Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 23 Dec 2016 23:23:22 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14825318084yja6y1odobzcnc.htm/, Retrieved Sun, 10 Nov 2024 19:45:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=303057, Retrieved Sun, 10 Nov 2024 19:45:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact111
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2016-12-23 22:23:22] [c6ea875f0603e0876d03f43aca979571] [Current]
Feedback Forum

Post a new message
Dataseries X:
1565
1460
1780
1990
2460
2155
2290
2685
2880
3680
3110
3735
3420
2620
3485
2920
3530
3600
3580
3580
4440
5030
4965
4765
4290
2990
5600
4135
5280
4275
3640
4190
4260
5020
6380
4355
5435
4520
4350
4395
5255
4515
4460
5230
6155
6320
5645
5940
6530
4250
4155
4625
4075
5135
4375
4845
6470
6670
6110
5805
4790
4750
3805
3890
3485
3945
3730
3850
5155
5615
6120
5805
5010
4520
4180
3825
4145
3720
3525
4375
5020
4790
5180
4700
4110
3380
3820
3220
2605
2930
2360
2935
3380
4495
3960
3440
3400
2825
2555
2355
2545
2715
2535
2740
3050
3695
4270
3480
3490
3400
3445
3090
3250
3140
3100
3680




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303057&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=303057&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303057&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[92])
804375-------
815020-------
824790-------
835180-------
844700-------
854110-------
863380-------
873820-------
883220-------
892605-------
902930-------
912360-------
922935-------
9333803950.66712755.12115146.21310.17470.95210.03980.9521
9444954099.68362837.96875361.39850.26960.86820.14180.9648
9539604310.86492920.70525701.02450.31040.39760.11020.9738
9634403950.71112390.10615511.31610.26060.49530.17330.899
9734003520.14731879.79345160.50120.44290.53810.24050.7578
9828252788.88921041.35654536.42190.48380.24650.25370.4349
9925552894.84731055.70924733.98550.35860.52970.16210.4829
10023552612.5726697.10284528.04240.39610.52350.26710.3707
10125452559.3904565.4734553.30780.49440.57960.48210.356
10227152645.7177582.98644708.4490.47380.53810.39350.3917
10325352291.7385164.76954418.70740.41130.34830.47490.2767
10427402843.9078655.90215031.91350.46290.6090.46750.4675
10530503805.72751448.79126162.66370.26490.81230.63830.7655
10636954014.02351577.43956450.60750.39870.7810.34940.8073
10742704200.66141674.91656726.40630.47850.65260.57410.837
10834803843.10571223.64846462.5630.39290.37470.61850.7516
10934903424.4466732.39316116.50020.4810.48390.50710.6392
11034002686.6506-80.96145454.26260.30670.28470.4610.4302
11134452797.9897-39.09175635.07120.32740.33870.56670.4623
11230902518.0451-382.49025418.58040.34960.26550.54390.3891
11332502465.0863-496.95075427.12340.30170.33960.47890.3779
