Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 21 Dec 2014 21:55:42 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/21/t1419198964ume568shkf8qey4.htm/, Retrieved Fri, 01 Nov 2024 00:16:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=271384, Retrieved Fri, 01 Nov 2024 00:16:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsSimon Dewilde
Estimated Impact195
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2014-12-21 21:55:42] [1a08c6aa6bf9a3504070a6066c5cb670] [Current]
Feedback Forum

Post a new message
Dataseries X:
1,38
1,96
1,36
1,24
1,35
1,23
1,09
1,08
1,33
1,35
1,38
1,5
1,47
2,09
1,52
1,29
1,52
1,27
1,35
1,29
1,41
1,39
1,45
1,53
1,45
2,11
1,53
1,38
1,54
1,35
1,29
1,33
1,47
1,47
1,54
1,59
1,5
2
1,51
1,4
1,62
1,44
1,29
1,28
1,4
1,39
1,46
1,49
1,45
2,05
1,59
1,42
1,73
1,39
1,23
1,37
1,51
1,47
1,5
1,54
1,54
2,15
1,62
1,4
1,65
1,49
1,45
1,45
1,51
1,48
1,56
1,57
1,57
2,28
1,7
1,56
1,8
1,56
1,51
1,46
1,51
1,55
1,57
1,64
1,58
2,16
1,77
1,54
1,64
1,53
1,49
1,43
1,52
1,56
1,59
1,64




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271384&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271384&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271384&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.393421-3.83460.000113
2-0.185935-1.81230.036552
30.2839162.76730.003398
4-0.139211-1.35690.089021
50.008850.08630.465719
6-0.142209-1.38610.084483
70.0067340.06560.473904
8-0.130182-1.26890.103796
90.2632582.56590.005927
10-0.143458-1.39830.082646
11-0.364141-3.54920.000301
120.8509078.29360
13-0.325844-3.17590.001007
14-0.174817-1.70390.045834
150.267192.60420.005343
16-0.136045-1.3260.094009
170.0252610.24620.403025
18-0.107444-1.04720.148823
19-0.021409-0.20870.417578
20-0.104331-1.01690.155893
210.2287762.22980.014057
22-0.133212-1.29840.098649
23-0.307272-2.99490.00175
240.7104726.92480
25-0.26901-2.6220.005091
26-0.136106-1.32660.09391
270.2251122.19410.015333
28-0.103521-1.0090.157769
290.0038110.03710.485225
30-0.085868-0.83690.202365
31-0.018176-0.17720.42988
32-0.086797-0.8460.199841
330.1793691.74830.041824
34-0.098176-0.95690.170524
35-0.2597-2.53120.006504
360.5780815.63440
37-0.213465-2.08060.020081
38-0.115471-1.12550.131612
390.194831.8990.030301
40-0.083212-0.81110.209682
410.0087460.08520.466123
42-0.083958-0.81830.207612
43-0.003619-0.03530.485969
44-0.059418-0.57910.281935
450.1178791.14890.126732
46-0.080052-0.78030.218591
47-0.20836-2.03080.022533
480.4766224.64555e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.393421 & -3.8346 & 0.000113 \tabularnewline
