Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationSun, 14 Dec 2014 08:24:39 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/14/t1418545511zdu5u74v151f1i3.htm/, Retrieved Fri, 01 Nov 2024 00:03:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=267327, Retrieved Fri, 01 Nov 2024 00:03:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact161
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Correlatiematrix ...] [2014-12-14 08:24:39] [d0ee3c98d5e00815b38c7c808f1992f4] [Current]
Feedback Forum

Post a new message
Dataseries X:
149 96 18 68 86
NA NA NA NA NA
148 88 39 32 71
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
159 114 35 62 97
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
176 141 69 78 147
54 35 21 19 40
91 80 26 31 57
NA NA NA NA NA
124 97 36 35 71
NA NA NA NA NA
121 84 23 45 68
NA NA NA NA NA
NA NA NA NA NA
221 107 35 44 79
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
92 77 24 42 66
NA NA NA NA NA
153 93 22 41 63
94 105 23 46 69
156 131 32 39 71
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
151 77 16 39 55
NA NA NA NA NA
NA NA NA NA NA
157 168 43 53 96
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
187 121 59 46 105
NA NA NA NA NA
NA NA NA NA NA
105 40 7 50 57
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
128 80 26 28 54
NA NA NA NA NA
49 25 9 6 15
NA NA NA NA NA
NA NA NA NA NA
162 58 48 17 65
99 63 18 40 58
NA NA NA NA NA
186 50 33 37 70
NA NA NA NA NA
183 152 71 65 136
NA NA NA NA NA
NA NA NA NA NA
104 66 34 35 69
177 127 80 56 136
126 67 29 29 58
76 90 16 43 59
NA NA NA NA NA
139 128 32 50 82
162 146 43 59 102
NA NA NA NA NA
159 186 29 61 90
74 81 36 28 64
NA NA NA NA NA
96 54 35 35 70
116 46 21 29 50
87 106 29 48 77
NA NA NA NA NA
127 60 37 44 81
NA NA NA NA NA
NA NA NA NA NA
74 62 51 20 71
91 36 32 28 60
133 56 21 34 55
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
95 98 20 23 43
NA NA NA NA NA
121 35 11 21 32
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
102 90 23 33 56
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
102 43 39 35 74
100 52 29 28 57
94 60 13 32 45
52 54 8 22 30
98 51 18 44 62
118 51 24 27 51
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
109 263 37 108 145
NA NA NA NA NA
NA NA NA NA NA
158 214 75 72 147
NA NA NA NA NA
67 58 15 9 24
147 292 29 55 84
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
165 302 85 78 163
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
150 296 28 69 97
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
149 196 36 51 86
145 199 22 67 89
NA NA NA NA NA
109 153 31 44 75
132 299 11 45 57
NA NA NA NA NA
169 190 24 36 60
NA NA NA NA NA
NA NA NA NA NA
172 269 22 43 65
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
113 190 31 40 71
115 299 29 73 102
78 121 45 34 80
118 137 25 72 97
NA NA NA NA NA
173 157 31 61 93
NA NA NA NA NA
162 183 66 74 140
NA NA NA NA NA
122 238 32 66 98
NA NA NA NA NA
100 226 39 41 80
82 190 19 57 76
NA NA NA NA NA
115 145 36 51 87
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
158 249 26 43 69
NA NA NA NA NA
49 122 32 20 52
90 186 41 79 120
121 148 29 39 69
NA NA NA NA NA
104 172 17 55 72