11431402554.5125-464.54655573.57150.35190.32580.45850.4024
11531002201.9301-870.96855274.82870.28340.27480.41590.32
11636802755.7449-368.26365879.75340.2810.41450.50390.4552

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[92]) \tabularnewline
80 & 4375 & - & - & - & - & - & - & - \tabularnewline
81 & 5020 & - & - & - & - & - & - & - \tabularnewline
82 & 4790 & - & - & - & - & - & - & - \tabularnewline
83 & 5180 & - & - & - & - & - & - & - \tabularnewline
84 & 4700 & - & - & - & - & - & - & - \tabularnewline
85 & 4110 & - & - & - & - & - & - & - \tabularnewline
86 & 3380 & - & - & - & - & - & - & - \tabularnewline
87 & 3820 & - & - & - & - & - & - & - \tabularnewline
88 & 3220 & - & - & - & - & - & - & - \tabularnewline
89 & 2605 & - & - & - & - & - & - & - \tabularnewline
90 & 2930 & - & - & - & - & - & - & - \tabularnewline
91 & 2360 & - & - & - & - & - & - & - \tabularnewline
92 & 2935 & - & - & - & - & - & - & - \tabularnewline
93 & 3380 & 3950.6671 & 2755.1211 & 5146.2131 & 0.1747 & 0.9521 & 0.0398 & 0.9521 \tabularnewline
94 & 4495 & 4099.6836 & 2837.9687 & 5361.3985 & 0.2696 & 0.8682 & 0.1418 & 0.9648 \tabularnewline
95 & 3960 & 4310.8649 & 2920.7052 & 5701.0245 & 0.3104 & 0.3976 & 0.1102 & 0.9738 \tabularnewline
96 & 3440 & 3950.7111 & 2390.1061 & 5511.3161 & 0.2606 & 0.4953 & 0.1733 & 0.899 \tabularnewline
97 & 3400 & 3520.1473 & 1879.7934 & 5160.5012 & 0.4429 & 0.5381 & 0.2405 & 0.7578 \tabularnewline
98 & 2825 & 2788.8892 & 1041.3565 & 4536.4219 & 0.4838 & 0.2465 & 0.2537 & 0.4349 \tabularnewline
99 & 2555 & 2894.8473 & 1055.7092 & 4733.9855 & 0.3586 & 0.5297 & 0.1621 & 0.4829 \tabularnewline
100 & 2355 & 2612.5726 & 697.1028 & 4528.0424 & 0.3961 & 0.5235 & 0.2671 & 0.3707 \tabularnewline
101 & 2545 & 2559.3904 & 565.473 & 4553.3078 & 0.4944 & 0.5796 & 0.4821 & 0.356 \tabularnewline
102 & 2715 & 2645.7177 & 582.9864 & 4708.449 & 0.4738 & 0.5381 & 0.3935 & 0.3917 \tabularnewline
103 & 2535 & 2291.7385 & 164.7695 & 4418.7074 & 0.4113 & 0.3483 & 0.4749 & 0.2767 \tabularnewline
104 & 2740 & 2843.9078 & 655.9021 & 5031.9135 & 0.4629 & 0.609 & 0.4675 & 0.4675 \tabularnewline
105 & 3050 & 3805.7275 & 1448.7912 & 6162.6637 & 0.2649 & 0.8123 & 0.6383 & 0.7655 \tabularnewline
106 & 3695 & 4014.0235 & 1577.4395 & 6450.6075 & 0.3987 & 0.781 & 0.3494 & 0.8073 \tabularnewline
107 & 4270 & 4200.6614 & 1674.9165 & 6726.4063 & 0.4785 & 0.6526 & 0.5741 & 0.837 \tabularnewline
108 & 3480 & 3843.1057 & 1223.6484 & 6462.563 & 0.3929 & 0.3747 & 0.6185 & 0.7516 \tabularnewline
109 & 3490 & 3424.4466 & 732.3931 & 6116.5002 & 0.481 & 0.4839 & 0.5071 & 0.6392 \tabularnewline
110 & 3400 & 2686.6506 & -80.9614 & 5454.2626 & 0.3067 & 0.2847 & 0.461 & 0.4302 \tabularnewline