2 & -0.185935 & -1.8123 & 0.036552 \tabularnewline
3 & 0.283916 & 2.7673 & 0.003398 \tabularnewline
4 & -0.139211 & -1.3569 & 0.089021 \tabularnewline
5 & 0.00885 & 0.0863 & 0.465719 \tabularnewline
6 & -0.142209 & -1.3861 & 0.084483 \tabularnewline
7 & 0.006734 & 0.0656 & 0.473904 \tabularnewline
8 & -0.130182 & -1.2689 & 0.103796 \tabularnewline
9 & 0.263258 & 2.5659 & 0.005927 \tabularnewline
10 & -0.143458 & -1.3983 & 0.082646 \tabularnewline
11 & -0.364141 & -3.5492 & 0.000301 \tabularnewline
12 & 0.850907 & 8.2936 & 0 \tabularnewline
13 & -0.325844 & -3.1759 & 0.001007 \tabularnewline
14 & -0.174817 & -1.7039 & 0.045834 \tabularnewline
15 & 0.26719 & 2.6042 & 0.005343 \tabularnewline
16 & -0.136045 & -1.326 & 0.094009 \tabularnewline
17 & 0.025261 & 0.2462 & 0.403025 \tabularnewline
18 & -0.107444 & -1.0472 & 0.148823 \tabularnewline
19 & -0.021409 & -0.2087 & 0.417578 \tabularnewline
20 & -0.104331 & -1.0169 & 0.155893 \tabularnewline
21 & 0.228776 & 2.2298 & 0.014057 \tabularnewline
22 & -0.133212 & -1.2984 & 0.098649 \tabularnewline
23 & -0.307272 & -2.9949 & 0.00175 \tabularnewline
24 & 0.710472 & 6.9248 & 0 \tabularnewline
25 & -0.26901 & -2.622 & 0.005091 \tabularnewline
26 & -0.136106 & -1.3266 & 0.09391 \tabularnewline
27 & 0.225112 & 2.1941 & 0.015333 \tabularnewline
28 & -0.103521 & -1.009 & 0.157769 \tabularnewline
29 & 0.003811 & 0.0371 & 0.485225 \tabularnewline
30 & -0.085868 & -0.8369 & 0.202365 \tabularnewline
31 & -0.018176 & -0.1772 & 0.42988 \tabularnewline
32 & -0.086797 & -0.846 & 0.199841 \tabularnewline
33 & 0.179369 & 1.7483 & 0.041824 \tabularnewline
34 & -0.098176 & -0.9569 & 0.170524 \tabularnewline
35 & -0.2597 & -2.5312 & 0.006504 \tabularnewline
36 & 0.578081 & 5.6344 & 0 \tabularnewline
37 & -0.213465 & -2.0806 & 0.020081 \tabularnewline
38 & -0.115471 & -1.1255 & 0.131612 \tabularnewline
39 & 0.19483 & 1.899 & 0.030301 \tabularnewline
40 & -0.083212 & -0.8111 & 0.209682 \tabularnewline
41 & 0.008746 & 0.0852 & 0.466123 \tabularnewline
42 & -0.083958 & -0.8183 & 0.207612 \tabularnewline
43 & -0.003619 & -0.0353 & 0.485969 \tabularnewline
44 & -0.059418 & -0.5791 & 0.281935 \tabularnewline
45 & 0.117879 & 1.1489 & 0.126732 \tabularnewline
46 & -0.080052 & -0.7803 & 0.218591 \tabularnewline
47 & -0.20836 & -2.0308 & 0.022533 \tabularnewline
48 & 0.476622 & 4.6455 & 5e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271384&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.393421[/C][C]-3.8346[/C][C]0.000113[/C][/ROW]
[ROW][C]2[/C][C]-0.185935[/C][C]-1.8123[/C][C]0.036552[/C][/ROW]