NA NA NA NA NA
110 168 32 55 87
108 102 30 22 52
113 106 34 37 71
115 2 59 2 61
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
111 141 31 39 70
77 113 19 33 52
NA NA NA NA NA
151 268 30 57 87
89 175 25 43 69
78 77 48 23 72
110 125 35 44 79
NA NA NA NA NA
NA NA NA NA NA
141 132 22 36 58
117 211 18 39 57
NA NA NA NA NA
63 76 46 23 69
NA NA NA NA NA
NA NA NA NA NA
131 266 12 78 90
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
107 219 41 61 102
77 246 12 27 40
154 279 31 69 100
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
112 226 44 51 96
143 234 52 34 86
49 138 7 31 38
NA NA NA NA NA
NA NA NA NA NA
167 236 26 51 77
56 106 24 24 48
137 135 7 19 26
NA NA NA NA NA
NA NA NA NA NA
149 199 20 42 62
168 112 52 22 74
140 278 28 85 114
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
48 62 13 14 27
NA NA NA NA NA
NA NA NA NA NA
NA NA NA NA NA
109 207 14 51 65
63 184 17 41 58
NA NA NA NA NA
162 183 66 74 140
NA NA NA NA NA
NA NA NA NA NA
164 237 -2 73 71
NA NA NA NA NA
126 221 2 61 63
NA NA NA NA NA
NA NA NA NA NA
83 198 20 54 74
NA NA NA NA NA
81 158 16 62 78
NA NA NA NA NA
110 226 40 59 100
NA NA NA NA NA
93 196 25 26 52
104 83 49 54 102
NA NA NA NA NA
NA NA NA NA NA
88 105 19 36 55
NA NA NA NA NA
NA NA NA NA NA
99 196 30 42 73
NA NA NA NA NA
76 157 19 25 45
109 75 52 31 83
NA NA NA NA NA
NA NA NA NA NA
120 75 33 17 50
NA NA NA NA NA
91 185 22 55 77
108 265 30 62 91
NA NA NA NA NA
117 139 38 30 68
119 196 26 49 74




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=267327&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=267327&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=267327&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Correlations for all pairs of data series (method=kendall)
LFM_vrouwenBLOGS_vrouwenPRH_vrouwenCOMP_HOURS_vrouwenRFC_HOURS_vrouwen
LFM_vrouwen10.2050.2260.3130.339
BLOGS_vrouwen0.20510.0270.470.363
PRH_vrouwen0.2260.02710.1020.477
COMP_HOURS_vrouwen0.3130.470.10210.64
RFC_HOURS_vrouwen0.3390.3630.4770.641

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & LFM_vrouwen & BLOGS_vrouwen & PRH_vrouwen & COMP_HOURS_vrouwen & RFC_HOURS_vrouwen \tabularnewline
LFM_vrouwen & 1 & 0.205 & 0.226 & 0.313 & 0.339 \tabularnewline
BLOGS_vrouwen & 0.205 & 1 & 0.027 & 0.47 & 0.363 \tabularnewline
PRH_vrouwen & 0.226 & 0.027 & 1 & 0.102 & 0.477 \tabularnewline
COMP_HOURS_vrouwen & 0.313 & 0.47 & 0.102 & 1 & 0.64 \tabularnewline
RFC_HOURS_vrouwen & 0.339 & 0.363 & 0.477 & 0.64 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=267327&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]LFM_vrouwen[/C][C]BLOGS_vrouwen[/C][C]PRH_vrouwen[/C][C]COMP_HOURS_vrouwen[/C][C]RFC_HOURS_vrouwen[/C][/ROW]
[ROW][C]LFM_vrouwen[/C][C]1[/C][C]0.205[/C][C]0.226[/C][C]0.313[/C][C]0.339[/C][/ROW]
[ROW][C]BLOGS_vrouwen[/C][C]0.205[/C][C]1[/C][C]0.027[/C][C]0.47[/C][C]0.363[/C][/ROW]
[ROW][C]PRH_vrouwen[/C][C]0.226[/C][C]0.027[/C][C]1[/C][C]0.102[/C][C]0.477[/C][/ROW]
[ROW][C]COMP_HOURS_vrouwen[/C][C]0.313[/C][C]0.47[/C][C]0.102[/C][C]1[/C][C]0.64[/C][/ROW]