111 & 3445 & 2797.9897 & -39.0917 & 5635.0712 & 0.3274 & 0.3387 & 0.5667 & 0.4623 \tabularnewline
112 & 3090 & 2518.0451 & -382.4902 & 5418.5804 & 0.3496 & 0.2655 & 0.5439 & 0.3891 \tabularnewline
113 & 3250 & 2465.0863 & -496.9507 & 5427.1234 & 0.3017 & 0.3396 & 0.4789 & 0.3779 \tabularnewline
114 & 3140 & 2554.5125 & -464.5465 & 5573.5715 & 0.3519 & 0.3258 & 0.4585 & 0.4024 \tabularnewline
115 & 3100 & 2201.9301 & -870.9685 & 5274.8287 & 0.2834 & 0.2748 & 0.4159 & 0.32 \tabularnewline
116 & 3680 & 2755.7449 & -368.2636 & 5879.7534 & 0.281 & 0.4145 & 0.5039 & 0.4552 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303057&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[92])[/C][/ROW]
[ROW][C]80[/C][C]4375[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]81[/C][C]5020[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]82[/C][C]4790[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]83[/C][C]5180[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]84[/C][C]4700[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]85[/C][C]4110[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]86[/C][C]3380[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]87[/C][C]3820[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]88[/C][C]3220[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]89[/C][C]2605[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]90[/C][C]2930[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]2360[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]2935[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]3380[/C][C]3950.6671[/C][C]2755.1211[/C][C]5146.2131[/C][C]0.1747[/C][C]0.9521[/C][C]0.0398[/C][C]0.9521[/C][/ROW]
[ROW][C]94[/C][C]4495[/C][C]4099.6836[/C][C]2837.9687[/C][C]5361.3985[/C][C]0.2696[/C][C]0.8682[/C][C]0.1418[/C][C]0.9648[/C][/ROW]
[ROW][C]95[/C][C]3960[/C][C]4310.8649[/C][C]2920.7052[/C][C]5701.0245[/C][C]0.3104[/C][C]0.3976[/C][C]0.1102[/C][C]0.9738[/C][/ROW]
[ROW][C]96[/C][C]3440[/C][C]3950.7111[/C][C]2390.1061[/C][C]5511.3161[/C][C]0.2606[/C][C]0.4953[/C][C]0.1733[/C][C]0.899[/C][/ROW]
[ROW][C]97[/C][C]3400[/C][C]3520.1473[/C][C]1879.7934[/C][C]5160.5012[/C][C]0.4429[/C][C]0.5381[/C][C]0.2405[/C][C]0.7578[/C][/ROW]
[ROW][C]98[/C][C]2825[/C][C]2788.8892[/C][C]1041.3565[/C][C]4536.4219[/C][C]0.4838[/C][C]0.2465[/C][C]0.2537[/C][C]0.4349[/C][/ROW]
[ROW][C]99[/C][C]2555[/C][C]2894.8473[/C][C]1055.7092[/C][C]4733.9855[/C][C]0.3586[/C][C]0.5297[/C][C]0.1621[/C][C]0.4829[/C][/ROW]
[ROW][C]100[/C][C]2355[/C][C]2612.5726[/C][C]697.1028[/C][C]4528.0424[/C][C]0.3961[/C][C]0.5235[/C][C]0.2671[/C][C]0.3707[/C][/ROW]
[ROW][C]101[/C][C]2545[/C][C]2559.3904[/C][C]565.473[/C][C]4553.3078[/C][C]0.4944[/C][C]0.5796[/C][C]0.4821[/C][C]0.356[/C][/ROW]
