.5[/C][C]3.85457[/C][C]-0.354567[/C][/ROW]
[ROW][C]69[/C][C]1.5[/C][C]4.6042[/C][C]-3.1042[/C][/ROW]
[ROW][C]70[/C][C]4[/C][C]4.75488[/C][C]-0.75488[/C][/ROW]
[ROW][C]71[/C][C]7.5[/C][C]3.87655[/C][C]3.62345[/C][/ROW]
[ROW][C]72[/C][C]4.5[/C][C]4.72286[/C][C]-0.222864[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]3.50825[/C][C]-3.50825[/C][/ROW]
[ROW][C]74[/C][C]3.5[/C][C]4.42243[/C][C]-0.922425[/C][/ROW]
[ROW][C]75[/C][C]5.5[/C][C]4.74488[/C][C]0.755116[/C][/ROW]
[ROW][C]76[/C][C]5[/C][C]3.60339[/C][C]1.39661[/C][/ROW]
[ROW][C]77[/C][C]4.5[/C][C]3.82052[/C][C]0.679479[/C][/ROW]
[ROW][C]78[/C][C]2.5[/C][C]4.41681[/C][C]-1.91681[/C][/ROW]
[ROW][C]79[/C][C]7.5[/C][C]4.54318[/C][C]2.95682[/C][/ROW]
[ROW][C]80[/C][C]7[/C][C]3.68987[/C][C]3.31013[/C][/ROW]
[ROW][C]81[/C][C]0[/C][C]3.87878[/C][C]-3.87878[/C][/ROW]
[ROW][C]82[/C][C]3[/C][C]4.18073[/C][C]-1.18073[/C][/ROW]
[ROW][C]83[/C][C]3.5[/C][C]4.20697[/C][C]-0.706971[/C][/ROW]
[ROW][C]84[/C][C]3[/C][C]4.04529[/C][C]-1.04529[/C][/ROW]
[ROW][C]85[/C][C]1[/C][C]3.57564[/C][C]-2.57564[/C][/ROW]
[ROW][C]86[/C][C]5.5[/C][C]4.35808[/C][C]1.14192[/C][/ROW]
[ROW][C]87[/C][C]0.5[/C][C]6.48598[/C][C]-5.98598[/C][/ROW]
[ROW][C]88[/C][C]7.5[/C][C]7.3768[/C][C]0.123197[/C][/ROW]
[ROW][C]89[/C][C]9[/C][C]7.3532[/C][C]1.6468[/C][/ROW]
[ROW][C]90[/C][C]9.5[/C][C]7.64425[/C][C]1.85575[/C][/ROW]
[ROW][C]91[/C][C]8.5[/C][C]9.82336[/C][C]-1.32336[/C][/ROW]
[ROW][C]92[/C][C]7[/C][C]5.48915[/C][C]1.51085[/C][/ROW]
[ROW][C]93[/C][C]8[/C][C]9.30637[/C][C]-1.30637[/C][/ROW]
[ROW][C]94[/C][C]10[/C][C]9.03338[/C][C]0.966617[/C][/ROW]
[ROW][C]95[/C][C]7[/C][C]9.50035[/C][C]-2.50035[/C][/ROW]
[ROW][C]96[/C][C]8.5[/C][C]6.49563[/C][C]2.00437[/C][/ROW]
[ROW][C]97[/C][C]9[/C][C]8.60714[/C][C]0.392865[/C][/ROW]
[ROW][C]98[/C][C]9.5[/C][C]5.70246[/C][C]3.79754[/C][/ROW]
[ROW][C]99[/C][C]4[/C][C]6.97649[/C][C]-2.97649[/C][/ROW]
[ROW][C]100[/C][C]6[/C][C]6.37921[/C][C]-0.379213[/C][/ROW]
[ROW][C]101[/C][C]8[/C][C]7.37572[/C][C]0.624276[/C][/ROW]
[ROW][C]102[/C][C]5.5[/C][C]7.35506[/C][C]-1.85506[/C][/ROW]
[ROW][C]103[/C][C]9.5[/C][C]7.88704[/C][C]1.61296[/C][/ROW]
[ROW][C]104[/C][C]7.5[/C][C]6.9616[/C][C]0.5384[/C][/ROW]
[ROW][C]105[/C][C]7[/C][C]6.92754[/C][C]0.0724642[/C][/ROW]
[ROW][C]106[/C][C]7.5[/C][C]8.67235[/C][C]-1.17235[/C][/ROW]
[ROW][C]107[/C][C]8[/C][C]6.87533[/C][C]1.12467[/C][/ROW]
[ROW][C]108[/C][C]7[/C][C]6.82027[/C][C]0.179729[/C][/ROW]
[ROW][C]109[/C][C]7[/C][C]6.77206[/C][C]0.227935[/C][/ROW]
[ROW][C]110[/C][C]6[/C][C]6.82261[/C][C]-0.822611[/C][/ROW]
[ROW][C]111[/C][C]10[/C][C]7.37199[/C][C]2.62801[/C][/ROW]
[ROW][C]112[/C][C]2.5[/C][C]5.90389[/C][C]-3.40389[/C][/ROW]
[ROW][C]113[/C][C]9[/C][C]8.37503[/C][C]0.624967[/C][/ROW]
[ROW][C]114[/C][C]8[/C][C]7.86869[/C][C]0.131306[/C][/ROW]
[ROW][C]115[/C][C]6[/C][C]5.87615[/C][C]0.123853[/C][/ROW]
[ROW][C]116[/C][C]8.5[/C][C]7.1107[/C][C]1.3893[/C][/ROW]
[ROW][C]117[/C][C]6[/C][C]6.29913[/C][C]-0.299132[/C][/ROW]
[ROW][C]118[/C][C]9[/C][C]7.11976[/C][C]1.88024[/C][/ROW]
[ROW][C]119[/C][C]8[/C][C]8.34868[/C][C]-0.34868[/C][/ROW]
[ROW][C]120[/C][C]9[/C][C]8.92695[/C][C]0.073055[/C][/ROW]
[ROW][C]121[/C][C]5.5[/C][C]7.00152[/C][C]-1.50152[/C][/ROW]
[ROW][C]122[/C][C]7[/C][C]7.60767[/C][C]-0.60767[/C][/ROW]
[ROW][C]123[/C][C]5.5[/C][C]7.24788[/C][C]-1.74788[/C][/ROW]
[ROW][C]124[/C][C]9[/C][C]7.85077[/C][C]1.14923[/C][/ROW]
[ROW][C]125[/C][C]2[/C][C]7.37038[/C][C]-5.37038[/C][/ROW]
[ROW][C]126[/C][C]8.5[/C][C]8.10401[/C][C]0.395985[/C][/ROW]
[ROW][C]127[/C][C]9[/C][C]7.90152[/C][C]1.09848[/C][/ROW]
[ROW][C]128[/C][C]8.5[/C][C]8.65037[/C][C]-0.150366[/C][/ROW]
[ROW][C]129[/C][C]9[/C][C]6.67586[/C][C]2.32414[/C][/ROW]
[ROW][C]130[/C][C]7.5[/C][C]7.12168[/C][C]0.378317[/C][/ROW]
[ROW][C]131[/C][C]10[/C][C]8.84202[/C][C]1.15798[/C][/ROW]
[ROW][C]132[/C][C]9[/C][C]7.64416[/C][C]1.35584[/C][/ROW]
[ROW][C]133[/C][C]7.5[/C][C]8.83264[/C][C]-1.33264[/C][/ROW]
[ROW][C]134[/C][C]6[/C][C]7.25073[/C][C]-1.25073[/C][/ROW]
[ROW][C]135[/C][C]10.5[/C][C]8.87071[/C][C]1.62929[/C][/ROW]
[ROW][C]136[/C][C]8.5[/C][C]6.76946[/C][C]1.73054[/C][/ROW]
[ROW][C]137[/C][C]8[/C][C]8.89825[/C][C]-0.898246[/C][/ROW]
[ROW][C]138[/C][C]10[/C][C]5.94664[/C][C]4.05336[/C][/ROW]
[ROW][C]139[/C][C]10.5[/C][C]9.60137[/C][C]0.898628[/C][/ROW]
[ROW][C]140[/C][C]6.5[/C][C]5.59955[/C][C]0.900452[/C][/ROW]
[ROW][C]141[/C][C]9.5[/C][C]8.47318[/C][C]1.02682[/C][/ROW]
[ROW][C]142[/C][C]8.5[/C][C]6.63359[/C][C]1.86641[/C][/ROW]
[ROW][C]143[/C][C]7.5[/C][C]7.6405[/C][C]-0.140502[/C][/ROW]
[ROW][C]144[/C][C]5[/C][C]7.27223[/C][C]-2.27223[/C][/ROW]
[ROW][C]145[/C][C]8[/C][C]7.14395[/C][C]0.85605[/C][/ROW]
[ROW][C]146[/C][C]10[/C][C]7.72413[/C][C]2.27587[/C][/ROW]
[ROW][C]147[/C][C]7[/C][C]8.05634[/C][C]-1.05634[/C][/ROW]
[ROW][C]148[/C][C]7.5[/C][C]7.72864[/C][C]-0.228642[/C][/ROW]
[ROW][C]149[/C][C]7.5[/C][C]7.67245[/C][C]-0.172453[/C][/ROW]
[ROW][C]150[/C][C]9.5[/C][C]7.03877[/C][C]2.46123[/C][/ROW]
[ROW][C]151[/C][C]6[/C][C]7.61385[/C][C]-1.61385[/C][/ROW]
[ROW][C]152[/C][C]10[/C][C]8.28466[/C][C]1.71534[/C][/ROW]
[ROW][C]153[/C][C]7[/C][C]7.79895[/C][C]-0.798952[/C][/ROW]
[ROW][C]154[/C][C]3[/C][C]6.40135[/C][C]-3.40135[/C][/ROW]
[ROW][C]155[/C][C]6[/C][C]8.38635[/C][C]-2.38635[/C][/ROW]
[ROW][C]156[/C][C]7[/C][C]7.90264[/C][C]-0.902642[/C][/ROW]
[ROW][C]157[/C][C]10[/C][C]8.23435[/C][C]1.76565[/C][/ROW]
[ROW][C]158[/C][C]7[/C][C]7.45508[/C][C]-0.455075[/C][/ROW]
[ROW][C]159[/C][C]3.5[/C][C]6.90694[/C][C]-3.40694[/C][/ROW]
[ROW][C]160[/C][C]8[/C][C]7.99488[/C][C]0.00512183[/C][/ROW]
[ROW][C]161[/C][C]10[/C][C]7.30279[/C][C]2.69721[/C][/ROW]
[ROW][C]162[/C][C]5.5[/C][C]7.60919[/C][C]-2.10919[/C][/ROW]
[ROW][C]163[/C][C]6[/C][C]6.9551[/C][C]-0.955104[/C][/ROW]
[ROW][C]164[/C][C]6.5[/C][C]6.2016[/C][C]0.298405[/C][/ROW]
[ROW][C]165[/C][C]6.5[/C][C]6.93671[/C][C]-0.436709[/C][/ROW]
[ROW][C]166[/C][C]8.5[/C][C]6.11505[/C][C]2.38495[/C][/ROW]
[ROW][C]167[/C][C]4[/C][C]6.30497[/C][C]-2.30497[/C][/ROW]
[ROW][C]168[/C][C]9.5[/C][C]6.88663[/C][C]2.61337[/C][/ROW]
[ROW][C]169[/C][C]8[/C][C]7.41359[/C][C]0.586408[/C][/ROW]
[ROW][C]170[/C][C]8.5[/C][C]7.46954[/C][C]1.03046[/C][/ROW]
[ROW][C]171[/C][C]5.5[/C][C]8.55734[/C][C]-3.05734[/C][/ROW]
[ROW][C]172[/C][C]7[/C][C]6.31443[/C][C]0.685573[/C][/ROW]
[ROW][C]173[/C][C]9[/C][C]6.90421[/C][C]2.09579[/C][/ROW]
[ROW][C]174[/C][C]8[/C][C]7.69822[/C][C]0.301782[/C][/ROW]
[ROW][C]175[/C][C]10[/C][C]8.89945[/C][C]1.10055[/C][/ROW]
[ROW][C]176[/C][C]8[/C][C]6.87268[/C][C]1.12732[/C][/ROW]
[ROW][C]177[/C][C]6[/C][C]7.52373[/C][C]-1.52373[/C][/ROW]
[ROW][C]178[/C][C]8[/C][C]7.62568[/C][C]0.374317[/C][/ROW]
[ROW][C]179[/C][C]5[/C][C]6.38644[/C][C]-1.38644[/C][/ROW]
[ROW][C]180[/C][C]9[/C][C]7.05176[/C][C]1.94824[/C][/ROW]
[ROW][C]181[/C][C]4.5[/C][C]6.0136[/C][C]-1.5136[/C][/ROW]
[ROW][C]182[/C][C]8.5[/C][C]6.65051[/C][C]1.84949[/C][/ROW]
[ROW][C]183[/C][C]9.5[/C][C]7.04956[/C][C]2.45044[/C][/ROW]
[ROW][C]184[/C][C]8.5[/C][C]6.92406[/C][C]1.57594[/C][/ROW]
[ROW][C]185[/C][C]7.5[/C][C]6.55013[/C][C]0.949869[/C][/ROW]
[ROW][C]186[/C][C]7.5[/C][C]7.22868[/C][C]0.271316[/C][/ROW]
[ROW][C]187[/C][C]5[/C][C]7.18815[/C][C]-2.18815[/C][/ROW]
