Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 16 Jan 2009 05:12:58 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Jan/16/t1232108032wzez2j1dngqof8o.htm/, Retrieved Thu, 31 Oct 2024 23:03:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=36912, Retrieved Thu, 31 Oct 2024 23:03:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact240
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Bananen - Waerlop...] [2009-01-16 12:12:58] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
1.83
1.89
1.9
2.01
2.04
2.04
2.03
2.04
1.87
1.85
1.82
1.79
1.88
2.01
1.9
1.96
1.94
1.92
1.79
1.77
1.74
1.75
1.86
1.84
1.77
1.98
1.94
1.85
1.84
1.82
1.83
1.91
1.85
1.81
1.83
1.79
1.8
1.82
1.88
2.01
1.97
1.92
1.98
2.02
1.9
1.94
1.96
1.84
1.87
1.84
2.07
2.08
2.14
2.15
2.05
2.05
1.95
2.02
2.02
1.88
1.96
1.93
2.03
2.1
1.95
2.07
2.09
2.01
1.92
1.99
2.11
2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36912&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36912&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36912&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.189436582035874
beta0
gamma0.744362208464726

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.189436582035874 \tabularnewline
beta & 0 \tabularnewline
gamma & 0.744362208464726 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36912&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.189436582035874[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]0.744362208464726[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36912&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36912&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.189436582035874
beta0
gamma0.744362208464726







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
131.881.90227527799859-0.0222752779985915
142.012.05216565537804-0.0421656553780414
151.91.94953333354587-0.0495333335458656
161.962.01172976444937-0.0517297644493735
171.941.98416928914675-0.0441692891467469
181.921.95149315970507-0.0314931597050747
191.791.81623833987934-0.0262383398793444
201.771.79666871199340-0.0266687119934028
211.741.76085433335414-0.0208543333541389
221.751.76978609271535-0.0197860927153466
231.861.88596407019132-0.0259640701913233
241.841.86927749873068-0.0292774987306774
251.771.81724755007505-0.0472475500750542
261.981.944556175801940.0354438241980597
271.941.855352514436990.0846474855630066
281.851.94006304763562-0.0900630476356186
291.841.91001195080999-0.0700119508099881
301.821.88047967667071-0.0604796766707134
311.831.746626504834430.083373495165572
321.911.747790402829990.162209597170006
331.851.751190327030910.0988096729690888
341.811.783608068016590.0263919319834058
351.831.90705051993986-0.0770505199398563
361.791.87843399063379-0.0884339906337896
371.81.8037281799364-0.00372817993640151
381.821.99152833346388-0.171528333463879
391.881.89282645916319-0.0128264591631935
402.011.853798415142580.156201584857424
411.971.882192003954130.0878079960458682
421.921.887827532061840.0321724679381643
431.981.856661707138130.123338292861873
442.021.912431489018620.107568510981381
451.91.864606484261510.0353935157384941
461.941.840586863471800.099413136528196
471.961.916784716352490.0432152836475135
481.841.90268797928788-0.0626879792878834
491.871.88365369817882-0.0136536981788193
501.841.97042878644653-0.130428786446534
512.071.976691329943890.0933086700561141
522.082.062063856642450.0179361433575496
532.142.020628954639340.119371045360660
542.151.996522619215170.153477380784831
552.052.043403586013690.00659641398631017
562.052.06788414170704-0.0178841417070443
571.951.948931860224110.00106813977588693
582.021.956646306869420.063353693130582
592.021.992594200936640.0274057990633565
601.881.90929770788939-0.029297707889389
611.961.926776404295090.0332235957049141
621.931.95155183104758-0.0215518310475755
632.032.12006250596533-0.0900625059653284
642.12.12577043605420-0.0257704360542048
651.952.1367943578158-0.186794357815799
662.072.07411805673626-0.0041180567362602
672.092.004020991738620.0859790082613823
682.012.02863466461439-0.0186346646143853
691.921.92242522508468-0.00242522508467768
701.991.966185132215560.0238148677844354
712.111.972870781729460.137129218270541
7221.877039093628690.122960906371310