[ROW][C]102[/C][C]2715[/C][C]2645.7177[/C][C]582.9864[/C][C]4708.449[/C][C]0.4738[/C][C]0.5381[/C][C]0.3935[/C][C]0.3917[/C][/ROW]
[ROW][C]103[/C][C]2535[/C][C]2291.7385[/C][C]164.7695[/C][C]4418.7074[/C][C]0.4113[/C][C]0.3483[/C][C]0.4749[/C][C]0.2767[/C][/ROW]
[ROW][C]104[/C][C]2740[/C][C]2843.9078[/C][C]655.9021[/C][C]5031.9135[/C][C]0.4629[/C][C]0.609[/C][C]0.4675[/C][C]0.4675[/C][/ROW]
[ROW][C]105[/C][C]3050[/C][C]3805.7275[/C][C]1448.7912[/C][C]6162.6637[/C][C]0.2649[/C][C]0.8123[/C][C]0.6383[/C][C]0.7655[/C][/ROW]
[ROW][C]106[/C][C]3695[/C][C]4014.0235[/C][C]1577.4395[/C][C]6450.6075[/C][C]0.3987[/C][C]0.781[/C][C]0.3494[/C][C]0.8073[/C][/ROW]
[ROW][C]107[/C][C]4270[/C][C]4200.6614[/C][C]1674.9165[/C][C]6726.4063[/C][C]0.4785[/C][C]0.6526[/C][C]0.5741[/C][C]0.837[/C][/ROW]
[ROW][C]108[/C][C]3480[/C][C]3843.1057[/C][C]1223.6484[/C][C]6462.563[/C][C]0.3929[/C][C]0.3747[/C][C]0.6185[/C][C]0.7516[/C][/ROW]
[ROW][C]109[/C][C]3490[/C][C]3424.4466[/C][C]732.3931[/C][C]6116.5002[/C][C]0.481[/C][C]0.4839[/C][C]0.5071[/C][C]0.6392[/C][/ROW]
[ROW][C]110[/C][C]3400[/C][C]2686.6506[/C][C]-80.9614[/C][C]5454.2626[/C][C]0.3067[/C][C]0.2847[/C][C]0.461[/C][C]0.4302[/C][/ROW]
[ROW][C]111[/C][C]3445[/C][C]2797.9897[/C][C]-39.0917[/C][C]5635.0712[/C][C]0.3274[/C][C]0.3387[/C][C]0.5667[/C][C]0.4623[/C][/ROW]
[ROW][C]112[/C][C]3090[/C][C]2518.0451[/C][C]-382.4902[/C][C]5418.5804[/C][C]0.3496[/C][C]0.2655[/C][C]0.5439[/C][C]0.3891[/C][/ROW]
[ROW][C]113[/C][C]3250[/C][C]2465.0863[/C][C]-496.9507[/C][C]5427.1234[/C][C]0.3017[/C][C]0.3396[/C][C]0.4789[/C][C]0.3779[/C][/ROW]
[ROW][C]114[/C][C]3140[/C][C]2554.5125[/C][C]-464.5465[/C][C]5573.5715[/C][C]0.3519[/C][C]0.3258[/C][C]0.4585[/C][C]0.4024[/C][/ROW]
[ROW][C]115[/C][C]3100[/C][C]2201.9301[/C][C]-870.9685[/C][C]5274.8287[/C][C]0.2834[/C][C]0.2748[/C][C]0.4159[/C][C]0.32[/C][/ROW]
[ROW][C]116[/C][C]3680[/C][C]2755.7449[/C][C]-368.2636[/C][C]5879.7534[/C][C]0.281[/C][C]0.4145[/C][C]0.5039[/C][C]0.4552[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303057&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303057&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[92])
804375-------
815020-------
824790-------
835180-------
844700-------
854110-------
863380-------
873820-------
883220-------
892605-------
902930-------
912360-------
922935-------
9333803950.66712755.12115146.21310.17470.95210.03980.9521
9444954099.68362837.96875361.39850.26960.86820.14180.9648
9539604310.86492920.70525701.02450.31040.39760.11020.9738
9634403950.71112390.10615511.31610.26060.49530.17330.899
9734003520.14731879.79345160.50120.44290.53810.24050.7578
9828252788.88921041.35654536.42190.48380.24650.25370.4349
9925552894.84731055.70924733.98550.35860.52970.16210.4829
10023552612.5726697.10284528.04240.39610.52350.26710.3707