[ROW][C]188[/C][C]7[/C][C]6.52154[/C][C]0.478464[/C][/ROW]
[ROW][C]189[/C][C]8[/C][C]8.5763[/C][C]-0.576299[/C][/ROW]
[ROW][C]190[/C][C]5.5[/C][C]6.43631[/C][C]-0.936312[/C][/ROW]
[ROW][C]191[/C][C]8.5[/C][C]7.10382[/C][C]1.39618[/C][/ROW]
[ROW][C]192[/C][C]9.5[/C][C]7.62098[/C][C]1.87902[/C][/ROW]
[ROW][C]193[/C][C]7[/C][C]6.63988[/C][C]0.360124[/C][/ROW]
[ROW][C]194[/C][C]8[/C][C]8.5344[/C][C]-0.534405[/C][/ROW]
[ROW][C]195[/C][C]8.5[/C][C]7.37559[/C][C]1.12441[/C][/ROW]
[ROW][C]196[/C][C]3.5[/C][C]5.60684[/C][C]-2.10684[/C][/ROW]
[ROW][C]197[/C][C]6.5[/C][C]7.33909[/C][C]-0.83909[/C][/ROW]
[ROW][C]198[/C][C]6.5[/C][C]6.14936[/C][C]0.350641[/C][/ROW]
[ROW][C]199[/C][C]10.5[/C][C]8.11598[/C][C]2.38402[/C][/ROW]
[ROW][C]200[/C][C]8.5[/C][C]6.40465[/C][C]2.09535[/C][/ROW]
[ROW][C]201[/C][C]8[/C][C]7.1908[/C][C]0.809201[/C][/ROW]
[ROW][C]202[/C][C]10[/C][C]6.67694[/C][C]3.32306[/C][/ROW]
[ROW][C]203[/C][C]10[/C][C]7.79936[/C][C]2.20064[/C][/ROW]
[ROW][C]204[/C][C]9.5[/C][C]7.89173[/C][C]1.60827[/C][/ROW]
[ROW][C]205[/C][C]9[/C][C]6.69201[/C][C]2.30799[/C][/ROW]
[ROW][C]206[/C][C]10[/C][C]8.76931[/C][C]1.23069[/C][/ROW]
[ROW][C]207[/C][C]7.5[/C][C]6.35357[/C][C]1.14643[/C][/ROW]
[ROW][C]208[/C][C]4.5[/C][C]7.24916[/C][C]-2.74916[/C][/ROW]
[ROW][C]209[/C][C]4.5[/C][C]5.45369[/C][C]-0.953691[/C][/ROW]
[ROW][C]210[/C][C]0.5[/C][C]6.35524[/C][C]-5.85524[/C][/ROW]
[ROW][C]211[/C][C]6.5[/C][C]6.19137[/C][C]0.308628[/C][/ROW]
[ROW][C]212[/C][C]4.5[/C][C]6.71788[/C][C]-2.21788[/C][/ROW]
[ROW][C]213[/C][C]5.5[/C][C]6.79746[/C][C]-1.29746[/C][/ROW]
[ROW][C]214[/C][C]5[/C][C]6.05154[/C][C]-1.05154[/C][/ROW]
[ROW][C]215[/C][C]6[/C][C]7.76434[/C][C]-1.76434[/C][/ROW]
[ROW][C]216[/C][C]4[/C][C]6.47721[/C][C]-2.47721[/C][/ROW]
[ROW][C]217[/C][C]8[/C][C]6.91166[/C][C]1.08834[/C][/ROW]
[ROW][C]218[/C][C]10.5[/C][C]9.00681[/C][C]1.49319[/C][/ROW]
[ROW][C]219[/C][C]6.5[/C][C]7.03305[/C][C]-0.533047[/C][/ROW]
[ROW][C]220[/C][C]8[/C][C]7.16026[/C][C]0.839741[/C][/ROW]
[ROW][C]221[/C][C]8.5[/C][C]8.83613[/C][C]-0.336128[/C][/ROW]
[ROW][C]222[/C][C]5.5[/C][C]6.73844[/C][C]-1.23844[/C][/ROW]
[ROW][C]223[/C][C]7[/C][C]8.01205[/C][C]-1.01205[/C][/ROW]
[ROW][C]224[/C][C]5[/C][C]6.70357[/C][C]-1.70357[/C][/ROW]
[ROW][C]225[/C][C]3.5[/C][C]6.94429[/C][C]-3.44429[/C][/ROW]
[ROW][C]226[/C][C]5[/C][C]7.41427[/C][C]-2.41427[/C][/ROW]
[ROW][C]227[/C][C]9[/C][C]7.16803[/C][C]1.83197[/C][/ROW]
[ROW][C]228[/C][C]8.5[/C][C]7.11645[/C][C]1.38355[/C][/ROW]
[ROW][C]229[/C][C]5[/C][C]7.55397[/C][C]-2.55397[/C][/ROW]
[ROW][C]230[/C][C]9.5[/C][C]8.34008[/C][C]1.15992[/C][/ROW]
[ROW][C]231[/C][C]3[/C][C]6.2227[/C][C]-3.2227[/C][/ROW]
[ROW][C]232[/C][C]1.5[/C][C]6.60629[/C][C]-5.10629[/C][/ROW]
[ROW][C]233[/C][C]6[/C][C]7.32513[/C][C]-1.32513[/C][/ROW]
[ROW][C]234[/C][C]0.5[/C][C]7.10319[/C][C]-6.60319[/C][/ROW]
[ROW][C]235[/C][C]6.5[/C][C]6.25941[/C][C]0.240594[/C][/ROW]
[ROW][C]236[/C][C]7.5[/C][C]7.53454[/C][C]-0.0345397[/C][/ROW]
[ROW][C]237[/C][C]4.5[/C][C]6.07971[/C][C]-1.57971[/C][/ROW]
[ROW][C]238[/C][C]8[/C][C]6.55303[/C][C]1.44697[/C][/ROW]
[ROW][C]239[/C][C]9[/C][C]7.3344[/C][C]1.6656[/C][/ROW]
[ROW][C]240[/C][C]7.5[/C][C]6.94392[/C][C]0.556082[/C][/ROW]
[ROW][C]241[/C][C]8.5[/C][C]7.52155[/C][C]0.978449[/C][/ROW]
[ROW][C]242[/C][C]7[/C][C]6.40909[/C][C]0.590905[/C][/ROW]
[ROW][C]243[/C][C]9.5[/C][C]7.40673[/C][C]2.09327[/C][/ROW]
[ROW][C]244[/C][C]6.5[/C][C]6.32[/C][C]0.179999[/C][/ROW]
[ROW][C]245[/C][C]9.5[/C][C]6.75175[/C][C]2.74825[/C][/ROW]
[ROW][C]246[/C][C]6[/C][C]6.55953[/C][C]-0.55953[/C][/ROW]
[ROW][C]247[/C][C]8[/C][C]6.31993[/C][C]1.68007[/C][/ROW]
[ROW][C]248[/C][C]9.5[/C][C]8.27454[/C][C]1.22546[/C][/ROW]
[ROW][C]249[/C][C]8[/C][C]7.19581[/C][C]0.804188[/C][/ROW]
[ROW][C]250[/C][C]8[/C][C]8.08402[/C][C]-0.0840229[/C][/ROW]
[ROW][C]251[/C][C]9[/C][C]7.61544[/C][C]1.38456[/C][/ROW]
[ROW][C]252[/C][C]5[/C][C]5.65575[/C][C]-0.655752[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=261918&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
17.56.464891.03511
26.55.631880.868118
314.76934-3.76934
414.96099-3.96099
55.54.963240.536761
68.55.305823.19418
76.55.245591.25441
84.54.77812-0.278122
925.32324-3.32324
1055.034-0.0340023
110.54.70751-4.20751
1255.93733-0.937332
132.53.28877-0.788768
1453.479721.52028
155.55.443440.0565562
163.54.77767-1.27767
1743.897470.102526
186.54.396872.10313
194.55.7879-1.2879
205.54.871940.628058
2145.38701-1.38701
227.56.015381.48462
2374.496232.50377
2445.07526-1.07526
255.54.664910.83509
262.54.4565-1.9565
275.54.915530.584466
283.54.33-0.830004
292.54.98463-2.48463
304.54.170830.32917
314.54.174120.325876
324.54.352010.147988
3363.529622.47038
342.55.21773-2.71773
3555.71169-0.711689
366.55.322721.17728
3755.09904-0.099038
3863.62962.3704
394.55.7498-1.2498
4054.192430.807574
4113.00308-2.00308
4254.633320.366683
436.54.184412.31559
4474.415622.58438
454.54.52478-0.024785
4604.52545-4.52545
478.53.688864.81114
483.52.885090.614915
497.54.943012.55699
503.55.92114-2.42114
5164.929681.07032
521.54.03558-2.53558
5395.779323.22068
543.55.28636-1.78636
553.53.51071-0.0107145
5645.41501-1.41501
576.56.407670.0923309
587.54.737272.76273
5964.815511.18449
6056.18059-1.18059
615.54.755610.744386
623.54.4435-0.943498
637.54.937732.56227
646.54.705211.79479
656.55.362991.13701
666.54.602331.89767
6775.521471.47853
683.53.85457-0.354567
691.54.6042-3.1042
7044.75488-0.75488
717.53.876553.62345
724.54.72286-0.222864
7303.50825-3.50825
743.54.42243-0.922425
755.54.744880.755116
7653.603391.39661
774.53.820520.679479
782.54.41681-1.91681
797.54.543182.95682
8073.689873.31013
8103.87878-3.87878
8234.18073-1.18073
833.54.20697-0.706971
8434.04529-1.04529
8513.57564-2.57564
865.54.358081.14192
870.56.48598-5.98598
887.57.37680.123197
8997.35321.6468
909.57.644251.85575
918.59.82336-1.32336
9275.489151.51085
9389.30637-1.30637
94109.033380.966617
9579.50035-2.50035
968.56.495632.00437
9798.607140.392865
989.55.702463.79754
9946.97649-2.97649
10066.37921-0.379213
10187.375720.624276
1025.57.35506-1.85506
1039.57.887041.61296
1047.56.96160.5384
10576.927540.0724642
1067.58.67235-1.17235
10786.875331.12467
10876.820270.179729
10976.772060.227935
11066.82261-0.822611
111107.371992.62801
1122.55.90389-3.40389
11398.375030.624967
11487.868690.131306
11565.876150.123853
1168.57.11071.3893
11766.29913-0.299132
11897.119761.88024
11988.34868-0.34868
12098.926950.073055
1215.57.00152-1.50152
12277.60767-0.60767
1235.57.24788-1.74788
12497.850771.14923
12527.37038-5.37038
1268.58.104010.395985
12797.901521.09848
1288.58.65037-0.150366
12996.675862.32414
1307.57.121680.378317
131108.842021.15798
13297.644161.35584
1337.58.83264-1.33264
13467.25073-1.25073
13510.58.870711.62929
1368.56.769461.73054
13788.89825-0.898246
138105.946644.05336
13910.59.601370.898628
1406.55.599550.900452
1419.58.473181.02682
1428.56.633591.86641
1437.57.6405-0.140502
14457.27223-2.27223
14587.143950.85605
146107.724132.27587
14778.05634-1.05634
1487.57.72864-0.228642
1497.57.67245-0.172453
1509.57.038772.46123
15167.61385-1.61385
152108.284661.71534
15377.79895-0.798952
15436.40135-3.40135