[ROW][C]RFC_HOURS_vrouwen[/C][C]0.339[/C][C]0.363[/C][C]0.477[/C][C]0.64[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=267327&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=267327&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
LFM_vrouwenBLOGS_vrouwenPRH_vrouwenCOMP_HOURS_vrouwenRFC_HOURS_vrouwen
LFM_vrouwen10.2050.2260.3130.339
BLOGS_vrouwen0.20510.0270.470.363
PRH_vrouwen0.2260.02710.1020.477
COMP_HOURS_vrouwen0.3130.470.10210.64
RFC_HOURS_vrouwen0.3390.3630.4770.641







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
LFM_vrouwen;BLOGS_vrouwen0.30280.31230.2047
p-value(8e-04)(5e-04)(0.001)
LFM_vrouwen;PRH_vrouwen0.38580.32210.2264
p-value(0)(3e-04)(3e-04)
LFM_vrouwen;COMP_HOURS_vrouwen0.42720.43760.3128
p-value(0)(0)(0)
LFM_vrouwen;RFC_HOURS_vrouwen0.52090.47740.339
p-value(0)(0)(0)
BLOGS_vrouwen;PRH_vrouwen0.05010.04080.0268
p-value(0.587)(0.6583)(0.6679)
BLOGS_vrouwen;COMP_HOURS_vrouwen0.65570.65380.4704
p-value(0)(0)(0)
BLOGS_vrouwen;RFC_HOURS_vrouwen0.48370.52170.3633
p-value(0)(0)(0)
PRH_vrouwen;COMP_HOURS_vrouwen0.21780.15250.102
p-value(0.0168)(0.0963)(0.104)
PRH_vrouwen;RFC_HOURS_vrouwen0.74010.64730.4771
p-value(0)(0)(0)
COMP_HOURS_vrouwen;RFC_HOURS_vrouwen0.81740.81690.6404
p-value(0)(0)(0)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
LFM_vrouwen;BLOGS_vrouwen & 0.3028 & 0.3123 & 0.2047 \tabularnewline
p-value & (8e-04) & (5e-04) & (0.001) \tabularnewline
LFM_vrouwen;PRH_vrouwen & 0.3858 & 0.3221 & 0.2264 \tabularnewline
p-value & (0) & (3e-04) & (3e-04) \tabularnewline
LFM_vrouwen;COMP_HOURS_vrouwen & 0.4272 & 0.4376 & 0.3128 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
LFM_vrouwen;RFC_HOURS_vrouwen & 0.5209 & 0.4774 & 0.339 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
BLOGS_vrouwen;PRH_vrouwen & 0.0501 & 0.0408 & 0.0268 \tabularnewline
p-value & (0.587) & (0.6583) & (0.6679) \tabularnewline
BLOGS_vrouwen;COMP_HOURS_vrouwen & 0.6557 & 0.6538 & 0.4704 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
BLOGS_vrouwen;RFC_HOURS_vrouwen & 0.4837 & 0.5217 & 0.3633 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
PRH_vrouwen;COMP_HOURS_vrouwen & 0.2178 & 0.1525 & 0.102 \tabularnewline
p-value & (0.0168) & (0.0963) & (0.104) \tabularnewline
PRH_vrouwen;RFC_HOURS_vrouwen & 0.7401 & 0.6473 & 0.4771 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
COMP_HOURS_vrouwen;RFC_HOURS_vrouwen & 0.8174 & 0.8169 & 0.6404 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=267327&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]LFM_vrouwen;BLOGS_vrouwen[/C][C]0.3028[/C][C]0.3123[/C][C]0.2047[/C][/ROW]
[ROW][C]p-value[/C][C](8e-04)[/C][C](5e-04)[/C][C](0.001)[/C][/ROW]
[ROW][C]LFM_vrouwen;PRH_vrouwen[/C][C]0.3858[/C][C]0.3221[/C][C]0.2264[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](3e-04)[/C][C](3e-04)[/C][/ROW]
[ROW][C]LFM_vrouwen;COMP_HOURS_vrouwen[/C][C]0.4272[/C][C]0.4376[/C][C]0.3128[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]LFM_vrouwen;RFC_HOURS_vrouwen[/C][C]0.5209[/C][C]0.4774[/C][C]0.339[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]BLOGS_vrouwen;PRH_vrouwen[/C][C]0.0501[/C][C]0.0408[/C][C]0.0268[/C][/ROW]
[ROW][C]p-value[/C][C](0.587)[/C][C](0.6583)[/C][C](0.6679)[/C][/ROW]