10125452559.3904565.4734553.30780.49440.57960.48210.356
10227152645.7177582.98644708.4490.47380.53810.39350.3917
10325352291.7385164.76954418.70740.41130.34830.47490.2767
10427402843.9078655.90215031.91350.46290.6090.46750.4675
10530503805.72751448.79126162.66370.26490.81230.63830.7655
10636954014.02351577.43956450.60750.39870.7810.34940.8073
10742704200.66141674.91656726.40630.47850.65260.57410.837
10834803843.10571223.64846462.5630.39290.37470.61850.7516
10934903424.4466732.39316116.50020.4810.48390.50710.6392
11034002686.6506-80.96145454.26260.30670.28470.4610.4302
11134452797.9897-39.09175635.07120.32740.33870.56670.4623
11230902518.0451-382.49025418.58040.34960.26550.54390.3891
11332502465.0863-496.95075427.12340.30170.33960.47890.3779
11431402554.5125-464.54655573.57150.35190.32580.45850.4024
11531002201.9301-870.96855274.82870.28340.27480.41590.32
11636802755.7449-368.26365879.75340.2810.41450.50390.4552







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
930.1544-0.16880.16880.1557325660.947200-1.70241.7024
940.1570.08790.12840.1238156275.0812240968.0142490.88491.17931.4408
950.1645-0.08860.11510.1108123106.1524201680.7269449.0888-1.04671.3094
960.2015-0.14850.12350.1177260825.8221216467.0007465.2601-1.52351.363
970.2378-0.03530.10580.101114435.3698176060.6745419.5958-0.35841.1621
980.31970.01280.09030.08641303.9897146934.5604383.32040.10770.9863
990.3241-0.1330.09640.0919115496.1988142443.3659377.4167-1.01380.9903
1000.3741-0.10940.0980.093366343.6512132930.9015364.5969-0.76840.9625
1010.3975-0.00570.08780.0836207.0837118183.8107343.7787-0.04290.8603
1020.39780.02550.08160.07784800.0395106845.4336326.87220.20670.795
1030.47350.0960.08290.079959176.1775102511.8648320.17470.72570.7887
1040.3925-0.03790.07910.076410796.834194868.9456308.008-0.310.7488
1050.316-0.24780.09210.0874571124.018131503.9512362.6347-2.25440.8646
1060.3097-0.08630.09170.0871101776.0065129380.5266359.695-0.95170.8708
1070.30680.01620.08670.08244807.8424121075.6809347.95930.20680.8266
1080.3478-0.10430.08780.0834131845.7644121748.8112348.9252-1.08320.8426
1090.40110.01880.08370.07964297.2456114839.8955338.88040.19560.8045
1100.52560.20980.09070.0882508867.384136730.3116369.77062.1280.8781
1110.51730.18780.09580.0945418622.2742151566.7307389.31571.93010.9334
1120.58770.18510.10030.1327132.3674160345.0125400.4311.70620.9721
1130.61310.24150.1070.1083616089.4435182047.1283426.66982.34151.0373
1140.6030.18650.11060.1127342795.5939189353.8767435.14811.74661.0695
1150.7120.28970.11840.1226806529.4971216187.5993464.95982.67911.1395
1160.57840.25120.12390.1294854247.5304242773.4298492.72042.75721.2069

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
93 & 0.1544 & -0.1688 & 0.1688 & 0.1557 & 325660.9472 & 0 & 0 & -1.7024 & 1.7024 \tabularnewline