15568.38635-2.38635
15677.90264-0.902642
157108.234351.76565
15877.45508-0.455075
1593.56.90694-3.40694
16087.994880.00512183
161107.302792.69721
1625.57.60919-2.10919
16366.9551-0.955104
1646.56.20160.298405
1656.56.93671-0.436709
1668.56.115052.38495
16746.30497-2.30497
1689.56.886632.61337
16987.413590.586408
1708.57.469541.03046
1715.58.55734-3.05734
17276.314430.685573
17396.904212.09579
17487.698220.301782
175108.899451.10055
17686.872681.12732
17767.52373-1.52373
17887.625680.374317
17956.38644-1.38644
18097.051761.94824
1814.56.0136-1.5136
1828.56.650511.84949
1839.57.049562.45044
1848.56.924061.57594
1857.56.550130.949869
1867.57.228680.271316
18757.18815-2.18815
18876.521540.478464
18988.5763-0.576299
1905.56.43631-0.936312
1918.57.103821.39618
1929.57.620981.87902
19376.639880.360124
19488.5344-0.534405
1958.57.375591.12441
1963.55.60684-2.10684
1976.57.33909-0.83909
1986.56.149360.350641
19910.58.115982.38402
2008.56.404652.09535
20187.19080.809201
202106.676943.32306
203107.799362.20064
2049.57.891731.60827
20596.692012.30799
206108.769311.23069
2077.56.353571.14643
2084.57.24916-2.74916
2094.55.45369-0.953691
2100.56.35524-5.85524
2116.56.191370.308628
2124.56.71788-2.21788
2135.56.79746-1.29746
21456.05154-1.05154
21567.76434-1.76434
21646.47721-2.47721
21786.911661.08834
21810.59.006811.49319
2196.57.03305-0.533047
22087.160260.839741
2218.58.83613-0.336128
2225.56.73844-1.23844
22378.01205-1.01205
22456.70357-1.70357
2253.56.94429-3.44429
22657.41427-2.41427
22797.168031.83197
2288.57.116451.38355
22957.55397-2.55397
2309.58.340081.15992
23136.2227-3.2227
2321.56.60629-5.10629
23367.32513-1.32513
2340.57.10319-6.60319
2356.56.259410.240594
2367.57.53454-0.0345397
2374.56.07971-1.57971
23886.553031.44697
23997.33441.6656
2407.56.943920.556082
2418.57.521550.978449
24276.409090.590905
2439.57.406732.09327
2446.56.320.179999
2459.56.751752.74825
24666.55953-0.55953
24786.319931.68007
2489.58.274541.22546
24987.195810.804188
25088.08402-0.0840229
25197.615441.38456
25255.65575-0.655752







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
130.4990980.9981970.500902
140.4246330.8492650.575367
150.410670.8213410.58933
160.3337110.6674210.666289
170.2313910.4627810.768609
180.1723150.3446290.827685
190.1781460.3562920.821854
200.1177990.2355970.882201
210.09087040.1817410.90913
220.05920920.1184180.940791
230.0394490.07889790.960551
240.03639570.07279140.963604
250.02792970.05585930.97207
260.1042140.2084270.895786
270.1165180.2330350.883482
280.08643190.1728640.913568
290.09327030.1865410.90673
300.06695310.1339060.933047
310.07525960.1505190.92474
320.0739430.1478860.926057
330.1067370.2134740.893263
340.1305040.2610080.869496
350.1074970.2149940.892503
360.1271380.2542760.872862
370.09818530.1963710.901815
380.09996740.1999350.900033
390.07766070.1553210.922339
400.06985180.1397040.930148
410.07964720.1592940.920353
420.07533880.1506780.924661
430.1260240.2520490.873976
440.2509790.5019580.749021
450.2103980.4207970.789602
460.5425590.9148830.457441
470.6429820.7140370.357018
480.6127260.7745470.387274
490.6632190.6735610.336781
500.6554850.689030.344515
510.6260650.7478710.373935
520.793490.4130210.20651
530.8500440.2999120.149956
540.8462770.3074460.153723
550.8216990.3566020.178301
560.8024810.3950380.197519
570.7772790.4454420.222721
580.7894370.4211260.210563
590.7692780.4614430.230722
600.7444750.5110490.255525
610.7181480.5637030.281852
620.6848820.6302360.315118
630.7217370.5565270.278263
640.7102750.5794490.289725
650.6833310.6333380.316669
660.669380.661240.33062
670.678530.6429410.32147
680.649240.701520.35076
690.6971090.6057820.302891
700.6622140.6755720.337786
710.7435950.5128110.256405
720.708860.582280.29114
730.772620.4547590.22738
740.7584280.4831450.241572
750.7317640.5364720.268236
760.7116650.576670.288335
770.6819180.6361640.318082
780.6704990.6590020.329501
790.7262080.5475840.273792
800.7938230.4123540.206177
810.8571270.2857460.142873
820.8380650.323870.161935
830.812820.3743590.18718
840.7920820.4158360.207918
850.8081520.3836960.191848
860.7890410.4219180.210959
870.8511490.2977010.148851
880.8774410.2451190.122559
890.906070.1878610.0939304
900.9169620.1660750.0830377
910.9053990.1892030.0946014
920.9009970.1980060.0990028
930.8880460.2239080.111954
940.8747580.2504850.125242
950.8828440.2343110.117156
960.8847730.2304540.115227
970.8668810.2662380.133119
980.9089860.1820280.091014
990.9315860.1368280.0684138
1000.9194970.1610050.0805026
1010.9055880.1888240.094412
1020.9088860.1822270.0911137
1030.9019820.1960350.0980177
1040.8858350.2283310.114165
1050.8666690.2666620.133331
1060.8543610.2912780.145639
1070.8374610.3250780.162539
1080.8133230.3733530.186677
1090.787550.4248990.21245
1100.7644360.4711280.235564
1110.7848610.4302790.215139
1120.8332240.3335520.166776
1130.8121490.3757010.187851
1140.7889740.4220520.211026
1150.7620330.4759350.237967
1160.7480140.5039720.251986
1170.7200090.5599820.279991
1180.715060.5698810.28494
1190.6837740.6324530.316226
1200.6522110.6955780.347789
1210.6402550.7194890.359745
1220.6084990.7830030.391501
1230.5989820.8020370.401018
1240.5746280.8507440.425372
1250.7798120.4403770.220188
1260.7543660.4912680.245634
1270.7334590.5330820.266541
1280.7020880.5958240.297912
1290.7146440.5707120.285356
1300.6856450.628710.314355
1310.6627190.6745620.337281
1320.6446480.7107030.355352
1330.6347870.7304260.365213
1340.6111960.7776090.388804
1350.5988920.8022170.401108
1360.5891740.8216520.410826
1370.5614690.8770620.438531
1380.6782570.6434860.321743
1390.6505350.698930.349465
1400.6276620.7446770.372338
1410.5982780.8034430.401722
1420.6017860.7964290.398214
1430.5668130.8663750.433187
1440.5853840.8292310.414616
1450.5521350.895730.447865
1460.5586190.8827610.441381
1470.5355820.9288360.464418
1480.4992180.9984370.500782
1490.4625350.9250690.537465
1500.4826740.9653480.517326
1510.4722970.9445950.527703
1520.4669310.9338620.533069
1530.4357310.8714620.564269
1540.5007150.998570.499285
1550.5467530.9064930.453247
1560.5166950.9666090.483305
1570.5068420.9863160.493158
1580.4735090.9470180.526491
1590.5257370.9485250.474263
1600.4903160.9806320.509684
1610.5221040.9557910.477896
1620.5341550.931690.465845
1630.5037850.9924310.496215
1640.4678680.9357370.532132
1650.4316580.8633150.568342
1660.4515170.9030340.548483
1670.4574290.9148570.542571
1680.4768880.9537770.523112
1690.4398060.8796130.560194
1700.4093080.8186160.590692
1710.4825650.965130.517435
1720.4465750.8931510.553425
1730.4478190.8956380.552181
1740.4085240.8170480.591476
1750.3758470.7516930.624153
1760.3528860.7057720.647114
1770.3408730.6817460.659127
1780.3044860.6089720.695514
1790.2800830.5601650.719917
1800.2823360.5646710.717664
1810.260980.5219590.73902
1820.270530.5410590.72947
1830.2747590.5495180.725241
1840.2654070.5308130.734593
1850.248240.496480.75176
1860.2176340.4352680.782366
1870.2364790.4729590.763521
1880.2090660.4181320.790934
1890.191120.382240.80888
1900.1667810.3335630.833219
1910.1616710.3233410.838329
1920.1627730.3255470.837227
1930.1456360.2912720.854364
1940.1274040.2548080.872596
1950.109160.218320.89084