[ROW][C]3[/C][C]0.283916[/C][C]2.7673[/C][C]0.003398[/C][/ROW]
[ROW][C]4[/C][C]-0.139211[/C][C]-1.3569[/C][C]0.089021[/C][/ROW]
[ROW][C]5[/C][C]0.00885[/C][C]0.0863[/C][C]0.465719[/C][/ROW]
[ROW][C]6[/C][C]-0.142209[/C][C]-1.3861[/C][C]0.084483[/C][/ROW]
[ROW][C]7[/C][C]0.006734[/C][C]0.0656[/C][C]0.473904[/C][/ROW]
[ROW][C]8[/C][C]-0.130182[/C][C]-1.2689[/C][C]0.103796[/C][/ROW]
[ROW][C]9[/C][C]0.263258[/C][C]2.5659[/C][C]0.005927[/C][/ROW]
[ROW][C]10[/C][C]-0.143458[/C][C]-1.3983[/C][C]0.082646[/C][/ROW]
[ROW][C]11[/C][C]-0.364141[/C][C]-3.5492[/C][C]0.000301[/C][/ROW]
[ROW][C]12[/C][C]0.850907[/C][C]8.2936[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.325844[/C][C]-3.1759[/C][C]0.001007[/C][/ROW]
[ROW][C]14[/C][C]-0.174817[/C][C]-1.7039[/C][C]0.045834[/C][/ROW]
[ROW][C]15[/C][C]0.26719[/C][C]2.6042[/C][C]0.005343[/C][/ROW]
[ROW][C]16[/C][C]-0.136045[/C][C]-1.326[/C][C]0.094009[/C][/ROW]
[ROW][C]17[/C][C]0.025261[/C][C]0.2462[/C][C]0.403025[/C][/ROW]
[ROW][C]18[/C][C]-0.107444[/C][C]-1.0472[/C][C]0.148823[/C][/ROW]
[ROW][C]19[/C][C]-0.021409[/C][C]-0.2087[/C][C]0.417578[/C][/ROW]
[ROW][C]20[/C][C]-0.104331[/C][C]-1.0169[/C][C]0.155893[/C][/ROW]
[ROW][C]21[/C][C]0.228776[/C][C]2.2298[/C][C]0.014057[/C][/ROW]
[ROW][C]22[/C][C]-0.133212[/C][C]-1.2984[/C][C]0.098649[/C][/ROW]
[ROW][C]23[/C][C]-0.307272[/C][C]-2.9949[/C][C]0.00175[/C][/ROW]
[ROW][C]24[/C][C]0.710472[/C][C]6.9248[/C][C]0[/C][/ROW]
[ROW][C]25[/C][C]-0.26901[/C][C]-2.622[/C][C]0.005091[/C][/ROW]
[ROW][C]26[/C][C]-0.136106[/C][C]-1.3266[/C][C]0.09391[/C][/ROW]
[ROW][C]27[/C][C]0.225112[/C][C]2.1941[/C][C]0.015333[/C][/ROW]
[ROW][C]28[/C][C]-0.103521[/C][C]-1.009[/C][C]0.157769[/C][/ROW]
[ROW][C]29[/C][C]0.003811[/C][C]0.0371[/C][C]0.485225[/C][/ROW]
[ROW][C]30[/C][C]-0.085868[/C][C]-0.8369[/C][C]0.202365[/C][/ROW]
[ROW][C]31[/C][C]-0.018176[/C][C]-0.1772[/C][C]0.42988[/C][/ROW]
[ROW][C]32[/C][C]-0.086797[/C][C]-0.846[/C][C]0.199841[/C][/ROW]
[ROW][C]33[/C][C]0.179369[/C][C]1.7483[/C][C]0.041824[/C][/ROW]
[ROW][C]34[/C][C]-0.098176[/C][C]-0.9569[/C][C]0.170524[/C][/ROW]
[ROW][C]35[/C][C]-0.2597[/C][C]-2.5312[/C][C]0.006504[/C][/ROW]
[ROW][C]36[/C][C]0.578081[/C][C]5.6344[/C][C]0[/C][/ROW]
[ROW][C]37[/C][C]-0.213465[/C][C]-2.0806[/C][C]0.020081[/C][/ROW]
[ROW][C]38[/C][C]-0.115471[/C][C]-1.1255[/C][C]0.131612[/C][/ROW]
[ROW][C]39[/C][C]0.19483[/C][C]1.899[/C][C]0.030301[/C][/ROW]
[ROW][C]40[/C][C]-0.083212[/C][C]-0.8111[/C][C]0.209682[/C][/ROW]
[ROW][C]41[/C][C]0.008746[/C][C]0.0852[/C][C]0.466123[/C][/ROW]