94 & 0.157 & 0.0879 & 0.1284 & 0.1238 & 156275.0812 & 240968.0142 & 490.8849 & 1.1793 & 1.4408 \tabularnewline
95 & 0.1645 & -0.0886 & 0.1151 & 0.1108 & 123106.1524 & 201680.7269 & 449.0888 & -1.0467 & 1.3094 \tabularnewline
96 & 0.2015 & -0.1485 & 0.1235 & 0.1177 & 260825.8221 & 216467.0007 & 465.2601 & -1.5235 & 1.363 \tabularnewline
97 & 0.2378 & -0.0353 & 0.1058 & 0.1011 & 14435.3698 & 176060.6745 & 419.5958 & -0.3584 & 1.1621 \tabularnewline
98 & 0.3197 & 0.0128 & 0.0903 & 0.0864 & 1303.9897 & 146934.5604 & 383.3204 & 0.1077 & 0.9863 \tabularnewline
99 & 0.3241 & -0.133 & 0.0964 & 0.0919 & 115496.1988 & 142443.3659 & 377.4167 & -1.0138 & 0.9903 \tabularnewline
100 & 0.3741 & -0.1094 & 0.098 & 0.0933 & 66343.6512 & 132930.9015 & 364.5969 & -0.7684 & 0.9625 \tabularnewline
101 & 0.3975 & -0.0057 & 0.0878 & 0.0836 & 207.0837 & 118183.8107 & 343.7787 & -0.0429 & 0.8603 \tabularnewline
102 & 0.3978 & 0.0255 & 0.0816 & 0.0778 & 4800.0395 & 106845.4336 & 326.8722 & 0.2067 & 0.795 \tabularnewline
103 & 0.4735 & 0.096 & 0.0829 & 0.0799 & 59176.1775 & 102511.8648 & 320.1747 & 0.7257 & 0.7887 \tabularnewline
104 & 0.3925 & -0.0379 & 0.0791 & 0.0764 & 10796.8341 & 94868.9456 & 308.008 & -0.31 & 0.7488 \tabularnewline
105 & 0.316 & -0.2478 & 0.0921 & 0.0874 & 571124.018 & 131503.9512 & 362.6347 & -2.2544 & 0.8646 \tabularnewline
106 & 0.3097 & -0.0863 & 0.0917 & 0.0871 & 101776.0065 & 129380.5266 & 359.695 & -0.9517 & 0.8708 \tabularnewline
107 & 0.3068 & 0.0162 & 0.0867 & 0.0824 & 4807.8424 & 121075.6809 & 347.9593 & 0.2068 & 0.8266 \tabularnewline
108 & 0.3478 & -0.1043 & 0.0878 & 0.0834 & 131845.7644 & 121748.8112 & 348.9252 & -1.0832 & 0.8426 \tabularnewline
109 & 0.4011 & 0.0188 & 0.0837 & 0.0796 & 4297.2456 & 114839.8955 & 338.8804 & 0.1956 & 0.8045 \tabularnewline
110 & 0.5256 & 0.2098 & 0.0907 & 0.0882 & 508867.384 & 136730.3116 & 369.7706 & 2.128 & 0.8781 \tabularnewline
111 & 0.5173 & 0.1878 & 0.0958 & 0.0945 & 418622.2742 & 151566.7307 & 389.3157 & 1.9301 & 0.9334 \tabularnewline
112 & 0.5877 & 0.1851 & 0.1003 & 0.1 & 327132.3674 & 160345.0125 & 400.431 & 1.7062 & 0.9721 \tabularnewline
113 & 0.6131 & 0.2415 & 0.107 & 0.1083 & 616089.4435 & 182047.1283 & 426.6698 & 2.3415 & 1.0373 \tabularnewline
114 & 0.603 & 0.1865 & 0.1106 & 0.1127 & 342795.5939 & 189353.8767 & 435.1481 & 1.7466 & 1.0695 \tabularnewline
115 & 0.712 & 0.2897 & 0.1184 & 0.1226 & 806529.4971 & 216187.5993 & 464.9598 & 2.6791 & 1.1395 \tabularnewline
116 & 0.5784 & 0.2512 & 0.1239 & 0.1294 & 854247.5304 & 242773.4298 & 492.7204 & 2.7572 & 1.2069 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=303057&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]93[/C][C]0.1544[/C][C]-0.1688[/C][C]0.1688[/C][C]0.1557[/C][C]325660.9472[/C][C]0[/C][C]0[/C][C]-1.7024[/C][C]1.7024[/C][/ROW]