1960.1114190.2228380.888581
1970.09297560.1859510.907024
1980.08820970.1764190.91179
1990.09275920.1855180.907241
2000.09505490.190110.904945
2010.08322060.1664410.916779
2020.125480.2509610.87452
2030.1270860.2541710.872914
2040.1196390.2392780.880361
2050.133490.266980.86651
2060.110970.2219390.88903
2070.1119990.2239990.888001
2080.101860.203720.89814
2090.08704690.1740940.912953
2100.2808610.5617210.719139
2110.2412340.4824690.758766
2120.2248210.4496410.775179
2130.2002730.4005460.799727
2140.1672220.3344450.832778
2150.1951220.3902440.804878
2160.1817730.3635470.818227
2170.1678950.335790.832105
2180.1375340.2750680.862466
2190.1095610.2191230.890439
2200.1065170.2130340.893483
2210.08332320.1666460.916677
2220.06491240.1298250.935088
2230.08231430.1646290.917686
2240.0671810.1343620.932819
2250.05583960.1116790.94416
2260.07877790.1575560.921222
2270.08205390.1641080.917946
2280.08383850.1676770.916162
2290.06290810.1258160.937092
2300.04307660.08615310.956923
2310.03822130.07644250.961779
2320.5762110.8475780.423789
2330.4916480.9832970.508352
2340.9882790.02344240.0117212
2350.9921130.01577470.00788736
2360.9877180.02456360.0122818
2370.9696570.06068540.0303427
2380.9885330.02293330.0114667
2390.9784460.04310890.0215545

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
13 & 0.499098 & 0.998197 & 0.500902 \tabularnewline
14 & 0.424633 & 0.849265 & 0.575367 \tabularnewline
15 & 0.41067 & 0.821341 & 0.58933 \tabularnewline
16 & 0.333711 & 0.667421 & 0.666289 \tabularnewline
17 & 0.231391 & 0.462781 & 0.768609 \tabularnewline
18 & 0.172315 & 0.344629 & 0.827685 \tabularnewline
19 & 0.178146 & 0.356292 & 0.821854 \tabularnewline
20 & 0.117799 & 0.235597 & 0.882201 \tabularnewline
21 & 0.0908704 & 0.181741 & 0.90913 \tabularnewline
22 & 0.0592092 & 0.118418 & 0.940791 \tabularnewline
23 & 0.039449 & 0.0788979 & 0.960551 \tabularnewline
24 & 0.0363957 & 0.0727914 & 0.963604 \tabularnewline
25 & 0.0279297 & 0.0558593 & 0.97207 \tabularnewline
26 & 0.104214 & 0.208427 & 0.895786 \tabularnewline
27 & 0.116518 & 0.233035 & 0.883482 \tabularnewline
28 & 0.0864319 & 0.172864 & 0.913568 \tabularnewline
29 & 0.0932703 & 0.186541 & 0.90673 \tabularnewline
30 & 0.0669531 & 0.133906 & 0.933047 \tabularnewline
31 & 0.0752596 & 0.150519 & 0.92474 \tabularnewline
32 & 0.073943 & 0.147886 & 0.926057 \tabularnewline
33 & 0.106737 & 0.213474 & 0.893263 \tabularnewline
34 & 0.130504 & 0.261008 & 0.869496 \tabularnewline
35 & 0.107497 & 0.214994 & 0.892503 \tabularnewline
36 & 0.127138 & 0.254276 & 0.872862 \tabularnewline
37 & 0.0981853 & 0.196371 & 0.901815 \tabularnewline
38 & 0.0999674 & 0.199935 & 0.900033 \tabularnewline
39 & 0.0776607 & 0.155321 & 0.922339 \tabularnewline
40 & 0.0698518 & 0.139704 & 0.930148 \tabularnewline
41 & 0.0796472 & 0.159294 & 0.920353 \tabularnewline
42 & 0.0753388 & 0.150678 & 0.924661 \tabularnewline
43 & 0.126024 & 0.252049 & 0.873976 \tabularnewline
44 & 0.250979 & 0.501958 & 0.749021 \tabularnewline
45 & 0.210398 & 0.420797 & 0.789602 \tabularnewline
46 & 0.542559 & 0.914883 & 0.457441 \tabularnewline
47 & 0.642982 & 0.714037 & 0.357018 \tabularnewline
48 & 0.612726 & 0.774547 & 0.387274 \tabularnewline
49 & 0.663219 & 0.673561 & 0.336781 \tabularnewline
50 & 0.655485 & 0.68903 & 0.344515 \tabularnewline
51 & 0.626065 & 0.747871 & 0.373935 \tabularnewline
52 & 0.79349 & 0.413021 & 0.20651 \tabularnewline
53 & 0.850044 & 0.299912 & 0.149956 \tabularnewline
54 & 0.846277 & 0.307446 & 0.153723 \tabularnewline
55 & 0.821699 & 0.356602 & 0.178301 \tabularnewline
56 & 0.802481 & 0.395038 & 0.197519 \tabularnewline
57 & 0.777279 & 0.445442 & 0.222721 \tabularnewline
58 & 0.789437 & 0.421126 & 0.210563 \tabularnewline
59 & 0.769278 & 0.461443 & 0.230722 \tabularnewline
60 & 0.744475 & 0.511049 & 0.255525 \tabularnewline
61 & 0.718148 & 0.563703 & 0.281852 \tabularnewline
62 & 0.684882 & 0.630236 & 0.315118 \tabularnewline
63 & 0.721737 & 0.556527 & 0.278263 \tabularnewline
64 & 0.710275 & 0.579449 & 0.289725 \tabularnewline
65 & 0.683331 & 0.633338 & 0.316669 \tabularnewline
66 & 0.66938 & 0.66124 & 0.33062 \tabularnewline
67 & 0.67853 & 0.642941 & 0.32147 \tabularnewline
68 & 0.64924 & 0.70152 & 0.35076 \tabularnewline
69 & 0.697109 & 0.605782 & 0.302891 \tabularnewline
70 & 0.662214 & 0.675572 & 0.337786 \tabularnewline
71 & 0.743595 & 0.512811 & 0.256405 \tabularnewline
72 & 0.70886 & 0.58228 & 0.29114 \tabularnewline
73 & 0.77262 & 0.454759 & 0.22738 \tabularnewline
74 & 0.758428 & 0.483145 & 0.241572 \tabularnewline
75 & 0.731764 & 0.536472 & 0.268236 \tabularnewline
76 & 0.711665 & 0.57667 & 0.288335 \tabularnewline
77 & 0.681918 & 0.636164 & 0.318082 \tabularnewline
78 & 0.670499 & 0.659002 & 0.329501 \tabularnewline
79 & 0.726208 & 0.547584 & 0.273792 \tabularnewline
80 & 0.793823 & 0.412354 & 0.206177 \tabularnewline
81 & 0.857127 & 0.285746 & 0.142873 \tabularnewline
82 & 0.838065 & 0.32387 & 0.161935 \tabularnewline
83 & 0.81282 & 0.374359 & 0.18718 \tabularnewline
84 & 0.792082 & 0.415836 & 0.207918 \tabularnewline
85 & 0.808152 & 0.383696 & 0.191848 \tabularnewline
86 & 0.789041 & 0.421918 & 0.210959 \tabularnewline
87 & 0.851149 & 0.297701 & 0.148851 \tabularnewline
88 & 0.877441 & 0.245119 & 0.122559 \tabularnewline
89 & 0.90607 & 0.187861 & 0.0939304 \tabularnewline
90 & 0.916962 & 0.166075 & 0.0830377 \tabularnewline
91 & 0.905399 & 0.189203 & 0.0946014 \tabularnewline
92 & 0.900997 & 0.198006 & 0.0990028 \tabularnewline
93 & 0.888046 & 0.223908 & 0.111954 \tabularnewline
94 & 0.874758 & 0.250485 & 0.125242 \tabularnewline
95 & 0.882844 & 0.234311 & 0.117156 \tabularnewline
96 & 0.884773 & 0.230454 & 0.115227 \tabularnewline
97 & 0.866881 & 0.266238 & 0.133119 \tabularnewline
98 & 0.908986 & 0.182028 & 0.091014 \tabularnewline
99 & 0.931586 & 0.136828 & 0.0684138 \tabularnewline
100 & 0.919497 & 0.161005 & 0.0805026 \tabularnewline
101 & 0.905588 & 0.188824 & 0.094412 \tabularnewline
102 & 0.908886 & 0.182227 & 0.0911137 \tabularnewline
103 & 0.901982 & 0.196035 & 0.0980177 \tabularnewline
104 & 0.885835 & 0.228331 & 0.114165 \tabularnewline
105 & 0.866669 & 0.266662 & 0.133331 \tabularnewline
106 & 0.854361 & 0.291278 & 0.145639 \tabularnewline
107 & 0.837461 & 0.325078 & 0.162539 \tabularnewline
108 & 0.813323 & 0.373353 & 0.186677 \tabularnewline
109 & 0.78755 & 0.424899 & 0.21245 \tabularnewline
110 & 0.764436 & 0.471128 & 0.235564 \tabularnewline
111 & 0.784861 & 0.430279 & 0.215139 \tabularnewline
112 & 0.833224 & 0.333552 & 0.166776 \tabularnewline
113 & 0.812149 & 0.375701 & 0.187851 \tabularnewline
114 & 0.788974 & 0.422052 & 0.211026 \tabularnewline
115 & 0.762033 & 0.475935 & 0.237967 \tabularnewline
116 & 0.748014 & 0.503972 & 0.251986 \tabularnewline
117 & 0.720009 & 0.559982 & 0.279991 \tabularnewline
118 & 0.71506 & 0.569881 & 0.28494 \tabularnewline
119 & 0.683774 & 0.632453 & 0.316226 \tabularnewline
120 & 0.652211 & 0.695578 & 0.347789 \tabularnewline
121 & 0.640255 & 0.719489 & 0.359745 \tabularnewline
122 & 0.608499 & 0.783003 & 0.391501 \tabularnewline
123 & 0.598982 & 0.802037 & 0.401018 \tabularnewline
124 & 0.574628 & 0.850744 & 0.425372 \tabularnewline