[ROW][C]BLOGS_vrouwen;COMP_HOURS_vrouwen[/C][C]0.6557[/C][C]0.6538[/C][C]0.4704[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]BLOGS_vrouwen;RFC_HOURS_vrouwen[/C][C]0.4837[/C][C]0.5217[/C][C]0.3633[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]PRH_vrouwen;COMP_HOURS_vrouwen[/C][C]0.2178[/C][C]0.1525[/C][C]0.102[/C][/ROW]
[ROW][C]p-value[/C][C](0.0168)[/C][C](0.0963)[/C][C](0.104)[/C][/ROW]
[ROW][C]PRH_vrouwen;RFC_HOURS_vrouwen[/C][C]0.7401[/C][C]0.6473[/C][C]0.4771[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]COMP_HOURS_vrouwen;RFC_HOURS_vrouwen[/C][C]0.8174[/C][C]0.8169[/C][C]0.6404[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=267327&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=267327&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
LFM_vrouwen;BLOGS_vrouwen0.30280.31230.2047
p-value(8e-04)(5e-04)(0.001)
LFM_vrouwen;PRH_vrouwen0.38580.32210.2264
p-value(0)(3e-04)(3e-04)
LFM_vrouwen;COMP_HOURS_vrouwen0.42720.43760.3128
p-value(0)(0)(0)
LFM_vrouwen;RFC_HOURS_vrouwen0.52090.47740.339
p-value(0)(0)(0)
BLOGS_vrouwen;PRH_vrouwen0.05010.04080.0268
p-value(0.587)(0.6583)(0.6679)
BLOGS_vrouwen;COMP_HOURS_vrouwen0.65570.65380.4704
p-value(0)(0)(0)
BLOGS_vrouwen;RFC_HOURS_vrouwen0.48370.52170.3633
p-value(0)(0)(0)
PRH_vrouwen;COMP_HOURS_vrouwen0.21780.15250.102
p-value(0.0168)(0.0963)(0.104)
PRH_vrouwen;RFC_HOURS_vrouwen0.74010.64730.4771
p-value(0)(0)(0)
COMP_HOURS_vrouwen;RFC_HOURS_vrouwen0.81740.81690.6404
p-value(0)(0)(0)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.80.80.8
0.020.90.80.8
0.030.90.80.8
0.040.90.80.8
0.050.90.80.8
0.060.90.80.8
0.070.90.80.8
0.080.90.80.8
0.090.90.80.8
0.10.90.90.8

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.8 & 0.8 & 0.8 \tabularnewline
0.02 & 0.9 & 0.8 & 0.8 \tabularnewline
0.03 & 0.9 & 0.8 & 0.8 \tabularnewline
0.04 & 0.9 & 0.8 & 0.8 \tabularnewline
0.05 & 0.9 & 0.8 & 0.8 \tabularnewline
0.06 & 0.9 & 0.8 & 0.8 \tabularnewline
0.07 & 0.9 & 0.8 & 0.8 \tabularnewline
0.08 & 0.9 & 0.8 & 0.8 \tabularnewline
0.09 & 0.9 & 0.8 & 0.8 \tabularnewline
0.1 & 0.9 & 0.9 & 0.8 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=267327&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.8[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.02[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.03[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.04[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.05[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.06[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.07[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.08[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.09[/C][C]0.9[/C][C]0.8[/C][C]0.8[/C][/ROW]
[ROW][C]0.1[/C][C]0.9[/C][C]0.9[/C][C]0.8[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=267327&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=267327&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.80.80.8
0.020.90.80.8
0.030.90.80.8
0.040.90.80.8
0.050.90.80.8
0.060.90.80.8
0.070.90.80.8
0.080.90.80.8
0.090.90.80.8
0.10.90.90.8



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
n
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')