[ROW][C]42[/C][C]-0.083958[/C][C]-0.8183[/C][C]0.207612[/C][/ROW]
[ROW][C]43[/C][C]-0.003619[/C][C]-0.0353[/C][C]0.485969[/C][/ROW]
[ROW][C]44[/C][C]-0.059418[/C][C]-0.5791[/C][C]0.281935[/C][/ROW]
[ROW][C]45[/C][C]0.117879[/C][C]1.1489[/C][C]0.126732[/C][/ROW]
[ROW][C]46[/C][C]-0.080052[/C][C]-0.7803[/C][C]0.218591[/C][/ROW]
[ROW][C]47[/C][C]-0.20836[/C][C]-2.0308[/C][C]0.022533[/C][/ROW]
[ROW][C]48[/C][C]0.476622[/C][C]4.6455[/C][C]5e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271384&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271384&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.393421-3.83460.000113
2-0.185935-1.81230.036552
30.2839162.76730.003398
4-0.139211-1.35690.089021
50.008850.08630.465719
6-0.142209-1.38610.084483
70.0067340.06560.473904
8-0.130182-1.26890.103796
90.2632582.56590.005927
10-0.143458-1.39830.082646
11-0.364141-3.54920.000301
120.8509078.29360
13-0.325844-3.17590.001007
14-0.174817-1.70390.045834
150.267192.60420.005343
16-0.136045-1.3260.094009
170.0252610.24620.403025
18-0.107444-1.04720.148823
19-0.021409-0.20870.417578
20-0.104331-1.01690.155893
210.2287762.22980.014057
22-0.133212-1.29840.098649
23-0.307272-2.99490.00175
240.7104726.92480
25-0.26901-2.6220.005091
26-0.136106-1.32660.09391
270.2251122.19410.015333
28-0.103521-1.0090.157769
290.0038110.03710.485225
30-0.085868-0.83690.202365
31-0.018176-0.17720.42988
32-0.086797-0.8460.199841
330.1793691.74830.041824
34-0.098176-0.95690.170524
35-0.2597-2.53120.006504
360.5780815.63440
37-0.213465-2.08060.020081
38-0.115471-1.12550.131612
390.194831.8990.030301
40-0.083212-0.81110.209682
410.0087460.08520.466123
42-0.083958-0.81830.207612
43-0.003619-0.03530.485969
44-0.059418-0.57910.281935
450.1178791.14890.126732
46-0.080052-0.78030.218591
47-0.20836-2.03080.022533
480.4766224.64555e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.393421-3.83460.000113
2-0.403109-3.9298.1e-05
30.0320470.31240.377727
4-0.06393-0.62310.267351
50.0353690.34470.365528
6-0.273567-2.66640.004506
7-0.223922-2.18250.015768
8-0.507216-4.94372e-06
90.0214590.20920.417385
10-0.215618-2.10160.019118
11-0.749693-7.30710
120.2582092.51670.006761
13-0.024386-0.23770.406318
140.0333160.32470.373054
15-0.102793-1.00190.159467
16-0.111344-1.08520.140279
17-0.084768-0.82620.205375
180.0652960.63640.263016
19-0.039637-0.38630.350056
200.0524320.5110.305253
21-0.043453-0.42350.336433
22-0.127439-1.24210.108625
23-0.022841-0.22260.412152
24-0.072608-0.70770.240435
25-0.054416-0.53040.298541
260.0543180.52940.298872
27-0.075714-0.7380.231177
280.0874280.85210.19814