125 & 0.779812 & 0.440377 & 0.220188 \tabularnewline
126 & 0.754366 & 0.491268 & 0.245634 \tabularnewline
127 & 0.733459 & 0.533082 & 0.266541 \tabularnewline
128 & 0.702088 & 0.595824 & 0.297912 \tabularnewline
129 & 0.714644 & 0.570712 & 0.285356 \tabularnewline
130 & 0.685645 & 0.62871 & 0.314355 \tabularnewline
131 & 0.662719 & 0.674562 & 0.337281 \tabularnewline
132 & 0.644648 & 0.710703 & 0.355352 \tabularnewline
133 & 0.634787 & 0.730426 & 0.365213 \tabularnewline
134 & 0.611196 & 0.777609 & 0.388804 \tabularnewline
135 & 0.598892 & 0.802217 & 0.401108 \tabularnewline
136 & 0.589174 & 0.821652 & 0.410826 \tabularnewline
137 & 0.561469 & 0.877062 & 0.438531 \tabularnewline
138 & 0.678257 & 0.643486 & 0.321743 \tabularnewline
139 & 0.650535 & 0.69893 & 0.349465 \tabularnewline
140 & 0.627662 & 0.744677 & 0.372338 \tabularnewline
141 & 0.598278 & 0.803443 & 0.401722 \tabularnewline
142 & 0.601786 & 0.796429 & 0.398214 \tabularnewline
143 & 0.566813 & 0.866375 & 0.433187 \tabularnewline
144 & 0.585384 & 0.829231 & 0.414616 \tabularnewline
145 & 0.552135 & 0.89573 & 0.447865 \tabularnewline
146 & 0.558619 & 0.882761 & 0.441381 \tabularnewline
147 & 0.535582 & 0.928836 & 0.464418 \tabularnewline
148 & 0.499218 & 0.998437 & 0.500782 \tabularnewline
149 & 0.462535 & 0.925069 & 0.537465 \tabularnewline
150 & 0.482674 & 0.965348 & 0.517326 \tabularnewline
151 & 0.472297 & 0.944595 & 0.527703 \tabularnewline
152 & 0.466931 & 0.933862 & 0.533069 \tabularnewline
153 & 0.435731 & 0.871462 & 0.564269 \tabularnewline
154 & 0.500715 & 0.99857 & 0.499285 \tabularnewline
155 & 0.546753 & 0.906493 & 0.453247 \tabularnewline
156 & 0.516695 & 0.966609 & 0.483305 \tabularnewline
157 & 0.506842 & 0.986316 & 0.493158 \tabularnewline
158 & 0.473509 & 0.947018 & 0.526491 \tabularnewline
159 & 0.525737 & 0.948525 & 0.474263 \tabularnewline
160 & 0.490316 & 0.980632 & 0.509684 \tabularnewline
161 & 0.522104 & 0.955791 & 0.477896 \tabularnewline
162 & 0.534155 & 0.93169 & 0.465845 \tabularnewline
163 & 0.503785 & 0.992431 & 0.496215 \tabularnewline
164 & 0.467868 & 0.935737 & 0.532132 \tabularnewline
165 & 0.431658 & 0.863315 & 0.568342 \tabularnewline
166 & 0.451517 & 0.903034 & 0.548483 \tabularnewline
167 & 0.457429 & 0.914857 & 0.542571 \tabularnewline
168 & 0.476888 & 0.953777 & 0.523112 \tabularnewline
169 & 0.439806 & 0.879613 & 0.560194 \tabularnewline
170 & 0.409308 & 0.818616 & 0.590692 \tabularnewline
171 & 0.482565 & 0.96513 & 0.517435 \tabularnewline
172 & 0.446575 & 0.893151 & 0.553425 \tabularnewline
173 & 0.447819 & 0.895638 & 0.552181 \tabularnewline
174 & 0.408524 & 0.817048 & 0.591476 \tabularnewline
175 & 0.375847 & 0.751693 & 0.624153 \tabularnewline
176 & 0.352886 & 0.705772 & 0.647114 \tabularnewline
177 & 0.340873 & 0.681746 & 0.659127 \tabularnewline
178 & 0.304486 & 0.608972 & 0.695514 \tabularnewline
179 & 0.280083 & 0.560165 & 0.719917 \tabularnewline
180 & 0.282336 & 0.564671 & 0.717664 \tabularnewline
181 & 0.26098 & 0.521959 & 0.73902 \tabularnewline
182 & 0.27053 & 0.541059 & 0.72947 \tabularnewline
183 & 0.274759 & 0.549518 & 0.725241 \tabularnewline
184 & 0.265407 & 0.530813 & 0.734593 \tabularnewline
185 & 0.24824 & 0.49648 & 0.75176 \tabularnewline
186 & 0.217634 & 0.435268 & 0.782366 \tabularnewline
187 & 0.236479 & 0.472959 & 0.763521 \tabularnewline
188 & 0.209066 & 0.418132 & 0.790934 \tabularnewline
189 & 0.19112 & 0.38224 & 0.80888 \tabularnewline
190 & 0.166781 & 0.333563 & 0.833219 \tabularnewline
191 & 0.161671 & 0.323341 & 0.838329 \tabularnewline
192 & 0.162773 & 0.325547 & 0.837227 \tabularnewline
193 & 0.145636 & 0.291272 & 0.854364 \tabularnewline
194 & 0.127404 & 0.254808 & 0.872596 \tabularnewline
195 & 0.10916 & 0.21832 & 0.89084 \tabularnewline
196 & 0.111419 & 0.222838 & 0.888581 \tabularnewline
197 & 0.0929756 & 0.185951 & 0.907024 \tabularnewline
198 & 0.0882097 & 0.176419 & 0.91179 \tabularnewline
199 & 0.0927592 & 0.185518 & 0.907241 \tabularnewline
200 & 0.0950549 & 0.19011 & 0.904945 \tabularnewline
201 & 0.0832206 & 0.166441 & 0.916779 \tabularnewline
202 & 0.12548 & 0.250961 & 0.87452 \tabularnewline
203 & 0.127086 & 0.254171 & 0.872914 \tabularnewline
204 & 0.119639 & 0.239278 & 0.880361 \tabularnewline
205 & 0.13349 & 0.26698 & 0.86651 \tabularnewline
206 & 0.11097 & 0.221939 & 0.88903 \tabularnewline
207 & 0.111999 & 0.223999 & 0.888001 \tabularnewline
208 & 0.10186 & 0.20372 & 0.89814 \tabularnewline
209 & 0.0870469 & 0.174094 & 0.912953 \tabularnewline
210 & 0.280861 & 0.561721 & 0.719139 \tabularnewline
211 & 0.241234 & 0.482469 & 0.758766 \tabularnewline
212 & 0.224821 & 0.449641 & 0.775179 \tabularnewline
213 & 0.200273 & 0.400546 & 0.799727 \tabularnewline
214 & 0.167222 & 0.334445 & 0.832778 \tabularnewline
215 & 0.195122 & 0.390244 & 0.804878 \tabularnewline
216 & 0.181773 & 0.363547 & 0.818227 \tabularnewline
217 & 0.167895 & 0.33579 & 0.832105 \tabularnewline
218 & 0.137534 & 0.275068 & 0.862466 \tabularnewline
219 & 0.109561 & 0.219123 & 0.890439 \tabularnewline
220 & 0.106517 & 0.213034 & 0.893483 \tabularnewline
221 & 0.0833232 & 0.166646 & 0.916677 \tabularnewline
222 & 0.0649124 & 0.129825 & 0.935088 \tabularnewline
223 & 0.0823143 & 0.164629 & 0.917686 \tabularnewline
224 & 0.067181 & 0.134362 & 0.932819 \tabularnewline
225 & 0.0558396 & 0.111679 & 0.94416 \tabularnewline
226 & 0.0787779 & 0.157556 & 0.921222 \tabularnewline
227 & 0.0820539 & 0.164108 & 0.917946 \tabularnewline
228 & 0.0838385 & 0.167677 & 0.916162 \tabularnewline
229 & 0.0629081 & 0.125816 & 0.937092 \tabularnewline
230 & 0.0430766 & 0.0861531 & 0.956923 \tabularnewline
231 & 0.0382213 & 0.0764425 & 0.961779 \tabularnewline
232 & 0.576211 & 0.847578 & 0.423789 \tabularnewline
233 & 0.491648 & 0.983297 & 0.508352 \tabularnewline
234 & 0.988279 & 0.0234424 & 0.0117212 \tabularnewline
235 & 0.992113 & 0.0157747 & 0.00788736 \tabularnewline
236 & 0.987718 & 0.0245636 & 0.0122818 \tabularnewline
237 & 0.969657 & 0.0606854 & 0.0303427 \tabularnewline
238 & 0.988533 & 0.0229333 & 0.0114667 \tabularnewline
239 & 0.978446 & 0.0431089 & 0.0215545 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=261918&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]13[/C][C]0.499098[/C][C]0.998197[/C][C]0.500902[/C][/ROW]
[ROW][C]14[/C][C]0.424633[/C][C]0.849265[/C][C]0.575367[/C][/ROW]
[ROW][C]15[/C][C]0.41067[/C][C]0.821341[/C][C]0.58933[/C][/ROW]
[ROW][C]16[/C][C]0.333711[/C][C]0.667421[/C][C]0.666289[/C][/ROW]
[ROW][C]17[/C][C]0.231391[/C][C]0.462781[/C][C]0.768609[/C][/ROW]
[ROW][C]18[/C][C]0.172315[/C][C]0.344629[/C][C]0.827685[/C][/ROW]
[ROW][C]19[/C][C]0.178146[/C][C]0.356292[/C][C]0.821854[/C][/ROW]
[ROW][C]20[/C][C]0.117799[/C][C]0.235597[/C][C]0.882201[/C][/ROW]
[ROW][C]21[/C][C]0.0908704[/C][C]0.181741[/C][C]0.90913[/C][/ROW]
[ROW][C]22[/C][C]0.0592092[/C][C]0.118418[/C][C]0.940791[/C][/ROW]
[ROW][C]23[/C][C]0.039449[/C][C]0.0788979[/C][C]0.960551[/C][/ROW]
[ROW][C]24[/C][C]0.0363957[/C][C]0.0727914[/C][C]0.963604[/C][/ROW]
[ROW][C]25[/C][C]0.0279297[/C][C]0.0558593[/C][C]0.97207[/C][/ROW]
[ROW][C]26[/C][C]0.104214[/C][C]0.208427[/C][C]0.895786[/C][/ROW]