[ROW][C]94[/C][C]0.157[/C][C]0.0879[/C][C]0.1284[/C][C]0.1238[/C][C]156275.0812[/C][C]240968.0142[/C][C]490.8849[/C][C]1.1793[/C][C]1.4408[/C][/ROW]
[ROW][C]95[/C][C]0.1645[/C][C]-0.0886[/C][C]0.1151[/C][C]0.1108[/C][C]123106.1524[/C][C]201680.7269[/C][C]449.0888[/C][C]-1.0467[/C][C]1.3094[/C][/ROW]
[ROW][C]96[/C][C]0.2015[/C][C]-0.1485[/C][C]0.1235[/C][C]0.1177[/C][C]260825.8221[/C][C]216467.0007[/C][C]465.2601[/C][C]-1.5235[/C][C]1.363[/C][/ROW]
[ROW][C]97[/C][C]0.2378[/C][C]-0.0353[/C][C]0.1058[/C][C]0.1011[/C][C]14435.3698[/C][C]176060.6745[/C][C]419.5958[/C][C]-0.3584[/C][C]1.1621[/C][/ROW]
[ROW][C]98[/C][C]0.3197[/C][C]0.0128[/C][C]0.0903[/C][C]0.0864[/C][C]1303.9897[/C][C]146934.5604[/C][C]383.3204[/C][C]0.1077[/C][C]0.9863[/C][/ROW]
[ROW][C]99[/C][C]0.3241[/C][C]-0.133[/C][C]0.0964[/C][C]0.0919[/C][C]115496.1988[/C][C]142443.3659[/C][C]377.4167[/C][C]-1.0138[/C][C]0.9903[/C][/ROW]
[ROW][C]100[/C][C]0.3741[/C][C]-0.1094[/C][C]0.098[/C][C]0.0933[/C][C]66343.6512[/C][C]132930.9015[/C][C]364.5969[/C][C]-0.7684[/C][C]0.9625[/C][/ROW]
[ROW][C]101[/C][C]0.3975[/C][C]-0.0057[/C][C]0.0878[/C][C]0.0836[/C][C]207.0837[/C][C]118183.8107[/C][C]343.7787[/C][C]-0.0429[/C][C]0.8603[/C][/ROW]
[ROW][C]102[/C][C]0.3978[/C][C]0.0255[/C][C]0.0816[/C][C]0.0778[/C][C]4800.0395[/C][C]106845.4336[/C][C]326.8722[/C][C]0.2067[/C][C]0.795[/C][/ROW]
[ROW][C]103[/C][C]0.4735[/C][C]0.096[/C][C]0.0829[/C][C]0.0799[/C][C]59176.1775[/C][C]102511.8648[/C][C]320.1747[/C][C]0.7257[/C][C]0.7887[/C][/ROW]
[ROW][C]104[/C][C]0.3925[/C][C]-0.0379[/C][C]0.0791[/C][C]0.0764[/C][C]10796.8341[/C][C]94868.9456[/C][C]308.008[/C][C]-0.31[/C][C]0.7488[/C][/ROW]
[ROW][C]105[/C][C]0.316[/C][C]-0.2478[/C][C]0.0921[/C][C]0.0874[/C][C]571124.018[/C][C]131503.9512[/C][C]362.6347[/C][C]-2.2544[/C][C]0.8646[/C][/ROW]
[ROW][C]106[/C][C]0.3097[/C][C]-0.0863[/C][C]0.0917[/C][C]0.0871[/C][C]101776.0065[/C][C]129380.5266[/C][C]359.695[/C][C]-0.9517[/C][C]0.8708[/C][/ROW]
[ROW][C]107[/C][C]0.3068[/C][C]0.0162[/C][C]0.0867[/C][C]0.0824[/C][C]4807.8424[/C][C]121075.6809[/C][C]347.9593[/C][C]0.2068[/C][C]0.8266[/C][/ROW]
[ROW][C]108[/C][C]0.3478[/C][C]-0.1043[/C][C]0.0878[/C][C]0.0834[/C][C]131845.7644[/C][C]121748.8112[/C][C]348.9252[/C][C]-1.0832[/C][C]0.8426[/C][/ROW]
[ROW][C]109[/C][C]0.4011[/C][C]0.0188[/C][C]0.0837[/C][C]0.0796[/C][C]4297.2456[/C][C]114839.8955[/C][C]338.8804[/C][C]0.1956[/C][C]0.8045[/C][/ROW]
[ROW][C]110[/C][C]0.5256[/C][C]0.2098[/C][C]0.0907[/C][C]0.0882[/C][C]508867.384[/C][C]136730.3116[/C][C]369.7706[/C][C]2.128[/C][C]0.8781[/C][/ROW]
[ROW][C]111[/C][C]0.5173[/C][C]0.1878[/C][C]0.0958[/C][C]0.0945[/C][C]418622.2742[/C][C]151566.7307[/C][C]389.3157[/C][C]1.9301[/C][C]0.9334[/C][/ROW]