29-0.08795-0.85720.196738
30-0.110675-1.07870.141721
31-0.027954-0.27250.392931
320.0209590.20430.419283
33-0.103147-1.00540.15864
340.0571660.55720.289355
35-0.075395-0.73490.232117
36-0.0646-0.62960.265221
37-0.046957-0.45770.324114
38-0.129753-1.26470.104541
39-0.044627-0.4350.332285
40-0.089235-0.86980.193314
41-0.045208-0.44060.330239
42-0.072869-0.71020.239647
43-0.06101-0.59460.276746
44-0.022034-0.21480.415205
45-0.03313-0.32290.373735
46-0.12979-1.2650.104477
47-0.067296-0.65590.256731
48-0.010988-0.10710.457468

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.393421 & -3.8346 & 0.000113 \tabularnewline
2 & -0.403109 & -3.929 & 8.1e-05 \tabularnewline
3 & 0.032047 & 0.3124 & 0.377727 \tabularnewline
4 & -0.06393 & -0.6231 & 0.267351 \tabularnewline
5 & 0.035369 & 0.3447 & 0.365528 \tabularnewline
6 & -0.273567 & -2.6664 & 0.004506 \tabularnewline
7 & -0.223922 & -2.1825 & 0.015768 \tabularnewline
8 & -0.507216 & -4.9437 & 2e-06 \tabularnewline
9 & 0.021459 & 0.2092 & 0.417385 \tabularnewline
10 & -0.215618 & -2.1016 & 0.019118 \tabularnewline
11 & -0.749693 & -7.3071 & 0 \tabularnewline
12 & 0.258209 & 2.5167 & 0.006761 \tabularnewline
13 & -0.024386 & -0.2377 & 0.406318 \tabularnewline
14 & 0.033316 & 0.3247 & 0.373054 \tabularnewline
15 & -0.102793 & -1.0019 & 0.159467 \tabularnewline
16 & -0.111344 & -1.0852 & 0.140279 \tabularnewline
17 & -0.084768 & -0.8262 & 0.205375 \tabularnewline
18 & 0.065296 & 0.6364 & 0.263016 \tabularnewline
19 & -0.039637 & -0.3863 & 0.350056 \tabularnewline
20 & 0.052432 & 0.511 & 0.305253 \tabularnewline
21 & -0.043453 & -0.4235 & 0.336433 \tabularnewline
22 & -0.127439 & -1.2421 & 0.108625 \tabularnewline
23 & -0.022841 & -0.2226 & 0.412152 \tabularnewline
24 & -0.072608 & -0.7077 & 0.240435 \tabularnewline
25 & -0.054416 & -0.5304 & 0.298541 \tabularnewline
26 & 0.054318 & 0.5294 & 0.298872 \tabularnewline
27 & -0.075714 & -0.738 & 0.231177 \tabularnewline
28 & 0.087428 & 0.8521 & 0.19814 \tabularnewline
29 & -0.08795 & -0.8572 & 0.196738 \tabularnewline
30 & -0.110675 & -1.0787 & 0.141721 \tabularnewline
31 & -0.027954 & -0.2725 & 0.392931 \tabularnewline
32 & 0.020959 & 0.2043 & 0.419283 \tabularnewline
33 & -0.103147 & -1.0054 & 0.15864 \tabularnewline
34 & 0.057166 & 0.5572 & 0.289355 \tabularnewline
35 & -0.075395 & -0.7349 & 0.232117 \tabularnewline
36 & -0.0646 & -0.6296 & 0.265221 \tabularnewline
37 & -0.046957 & -0.4577 & 0.324114 \tabularnewline
38 & -0.129753 & -1.2647 & 0.104541 \tabularnewline
39 & -0.044627 & -0.435 & 0.332285 \tabularnewline