[ROW][C]27[/C][C]0.116518[/C][C]0.233035[/C][C]0.883482[/C][/ROW]
[ROW][C]28[/C][C]0.0864319[/C][C]0.172864[/C][C]0.913568[/C][/ROW]
[ROW][C]29[/C][C]0.0932703[/C][C]0.186541[/C][C]0.90673[/C][/ROW]
[ROW][C]30[/C][C]0.0669531[/C][C]0.133906[/C][C]0.933047[/C][/ROW]
[ROW][C]31[/C][C]0.0752596[/C][C]0.150519[/C][C]0.92474[/C][/ROW]
[ROW][C]32[/C][C]0.073943[/C][C]0.147886[/C][C]0.926057[/C][/ROW]
[ROW][C]33[/C][C]0.106737[/C][C]0.213474[/C][C]0.893263[/C][/ROW]
[ROW][C]34[/C][C]0.130504[/C][C]0.261008[/C][C]0.869496[/C][/ROW]
[ROW][C]35[/C][C]0.107497[/C][C]0.214994[/C][C]0.892503[/C][/ROW]
[ROW][C]36[/C][C]0.127138[/C][C]0.254276[/C][C]0.872862[/C][/ROW]
[ROW][C]37[/C][C]0.0981853[/C][C]0.196371[/C][C]0.901815[/C][/ROW]
[ROW][C]38[/C][C]0.0999674[/C][C]0.199935[/C][C]0.900033[/C][/ROW]
[ROW][C]39[/C][C]0.0776607[/C][C]0.155321[/C][C]0.922339[/C][/ROW]
[ROW][C]40[/C][C]0.0698518[/C][C]0.139704[/C][C]0.930148[/C][/ROW]
[ROW][C]41[/C][C]0.0796472[/C][C]0.159294[/C][C]0.920353[/C][/ROW]
[ROW][C]42[/C][C]0.0753388[/C][C]0.150678[/C][C]0.924661[/C][/ROW]
[ROW][C]43[/C][C]0.126024[/C][C]0.252049[/C][C]0.873976[/C][/ROW]
[ROW][C]44[/C][C]0.250979[/C][C]0.501958[/C][C]0.749021[/C][/ROW]
[ROW][C]45[/C][C]0.210398[/C][C]0.420797[/C][C]0.789602[/C][/ROW]
[ROW][C]46[/C][C]0.542559[/C][C]0.914883[/C][C]0.457441[/C][/ROW]
[ROW][C]47[/C][C]0.642982[/C][C]0.714037[/C][C]0.357018[/C][/ROW]
[ROW][C]48[/C][C]0.612726[/C][C]0.774547[/C][C]0.387274[/C][/ROW]
[ROW][C]49[/C][C]0.663219[/C][C]0.673561[/C][C]0.336781[/C][/ROW]
[ROW][C]50[/C][C]0.655485[/C][C]0.68903[/C][C]0.344515[/C][/ROW]
[ROW][C]51[/C][C]0.626065[/C][C]0.747871[/C][C]0.373935[/C][/ROW]
[ROW][C]52[/C][C]0.79349[/C][C]0.413021[/C][C]0.20651[/C][/ROW]
[ROW][C]53[/C][C]0.850044[/C][C]0.299912[/C][C]0.149956[/C][/ROW]
[ROW][C]54[/C][C]0.846277[/C][C]0.307446[/C][C]0.153723[/C][/ROW]
[ROW][C]55[/C][C]0.821699[/C][C]0.356602[/C][C]0.178301[/C][/ROW]
[ROW][C]56[/C][C]0.802481[/C][C]0.395038[/C][C]0.197519[/C][/ROW]
[ROW][C]57[/C][C]0.777279[/C][C]0.445442[/C][C]0.222721[/C][/ROW]
[ROW][C]58[/C][C]0.789437[/C][C]0.421126[/C][C]0.210563[/C][/ROW]
[ROW][C]59[/C][C]0.769278[/C][C]0.461443[/C][C]0.230722[/C][/ROW]
[ROW][C]60[/C][C]0.744475[/C][C]0.511049[/C][C]0.255525[/C][/ROW]
[ROW][C]61[/C][C]0.718148[/C][C]0.563703[/C][C]0.281852[/C][/ROW]
[ROW][C]62[/C][C]0.684882[/C][C]0.630236[/C][C]0.315118[/C][/ROW]
[ROW][C]63[/C][C]0.721737[/C][C]0.556527[/C][C]0.278263[/C][/ROW]
[ROW][C]64[/C][C]0.710275[/C][C]0.579449[/C][C]0.289725[/C][/ROW]
[ROW][C]65[/C][C]0.683331[/C][C]0.633338[/C][C]0.316669[/C][/ROW]
[ROW][C]66[/C][C]0.66938[/C][C]0.66124[/C][C]0.33062[/C][/ROW]
[ROW][C]67[/C][C]0.67853[/C][C]0.642941[/C][C]0.32147[/C][/ROW]
[ROW][C]68[/C][C]0.64924[/C][C]0.70152[/C][C]0.35076[/C][/ROW]
[ROW][C]69[/C][C]0.697109[/C][C]0.605782[/C][C]0.302891[/C][/ROW]
[ROW][C]70[/C][C]0.662214[/C][C]0.675572[/C][C]0.337786[/C][/ROW]
[ROW][C]71[/C][C]0.743595[/C][C]0.512811[/C][C]0.256405[/C][/ROW]
[ROW][C]72[/C][C]0.70886[/C][C]0.58228[/C][C]0.29114[/C][/ROW]
[ROW][C]73[/C][C]0.77262[/C][C]0.454759[/C][C]0.22738[/C][/ROW]
[ROW][C]74[/C][C]0.758428[/C][C]0.483145[/C][C]0.241572[/C][/ROW]
[ROW][C]75[/C][C]0.731764[/C][C]0.536472[/C][C]0.268236[/C][/ROW]
[ROW][C]76[/C][C]0.711665[/C][C]0.57667[/C][C]0.288335[/C][/ROW]
[ROW][C]77[/C][C]0.681918[/C][C]0.636164[/C][C]0.318082[/C][/ROW]
[ROW][C]78[/C][C]0.670499[/C][C]0.659002[/C][C]0.329501[/C][/ROW]
[ROW][C]79[/C][C]0.726208[/C][C]0.547584[/C][C]0.273792[/C][/ROW]
[ROW][C]80[/C][C]0.793823[/C][C]0.412354[/C][C]0.206177[/C][/ROW]
[ROW][C]81[/C][C]0.857127[/C][C]0.285746[/C][C]0.142873[/C][/ROW]
[ROW][C]82[/C][C]0.838065[/C][C]0.32387[/C][C]0.161935[/C][/ROW]
[ROW][C]83[/C][C]0.81282[/C][C]0.374359[/C][C]0.18718[/C][/ROW]
[ROW][C]84[/C][C]0.792082[/C][C]0.415836[/C][C]0.207918[/C][/ROW]
[ROW][C]85[/C][C]0.808152[/C][C]0.383696[/C][C]0.191848[/C][/ROW]
[ROW][C]86[/C][C]0.789041[/C][C]0.421918[/C][C]0.210959[/C][/ROW]
[ROW][C]87[/C][C]0.851149[/C][C]0.297701[/C][C]0.148851[/C][/ROW]
[ROW][C]88[/C][C]0.877441[/C][C]0.245119[/C][C]0.122559[/C][/ROW]
[ROW][C]89[/C][C]0.90607[/C][C]0.187861[/C][C]0.0939304[/C][/ROW]
[ROW][C]90[/C][C]0.916962[/C][C]0.166075[/C][C]0.0830377[/C][/ROW]
[ROW][C]91[/C][C]0.905399[/C][C]0.189203[/C][C]0.0946014[/C][/ROW]
[ROW][C]92[/C][C]0.900997[/C][C]0.198006[/C][C]0.0990028[/C][/ROW]
[ROW][C]93[/C][C]0.888046[/C][C]0.223908[/C][C]0.111954[/C][/ROW]
[ROW][C]94[/C][C]0.874758[/C][C]0.250485[/C][C]0.125242[/C][/ROW]
[ROW][C]95[/C][C]0.882844[/C][C]0.234311[/C][C]0.117156[/C][/ROW]
[ROW][C]96[/C][C]0.884773[/C][C]0.230454[/C][C]0.115227[/C][/ROW]
[ROW][C]97[/C][C]0.866881[/C][C]0.266238[/C][C]0.133119[/C][/ROW]
[ROW][C]98[/C][C]0.908986[/C][C]0.182028[/C][C]0.091014[/C][/ROW]
[ROW][C]99[/C][C]0.931586[/C][C]0.136828[/C][C]0.0684138[/C][/ROW]
[ROW][C]100[/C][C]0.919497[/C][C]0.161005[/C][C]0.0805026[/C][/ROW]
[ROW][C]101[/C][C]0.905588[/C][C]0.188824[/C][C]0.094412[/C][/ROW]
[ROW][C]102[/C][C]0.908886[/C][C]0.182227[/C][C]0.0911137[/C][/ROW]
[ROW][C]103[/C][C]0.901982[/C][C]0.196035[/C][C]0.0980177[/C][/ROW]
[ROW][C]104[/C][C]0.885835[/C][C]0.228331[/C][C]0.114165[/C][/ROW]
[ROW][C]105[/C][C]0.866669[/C][C]0.266662[/C][C]0.133331[/C][/ROW]
[ROW][C]106[/C][C]0.854361[/C][C]0.291278[/C][C]0.145639[/C][/ROW]
[ROW][C]107[/C][C]0.837461[/C][C]0.325078[/C][C]0.162539[/C][/ROW]
[ROW][C]108[/C][C]0.813323[/C][C]0.373353[/C][C]0.186677[/C][/ROW]
[ROW][C]109[/C][C]0.78755[/C][C]0.424899[/C][C]0.21245[/C][/ROW]
[ROW][C]110[/C][C]0.764436[/C][C]0.471128[/C][C]0.235564[/C][/ROW]
[ROW][C]111[/C][C]0.784861[/C][C]0.430279[/C][C]0.215139[/C][/ROW]
[ROW][C]112[/C][C]0.833224[/C][C]0.333552[/C][C]0.166776[/C][/ROW]
[ROW][C]113[/C][C]0.812149[/C][C]0.375701[/C][C]0.187851[/C][/ROW]
[ROW][C]114[/C][C]0.788974[/C][C]0.422052[/C][C]0.211026[/C][/ROW]
[ROW][C]115[/C][C]0.762033[/C][C]0.475935[/C][C]0.237967[/C][/ROW]
[ROW][C]116[/C][C]0.748014[/C][C]0.503972[/C][C]0.251986[/C][/ROW]
[ROW][C]117[/C][C]0.720009[/C][C]0.559982[/C][C]0.279991[/C][/ROW]
[ROW][C]118[/C][C]0.71506[/C][C]0.569881[/C][C]0.28494[/C][/ROW]
[ROW][C]119[/C][C]0.683774[/C][C]0.632453[/C][C]0.316226[/C][/ROW]
[ROW][C]120[/C][C]0.652211[/C][C]0.695578[/C][C]0.347789[/C][/ROW]
[ROW][C]121[/C][C]0.640255[/C][C]0.719489[/C][C]0.359745[/C][/ROW]
[ROW][C]122[/C][C]0.608499[/C][C]0.783003[/C][C]0.391501[/C][/ROW]
[ROW][C]123[/C][C]0.598982[/C][C]0.802037[/C][C]0.401018[/C][/ROW]
[ROW][C]124[/C][C]0.574628[/C][C]0.850744[/C][C]0.425372[/C][/ROW]
[ROW][C]125[/C][C]0.779812[/C][C]0.440377[/C][C]0.220188[/C][/ROW]
[ROW][C]126[/C][C]0.754366[/C][C]0.491268[/C][C]0.245634[/C][/ROW]
[ROW][C]127[/C][C]0.733459[/C][C]0.533082[/C][C]0.266541[/C][/ROW]
[ROW][C]128[/C][C]0.702088[/C][C]0.595824[/C][C]0.297912[/C][/ROW]
[ROW][C]129[/C][C]0.714644[/C][C]0.570712[/C][C]0.285356[/C][/ROW]
[ROW][C]130[/C][C]0.685645[/C][C]0.62871[/C][C]0.314355[/C][/ROW]
[ROW][C]131[/C][C]0.662719[/C][C]0.674562[/C][C]0.337281[/C][/ROW]
[ROW][C]132[/C][C]0.644648[/C][C]0.710703[/C][C]0.355352[/C][/ROW]
[ROW][C]133[/C][C]0.634787[/C][C]0.730426[/C][C]0.365213[/C][/ROW]