[ROW][C]112[/C][C]0.5877[/C][C]0.1851[/C][C]0.1003[/C][C]0.1[/C][C]327132.3674[/C][C]160345.0125[/C][C]400.431[/C][C]1.7062[/C][C]0.9721[/C][/ROW]
[ROW][C]113[/C][C]0.6131[/C][C]0.2415[/C][C]0.107[/C][C]0.1083[/C][C]616089.4435[/C][C]182047.1283[/C][C]426.6698[/C][C]2.3415[/C][C]1.0373[/C][/ROW]
[ROW][C]114[/C][C]0.603[/C][C]0.1865[/C][C]0.1106[/C][C]0.1127[/C][C]342795.5939[/C][C]189353.8767[/C][C]435.1481[/C][C]1.7466[/C][C]1.0695[/C][/ROW]
[ROW][C]115[/C][C]0.712[/C][C]0.2897[/C][C]0.1184[/C][C]0.1226[/C][C]806529.4971[/C][C]216187.5993[/C][C]464.9598[/C][C]2.6791[/C][C]1.1395[/C][/ROW]
[ROW][C]116[/C][C]0.5784[/C][C]0.2512[/C][C]0.1239[/C][C]0.1294[/C][C]854247.5304[/C][C]242773.4298[/C][C]492.7204[/C][C]2.7572[/C][C]1.2069[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=303057&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=303057&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
930.1544-0.16880.16880.1557325660.947200-1.70241.7024
940.1570.08790.12840.1238156275.0812240968.0142490.88491.17931.4408
950.1645-0.08860.11510.1108123106.1524201680.7269449.0888-1.04671.3094
960.2015-0.14850.12350.1177260825.8221216467.0007465.2601-1.52351.363
970.2378-0.03530.10580.101114435.3698176060.6745419.5958-0.35841.1621
980.31970.01280.09030.08641303.9897146934.5604383.32040.10770.9863
990.3241-0.1330.09640.0919115496.1988142443.3659377.4167-1.01380.9903
1000.3741-0.10940.0980.093366343.6512132930.9015364.5969-0.76840.9625
1010.3975-0.00570.08780.0836207.0837118183.8107343.7787-0.04290.8603
1020.39780.02550.08160.07784800.0395106845.4336326.87220.20670.795
1030.47350.0960.08290.079959176.1775102511.8648320.17470.72570.7887
1040.3925-0.03790.07910.076410796.834194868.9456308.008-0.310.7488
1050.316-0.24780.09210.0874571124.018131503.9512362.6347-2.25440.8646
1060.3097-0.08630.09170.0871101776.0065129380.5266359.695-0.95170.8708
1070.30680.01620.08670.08244807.8424121075.6809347.95930.20680.8266
1080.3478-0.10430.08780.0834131845.7644121748.8112348.9252-1.08320.8426
1090.40110.01880.08370.07964297.2456114839.8955338.88040.19560.8045
1100.52560.20980.09070.0882508867.384136730.3116369.77062.1280.8781
1110.51730.18780.09580.0945418622.2742151566.7307389.31571.93010.9334
1120.58770.18510.10030.1327132.3674160345.0125400.4311.70620.9721
1130.61310.24150.1070.1083616089.4435182047.1283426.66982.34151.0373
1140.6030.18650.11060.1127342795.5939189353.8767435.14811.74661.0695
1150.7120.28970.11840.1226806529.4971216187.5993464.95982.67911.1395
1160.57840.25120.12390.1294854247.5304242773.4298492.72042.75721.2069



Parameters (Session):
par1 = 24 ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 24 ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')