40 & -0.089235 & -0.8698 & 0.193314 \tabularnewline
41 & -0.045208 & -0.4406 & 0.330239 \tabularnewline
42 & -0.072869 & -0.7102 & 0.239647 \tabularnewline
43 & -0.06101 & -0.5946 & 0.276746 \tabularnewline
44 & -0.022034 & -0.2148 & 0.415205 \tabularnewline
45 & -0.03313 & -0.3229 & 0.373735 \tabularnewline
46 & -0.12979 & -1.265 & 0.104477 \tabularnewline
47 & -0.067296 & -0.6559 & 0.256731 \tabularnewline
48 & -0.010988 & -0.1071 & 0.457468 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271384&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.393421[/C][C]-3.8346[/C][C]0.000113[/C][/ROW]
[ROW][C]2[/C][C]-0.403109[/C][C]-3.929[/C][C]8.1e-05[/C][/ROW]
[ROW][C]3[/C][C]0.032047[/C][C]0.3124[/C][C]0.377727[/C][/ROW]
[ROW][C]4[/C][C]-0.06393[/C][C]-0.6231[/C][C]0.267351[/C][/ROW]
[ROW][C]5[/C][C]0.035369[/C][C]0.3447[/C][C]0.365528[/C][/ROW]
[ROW][C]6[/C][C]-0.273567[/C][C]-2.6664[/C][C]0.004506[/C][/ROW]
[ROW][C]7[/C][C]-0.223922[/C][C]-2.1825[/C][C]0.015768[/C][/ROW]
[ROW][C]8[/C][C]-0.507216[/C][C]-4.9437[/C][C]2e-06[/C][/ROW]
[ROW][C]9[/C][C]0.021459[/C][C]0.2092[/C][C]0.417385[/C][/ROW]
[ROW][C]10[/C][C]-0.215618[/C][C]-2.1016[/C][C]0.019118[/C][/ROW]
[ROW][C]11[/C][C]-0.749693[/C][C]-7.3071[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.258209[/C][C]2.5167[/C][C]0.006761[/C][/ROW]
[ROW][C]13[/C][C]-0.024386[/C][C]-0.2377[/C][C]0.406318[/C][/ROW]
[ROW][C]14[/C][C]0.033316[/C][C]0.3247[/C][C]0.373054[/C][/ROW]
[ROW][C]15[/C][C]-0.102793[/C][C]-1.0019[/C][C]0.159467[/C][/ROW]
[ROW][C]16[/C][C]-0.111344[/C][C]-1.0852[/C][C]0.140279[/C][/ROW]
[ROW][C]17[/C][C]-0.084768[/C][C]-0.8262[/C][C]0.205375[/C][/ROW]
[ROW][C]18[/C][C]0.065296[/C][C]0.6364[/C][C]0.263016[/C][/ROW]
[ROW][C]19[/C][C]-0.039637[/C][C]-0.3863[/C][C]0.350056[/C][/ROW]
[ROW][C]20[/C][C]0.052432[/C][C]0.511[/C][C]0.305253[/C][/ROW]
[ROW][C]21[/C][C]-0.043453[/C][C]-0.4235[/C][C]0.336433[/C][/ROW]
[ROW][C]22[/C][C]-0.127439[/C][C]-1.2421[/C][C]0.108625[/C][/ROW]
[ROW][C]23[/C][C]-0.022841[/C][C]-0.2226[/C][C]0.412152[/C][/ROW]
[ROW][C]24[/C][C]-0.072608[/C][C]-0.7077[/C][C]0.240435[/C][/ROW]
[ROW][C]25[/C][C]-0.054416[/C][C]-0.5304[/C][C]0.298541[/C][/ROW]
[ROW][C]26[/C][C]0.054318[/C][C]0.5294[/C][C]0.298872[/C][/ROW]
[ROW][C]27[/C][C]-0.075714[/C][C]-0.738[/C][C]0.231177[/C][/ROW]
[ROW][C]28[/C][C]0.087428[/C][C]0.8521[/C][C]0.19814[/C][/ROW]
[ROW][C]29[/C][C]-0.08795[/C][C]-0.8572[/C][C]0.196738[/C][/ROW]
[ROW][C]30[/C][C]-0.110675[/C][C]-1.0787[/C][C]0.141721[/C][/ROW]
[ROW][C]31[/C][C]-0.027954[/C][C]-0.2725[/C][C]0.392931[/C][/ROW]