[ROW][C]134[/C][C]0.611196[/C][C]0.777609[/C][C]0.388804[/C][/ROW]
[ROW][C]135[/C][C]0.598892[/C][C]0.802217[/C][C]0.401108[/C][/ROW]
[ROW][C]136[/C][C]0.589174[/C][C]0.821652[/C][C]0.410826[/C][/ROW]
[ROW][C]137[/C][C]0.561469[/C][C]0.877062[/C][C]0.438531[/C][/ROW]
[ROW][C]138[/C][C]0.678257[/C][C]0.643486[/C][C]0.321743[/C][/ROW]
[ROW][C]139[/C][C]0.650535[/C][C]0.69893[/C][C]0.349465[/C][/ROW]
[ROW][C]140[/C][C]0.627662[/C][C]0.744677[/C][C]0.372338[/C][/ROW]
[ROW][C]141[/C][C]0.598278[/C][C]0.803443[/C][C]0.401722[/C][/ROW]
[ROW][C]142[/C][C]0.601786[/C][C]0.796429[/C][C]0.398214[/C][/ROW]
[ROW][C]143[/C][C]0.566813[/C][C]0.866375[/C][C]0.433187[/C][/ROW]
[ROW][C]144[/C][C]0.585384[/C][C]0.829231[/C][C]0.414616[/C][/ROW]
[ROW][C]145[/C][C]0.552135[/C][C]0.89573[/C][C]0.447865[/C][/ROW]
[ROW][C]146[/C][C]0.558619[/C][C]0.882761[/C][C]0.441381[/C][/ROW]
[ROW][C]147[/C][C]0.535582[/C][C]0.928836[/C][C]0.464418[/C][/ROW]
[ROW][C]148[/C][C]0.499218[/C][C]0.998437[/C][C]0.500782[/C][/ROW]
[ROW][C]149[/C][C]0.462535[/C][C]0.925069[/C][C]0.537465[/C][/ROW]
[ROW][C]150[/C][C]0.482674[/C][C]0.965348[/C][C]0.517326[/C][/ROW]
[ROW][C]151[/C][C]0.472297[/C][C]0.944595[/C][C]0.527703[/C][/ROW]
[ROW][C]152[/C][C]0.466931[/C][C]0.933862[/C][C]0.533069[/C][/ROW]
[ROW][C]153[/C][C]0.435731[/C][C]0.871462[/C][C]0.564269[/C][/ROW]
[ROW][C]154[/C][C]0.500715[/C][C]0.99857[/C][C]0.499285[/C][/ROW]
[ROW][C]155[/C][C]0.546753[/C][C]0.906493[/C][C]0.453247[/C][/ROW]
[ROW][C]156[/C][C]0.516695[/C][C]0.966609[/C][C]0.483305[/C][/ROW]
[ROW][C]157[/C][C]0.506842[/C][C]0.986316[/C][C]0.493158[/C][/ROW]
[ROW][C]158[/C][C]0.473509[/C][C]0.947018[/C][C]0.526491[/C][/ROW]
[ROW][C]159[/C][C]0.525737[/C][C]0.948525[/C][C]0.474263[/C][/ROW]
[ROW][C]160[/C][C]0.490316[/C][C]0.980632[/C][C]0.509684[/C][/ROW]
[ROW][C]161[/C][C]0.522104[/C][C]0.955791[/C][C]0.477896[/C][/ROW]
[ROW][C]162[/C][C]0.534155[/C][C]0.93169[/C][C]0.465845[/C][/ROW]
[ROW][C]163[/C][C]0.503785[/C][C]0.992431[/C][C]0.496215[/C][/ROW]
[ROW][C]164[/C][C]0.467868[/C][C]0.935737[/C][C]0.532132[/C][/ROW]
[ROW][C]165[/C][C]0.431658[/C][C]0.863315[/C][C]0.568342[/C][/ROW]
[ROW][C]166[/C][C]0.451517[/C][C]0.903034[/C][C]0.548483[/C][/ROW]
[ROW][C]167[/C][C]0.457429[/C][C]0.914857[/C][C]0.542571[/C][/ROW]
[ROW][C]168[/C][C]0.476888[/C][C]0.953777[/C][C]0.523112[/C][/ROW]
[ROW][C]169[/C][C]0.439806[/C][C]0.879613[/C][C]0.560194[/C][/ROW]
[ROW][C]170[/C][C]0.409308[/C][C]0.818616[/C][C]0.590692[/C][/ROW]
[ROW][C]171[/C][C]0.482565[/C][C]0.96513[/C][C]0.517435[/C][/ROW]
[ROW][C]172[/C][C]0.446575[/C][C]0.893151[/C][C]0.553425[/C][/ROW]
[ROW][C]173[/C][C]0.447819[/C][C]0.895638[/C][C]0.552181[/C][/ROW]
[ROW][C]174[/C][C]0.408524[/C][C]0.817048[/C][C]0.591476[/C][/ROW]
[ROW][C]175[/C][C]0.375847[/C][C]0.751693[/C][C]0.624153[/C][/ROW]
[ROW][C]176[/C][C]0.352886[/C][C]0.705772[/C][C]0.647114[/C][/ROW]
[ROW][C]177[/C][C]0.340873[/C][C]0.681746[/C][C]0.659127[/C][/ROW]
[ROW][C]178[/C][C]0.304486[/C][C]0.608972[/C][C]0.695514[/C][/ROW]
[ROW][C]179[/C][C]0.280083[/C][C]0.560165[/C][C]0.719917[/C][/ROW]
[ROW][C]180[/C][C]0.282336[/C][C]0.564671[/C][C]0.717664[/C][/ROW]
[ROW][C]181[/C][C]0.26098[/C][C]0.521959[/C][C]0.73902[/C][/ROW]
[ROW][C]182[/C][C]0.27053[/C][C]0.541059[/C][C]0.72947[/C][/ROW]
[ROW][C]183[/C][C]0.274759[/C][C]0.549518[/C][C]0.725241[/C][/ROW]
[ROW][C]184[/C][C]0.265407[/C][C]0.530813[/C][C]0.734593[/C][/ROW]
[ROW][C]185[/C][C]0.24824[/C][C]0.49648[/C][C]0.75176[/C][/ROW]
[ROW][C]186[/C][C]0.217634[/C][C]0.435268[/C][C]0.782366[/C][/ROW]
[ROW][C]187[/C][C]0.236479[/C][C]0.472959[/C][C]0.763521[/C][/ROW]
[ROW][C]188[/C][C]0.209066[/C][C]0.418132[/C][C]0.790934[/C][/ROW]
[ROW][C]189[/C][C]0.19112[/C][C]0.38224[/C][C]0.80888[/C][/ROW]
[ROW][C]190[/C][C]0.166781[/C][C]0.333563[/C][C]0.833219[/C][/ROW]
[ROW][C]191[/C][C]0.161671[/C][C]0.323341[/C][C]0.838329[/C][/ROW]
[ROW][C]192[/C][C]0.162773[/C][C]0.325547[/C][C]0.837227[/C][/ROW]
[ROW][C]193[/C][C]0.145636[/C][C]0.291272[/C][C]0.854364[/C][/ROW]
[ROW][C]194[/C][C]0.127404[/C][C]0.254808[/C][C]0.872596[/C][/ROW]
[ROW][C]195[/C][C]0.10916[/C][C]0.21832[/C][C]0.89084[/C][/ROW]
[ROW][C]196[/C][C]0.111419[/C][C]0.222838[/C][C]0.888581[/C][/ROW]
[ROW][C]197[/C][C]0.0929756[/C][C]0.185951[/C][C]0.907024[/C][/ROW]
[ROW][C]198[/C][C]0.0882097[/C][C]0.176419[/C][C]0.91179[/C][/ROW]
[ROW][C]199[/C][C]0.0927592[/C][C]0.185518[/C][C]0.907241[/C][/ROW]
[ROW][C]200[/C][C]0.0950549[/C][C]0.19011[/C][C]0.904945[/C][/ROW]
[ROW][C]201[/C][C]0.0832206[/C][C]0.166441[/C][C]0.916779[/C][/ROW]
[ROW][C]202[/C][C]0.12548[/C][C]0.250961[/C][C]0.87452[/C][/ROW]
[ROW][C]203[/C][C]0.127086[/C][C]0.254171[/C][C]0.872914[/C][/ROW]
[ROW][C]204[/C][C]0.119639[/C][C]0.239278[/C][C]0.880361[/C][/ROW]
[ROW][C]205[/C][C]0.13349[/C][C]0.26698[/C][C]0.86651[/C][/ROW]
[ROW][C]206[/C][C]0.11097[/C][C]0.221939[/C][C]0.88903[/C][/ROW]
[ROW][C]207[/C][C]0.111999[/C][C]0.223999[/C][C]0.888001[/C][/ROW]
[ROW][C]208[/C][C]0.10186[/C][C]0.20372[/C][C]0.89814[/C][/ROW]
[ROW][C]209[/C][C]0.0870469[/C][C]0.174094[/C][C]0.912953[/C][/ROW]
[ROW][C]210[/C][C]0.280861[/C][C]0.561721[/C][C]0.719139[/C][/ROW]
[ROW][C]211[/C][C]0.241234[/C][C]0.482469[/C][C]0.758766[/C][/ROW]
[ROW][C]212[/C][C]0.224821[/C][C]0.449641[/C][C]0.775179[/C][/ROW]
[ROW][C]213[/C][C]0.200273[/C][C]0.400546[/C][C]0.799727[/C][/ROW]
[ROW][C]214[/C][C]0.167222[/C][C]0.334445[/C][C]0.832778[/C][/ROW]
[ROW][C]215[/C][C]0.195122[/C][C]0.390244[/C][C]0.804878[/C][/ROW]
[ROW][C]216[/C][C]0.181773[/C][C]0.363547[/C][C]0.818227[/C][/ROW]
[ROW][C]217[/C][C]0.167895[/C][C]0.33579[/C][C]0.832105[/C][/ROW]
[ROW][C]218[/C][C]0.137534[/C][C]0.275068[/C][C]0.862466[/C][/ROW]
[ROW][C]219[/C][C]0.109561[/C][C]0.219123[/C][C]0.890439[/C][/ROW]
[ROW][C]220[/C][C]0.106517[/C][C]0.213034[/C][C]0.893483[/C][/ROW]
[ROW][C]221[/C][C]0.0833232[/C][C]0.166646[/C][C]0.916677[/C][/ROW]
[ROW][C]222[/C][C]0.0649124[/C][C]0.129825[/C][C]0.935088[/C][/ROW]
[ROW][C]223[/C][C]0.0823143[/C][C]0.164629[/C][C]0.917686[/C][/ROW]
[ROW][C]224[/C][C]0.067181[/C][C]0.134362[/C][C]0.932819[/C][/ROW]
[ROW][C]225[/C][C]0.0558396[/C][C]0.111679[/C][C]0.94416[/C][/ROW]
[ROW][C]226[/C][C]0.0787779[/C][C]0.157556[/C][C]0.921222[/C][/ROW]
[ROW][C]227[/C][C]0.0820539[/C][C]0.164108[/C][C]0.917946[/C][/ROW]
[ROW][C]228[/C][C]0.0838385[/C][C]0.167677[/C][C]0.916162[/C][/ROW]
[ROW][C]229[/C][C]0.0629081[/C][C]0.125816[/C][C]0.937092[/C][/ROW]
[ROW][C]230[/C][C]0.0430766[/C][C]0.0861531[/C][C]0.956923[/C][/ROW]
[ROW][C]231[/C][C]0.0382213[/C][C]0.0764425[/C][C]0.961779[/C][/ROW]
[ROW][C]232[/C][C]0.576211[/C][C]0.847578[/C][C]0.423789[/C][/ROW]
[ROW][C]233[/C][C]0.491648[/C][C]0.983297[/C][C]0.508352[/C][/ROW]
[ROW][C]234[/C][C]0.988279[/C][C]0.0234424[/C][C]0.0117212[/C][/ROW]
[ROW][C]235[/C][C]0.992113[/C][C]0.0157747[/C][C]0.00788736[/C][/ROW]
[ROW][C]236[/C][C]0.987718[/C][C]0.0245636[/C][C]0.0122818[/C][/ROW]
[ROW][C]237[/C][C]0.969657[/C][C]0.0606854[/C][C]0.0303427[/C][/ROW]
[ROW][C]238[/C][C]0.988533[/C][C]0.0229333[/C][C]0.0114667[/C][/ROW]