[ROW][C]32[/C][C]0.020959[/C][C]0.2043[/C][C]0.419283[/C][/ROW]
[ROW][C]33[/C][C]-0.103147[/C][C]-1.0054[/C][C]0.15864[/C][/ROW]
[ROW][C]34[/C][C]0.057166[/C][C]0.5572[/C][C]0.289355[/C][/ROW]
[ROW][C]35[/C][C]-0.075395[/C][C]-0.7349[/C][C]0.232117[/C][/ROW]
[ROW][C]36[/C][C]-0.0646[/C][C]-0.6296[/C][C]0.265221[/C][/ROW]
[ROW][C]37[/C][C]-0.046957[/C][C]-0.4577[/C][C]0.324114[/C][/ROW]
[ROW][C]38[/C][C]-0.129753[/C][C]-1.2647[/C][C]0.104541[/C][/ROW]
[ROW][C]39[/C][C]-0.044627[/C][C]-0.435[/C][C]0.332285[/C][/ROW]
[ROW][C]40[/C][C]-0.089235[/C][C]-0.8698[/C][C]0.193314[/C][/ROW]
[ROW][C]41[/C][C]-0.045208[/C][C]-0.4406[/C][C]0.330239[/C][/ROW]
[ROW][C]42[/C][C]-0.072869[/C][C]-0.7102[/C][C]0.239647[/C][/ROW]
[ROW][C]43[/C][C]-0.06101[/C][C]-0.5946[/C][C]0.276746[/C][/ROW]
[ROW][C]44[/C][C]-0.022034[/C][C]-0.2148[/C][C]0.415205[/C][/ROW]
[ROW][C]45[/C][C]-0.03313[/C][C]-0.3229[/C][C]0.373735[/C][/ROW]
[ROW][C]46[/C][C]-0.12979[/C][C]-1.265[/C][C]0.104477[/C][/ROW]
[ROW][C]47[/C][C]-0.067296[/C][C]-0.6559[/C][C]0.256731[/C][/ROW]
[ROW][C]48[/C][C]-0.010988[/C][C]-0.1071[/C][C]0.457468[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271384&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271384&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.393421-3.83460.000113
2-0.403109-3.9298.1e-05
30.0320470.31240.377727
4-0.06393-0.62310.267351
50.0353690.34470.365528
6-0.273567-2.66640.004506
7-0.223922-2.18250.015768
8-0.507216-4.94372e-06
90.0214590.20920.417385
10-0.215618-2.10160.019118
11-0.749693-7.30710
120.2582092.51670.006761
13-0.024386-0.23770.406318
140.0333160.32470.373054
15-0.102793-1.00190.159467
16-0.111344-1.08520.140279
17-0.084768-0.82620.205375
180.0652960.63640.263016
19-0.039637-0.38630.350056
200.0524320.5110.305253
21-0.043453-0.42350.336433
22-0.127439-1.24210.108625
23-0.022841-0.22260.412152
24-0.072608-0.70770.240435
25-0.054416-0.53040.298541
260.0543180.52940.298872
27-0.075714-0.7380.231177
280.0874280.85210.19814
29-0.08795-0.85720.196738
30-0.110675-1.07870.141721
31-0.027954-0.27250.392931
320.0209590.20430.419283
33-0.103147-1.00540.15864
340.0571660.55720.289355
35-0.075395-0.73490.232117
36-0.0646-0.62960.265221
37-0.046957-0.45770.324114
38-0.129753-1.26470.104541
39-0.044627-0.4350.332285
40-0.089235-0.86980.193314
41-0.045208-0.44060.330239
42-0.072869-0.71020.239647
43-0.06101-0.59460.276746
44-0.022034-0.21480.415205
45-0.03313-0.32290.373735
46-0.12979-1.2650.104477
47-0.067296-0.65590.256731
48-0.010988-0.10710.457468



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')