[ROW][C]239[/C][C]0.978446[/C][C]0.0431089[/C][C]0.0215545[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=261918&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
130.4990980.9981970.500902
140.4246330.8492650.575367
150.410670.8213410.58933
160.3337110.6674210.666289
170.2313910.4627810.768609
180.1723150.3446290.827685
190.1781460.3562920.821854
200.1177990.2355970.882201
210.09087040.1817410.90913
220.05920920.1184180.940791
230.0394490.07889790.960551
240.03639570.07279140.963604
250.02792970.05585930.97207
260.1042140.2084270.895786
270.1165180.2330350.883482
280.08643190.1728640.913568
290.09327030.1865410.90673
300.06695310.1339060.933047
310.07525960.1505190.92474
320.0739430.1478860.926057
330.1067370.2134740.893263
340.1305040.2610080.869496
350.1074970.2149940.892503
360.1271380.2542760.872862
370.09818530.1963710.901815
380.09996740.1999350.900033
390.07766070.1553210.922339
400.06985180.1397040.930148
410.07964720.1592940.920353
420.07533880.1506780.924661
430.1260240.2520490.873976
440.2509790.5019580.749021
450.2103980.4207970.789602
460.5425590.9148830.457441
470.6429820.7140370.357018
480.6127260.7745470.387274
490.6632190.6735610.336781
500.6554850.689030.344515
510.6260650.7478710.373935
520.793490.4130210.20651
530.8500440.2999120.149956
540.8462770.3074460.153723
550.8216990.3566020.178301
560.8024810.3950380.197519
570.7772790.4454420.222721
580.7894370.4211260.210563
590.7692780.4614430.230722
600.7444750.5110490.255525
610.7181480.5637030.281852
620.6848820.6302360.315118
630.7217370.5565270.278263
640.7102750.5794490.289725
650.6833310.6333380.316669
660.669380.661240.33062
670.678530.6429410.32147
680.649240.701520.35076
690.6971090.6057820.302891
700.6622140.6755720.337786
710.7435950.5128110.256405
720.708860.582280.29114
730.772620.4547590.22738
740.7584280.4831450.241572
750.7317640.5364720.268236
760.7116650.576670.288335
770.6819180.6361640.318082
780.6704990.6590020.329501
790.7262080.5475840.273792
800.7938230.4123540.206177
810.8571270.2857460.142873
820.8380650.323870.161935
830.812820.3743590.18718
840.7920820.4158360.207918
850.8081520.3836960.191848
860.7890410.4219180.210959
870.8511490.2977010.148851
880.8774410.2451190.122559
890.906070.1878610.0939304
900.9169620.1660750.0830377
910.9053990.1892030.0946014
920.9009970.1980060.0990028
930.8880460.2239080.111954
940.8747580.2504850.125242
950.8828440.2343110.117156
960.8847730.2304540.115227
970.8668810.2662380.133119
980.9089860.1820280.091014
990.9315860.1368280.0684138
1000.9194970.1610050.0805026
1010.9055880.1888240.094412
1020.9088860.1822270.0911137
1030.9019820.1960350.0980177
1040.8858350.2283310.114165
1050.8666690.2666620.133331
1060.8543610.2912780.145639
1070.8374610.3250780.162539
1080.8133230.3733530.186677
1090.787550.4248990.21245
1100.7644360.4711280.235564
1110.7848610.4302790.215139
1120.8332240.3335520.166776
1130.8121490.3757010.187851
1140.7889740.4220520.211026
1150.7620330.4759350.237967
1160.7480140.5039720.251986
1170.7200090.5599820.279991
1180.715060.5698810.28494
1190.6837740.6324530.316226
1200.6522110.6955780.347789
1210.6402550.7194890.359745
1220.6084990.7830030.391501
1230.5989820.8020370.401018
1240.5746280.8507440.425372
1250.7798120.4403770.220188
1260.7543660.4912680.245634
1270.7334590.5330820.266541
1280.7020880.5958240.297912
1290.7146440.5707120.285356
1300.6856450.628710.314355
1310.6627190.6745620.337281
1320.6446480.7107030.355352
1330.6347870.7304260.365213
1340.6111960.7776090.388804
1350.5988920.8022170.401108
1360.5891740.8216520.410826
1370.5614690.8770620.438531
1380.6782570.6434860.321743
1390.6505350.698930.349465
1400.6276620.7446770.372338
1410.5982780.8034430.401722
1420.6017860.7964290.398214
1430.5668130.8663750.433187
1440.5853840.8292310.414616
1450.5521350.895730.447865
1460.5586190.8827610.441381
1470.5355820.9288360.464418
1480.4992180.9984370.500782
1490.4625350.9250690.537465
1500.4826740.9653480.517326
1510.4722970.9445950.527703
1520.4669310.9338620.533069
1530.4357310.8714620.564269
1540.5007150.998570.499285
1550.5467530.9064930.453247
1560.5166950.9666090.483305
1570.5068420.9863160.493158
1580.4735090.9470180.526491
1590.5257370.9485250.474263
1600.4903160.9806320.509684
1610.5221040.9557910.477896
1620.5341550.931690.465845
1630.5037850.9924310.496215
1640.4678680.9357370.532132
1650.4316580.8633150.568342
1660.4515170.9030340.548483
1670.4574290.9148570.542571
1680.4768880.9537770.523112
1690.4398060.8796130.560194
1700.4093080.8186160.590692
1710.4825650.965130.517435
1720.4465750.8931510.553425
1730.4478190.8956380.552181
1740.4085240.8170480.591476
1750.3758470.7516930.624153
1760.3528860.7057720.647114
1770.3408730.6817460.659127
1780.3044860.6089720.695514
1790.2800830.5601650.719917
1800.2823360.5646710.717664
1810.260980.5219590.73902
1820.270530.5410590.72947
1830.2747590.5495180.725241
1840.2654070.5308130.734593
1850.248240.496480.75176
1860.2176340.4352680.782366
1870.2364790.4729590.763521
1880.2090660.4181320.790934
1890.191120.382240.80888
1900.1667810.3335630.833219
1910.1616710.3233410.838329
1920.1627730.3255470.837227
1930.1456360.2912720.854364
1940.1274040.2548080.872596
1950.109160.218320.89084
1960.1114190.2228380.888581
1970.09297560.1859510.907024
1980.08820970.1764190.91179
1990.09275920.1855180.907241
2000.09505490.190110.904945
2010.08322060.1664410.916779
2020.125480.2509610.87452
2030.1270860.2541710.872914
2040.1196390.2392780.880361
2050.133490.266980.86651
2060.110970.2219390.88903
2070.1119990.2239990.888001
2080.101860.203720.89814
2090.08704690.1740940.912953
2100.2808610.5617210.719139
2110.2412340.4824690.758766
2120.2248210.4496410.775179
2130.2002730.4005460.799727
2140.1672220.3344450.832778
2150.1951220.3902440.804878
2160.1817730.3635470.818227
2170.1678950.335790.832105
2180.1375340.2750680.862466
2190.1095610.2191230.890439
2200.1065170.2130340.893483
2210.08332320.1666460.916677
2220.06491240.1298250.935088
2230.08231430.1646290.917686
2240.0671810.1343620.932819
2250.05583960.1116790.94416
2260.07877790.1575560.921222
2270.08205390.1641080.917946
2280.08383850.1676770.916162
2290.06290810.1258160.937092
2300.04307660.08615310.956923
2310.03822130.07644250.961779
2320.5762110.8475780.423789
2330.4916480.9832970.508352
2340.9882790.02344240.0117212
2350.9921130.01577470.00788736
2360.9877180.02456360.0122818
2370.9696570.06068540.0303427
2380.9885330.02293330.0114667
2390.9784460.04310890.0215545







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level50.0220264OK
10% type I error level110.0484581OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 5 & 0.0220264 & OK \tabularnewline
10% type I error level & 11 & 0.0484581 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=261918&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]5[/C][C]0.0220264[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]11[/C][C]0.0484581[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=261918&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=261918&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level50.0220264OK
10% type I error level110.0484581OK



Parameters (Session):
par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}