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 1.88 & 1.90227527799859 & -0.0222752779985915 \tabularnewline
14 & 2.01 & 2.05216565537804 & -0.0421656553780414 \tabularnewline
15 & 1.9 & 1.94953333354587 & -0.0495333335458656 \tabularnewline
16 & 1.96 & 2.01172976444937 & -0.0517297644493735 \tabularnewline
17 & 1.94 & 1.98416928914675 & -0.0441692891467469 \tabularnewline
18 & 1.92 & 1.95149315970507 & -0.0314931597050747 \tabularnewline
19 & 1.79 & 1.81623833987934 & -0.0262383398793444 \tabularnewline
20 & 1.77 & 1.79666871199340 & -0.0266687119934028 \tabularnewline
21 & 1.74 & 1.76085433335414 & -0.0208543333541389 \tabularnewline
22 & 1.75 & 1.76978609271535 & -0.0197860927153466 \tabularnewline
23 & 1.86 & 1.88596407019132 & -0.0259640701913233 \tabularnewline
24 & 1.84 & 1.86927749873068 & -0.0292774987306774 \tabularnewline
25 & 1.77 & 1.81724755007505 & -0.0472475500750542 \tabularnewline
26 & 1.98 & 1.94455617580194 & 0.0354438241980597 \tabularnewline
27 & 1.94 & 1.85535251443699 & 0.0846474855630066 \tabularnewline
28 & 1.85 & 1.94006304763562 & -0.0900630476356186 \tabularnewline
29 & 1.84 & 1.91001195080999 & -0.0700119508099881 \tabularnewline
30 & 1.82 & 1.88047967667071 & -0.0604796766707134 \tabularnewline
31 & 1.83 & 1.74662650483443 & 0.083373495165572 \tabularnewline
32 & 1.91 & 1.74779040282999 & 0.162209597170006 \tabularnewline
33 & 1.85 & 1.75119032703091 & 0.0988096729690888 \tabularnewline
34 & 1.81 & 1.78360806801659 & 0.0263919319834058 \tabularnewline
35 & 1.83 & 1.90705051993986 & -0.0770505199398563 \tabularnewline
36 & 1.79 & 1.87843399063379 & -0.0884339906337896 \tabularnewline
37 & 1.8 & 1.8037281799364 & -0.00372817993640151 \tabularnewline
38 & 1.82 & 1.99152833346388 & -0.171528333463879 \tabularnewline
39 & 1.88 & 1.89282645916319 & -0.0128264591631935 \tabularnewline
40 & 2.01 & 1.85379841514258 & 0.156201584857424 \tabularnewline
41 & 1.97 & 1.88219200395413 & 0.0878079960458682 \tabularnewline
42 & 1.92 & 1.88782753206184 & 0.0321724679381643 \tabularnewline
43 & 1.98 & 1.85666170713813 & 0.123338292861873 \tabularnewline
44 & 2.02 & 1.91243148901862 & 0.107568510981381 \tabularnewline
45 & 1.9 & 1.86460648426151 & 0.0353935157384941 \tabularnewline
46 & 1.94 & 1.84058686347180 & 0.099413136528196 \tabularnewline
47 & 1.96 & 1.91678471635249 & 0.0432152836475135 \tabularnewline
48 & 1.84 & 1.90268797928788 & -0.0626879792878834 \tabularnewline
49 & 1.87 & 1.88365369817882 & -0.0136536981788193 \tabularnewline
50 & 1.84 & 1.97042878644653 & -0.130428786446534 \tabularnewline
51 & 2.07 & 1.97669132994389 & 0.0933086700561141 \tabularnewline
52 & 2.08 & 2.06206385664245 & 0.0179361433575496 \tabularnewline
53 & 2.14 & 2.02062895463934 & 0.119371045360660 \tabularnewline
54 & 2.15 & 1.99652261921517 & 0.153477380784831 \tabularnewline
55 & 2.05 & 2.04340358601369 & 0.00659641398631017 \tabularnewline
56 & 2.05 & 2.06788414170704 & -0.0178841417070443 \tabularnewline
57 & 1.95 & 1.94893186022411 & 0.00106813977588693 \tabularnewline
58 & 2.02 & 1.95664630686942 & 0.063353693130582 \tabularnewline
59 & 2.02 & 1.99259420093664 & 0.0274057990633565 \tabularnewline
60 & 1.88 & 1.90929770788939 & -0.029297707889389 \tabularnewline
61 & 1.96 & 1.92677640429509 & 0.0332235957049141 \tabularnewline
62 & 1.93 & 1.95155183104758 & -0.0215518310475755 \tabularnewline
63 & 2.03 & 2.12006250596533 & -0.0900625059653284 \tabularnewline
64 & 2.1 & 2.12577043605420 & -0.0257704360542048 \tabularnewline
65 & 1.95 & 2.1367943578158 & -0.186794357815799 \tabularnewline
66 & 2.07 & 2.07411805673626 & -0.0041180567362602 \tabularnewline
67 & 2.09 & 2.00402099173862 & 0.0859790082613823 \tabularnewline
68 & 2.01 & 2.02863466461439 & -0.0186346646143853 \tabularnewline
69 & 1.92 & 1.92242522508468 & -0.00242522508467768 \tabularnewline
70 & 1.99 & 1.96618513221556 & 0.0238148677844354 \tabularnewline
71 & 2.11 & 1.97287078172946 & 0.137129218270541 \tabularnewline
72 & 2 & 1.87703909362869 & 0.122960906371310 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36912&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]1.88[/C][C]1.90227527799859[/C][C]-0.0222752779985915[/C][/ROW]
[ROW][C]14[/C][C]2.01[/C][C]2.05216565537804[/C][C]-0.0421656553780414[/C][/ROW]
[ROW][C]15[/C][C]1.9[/C][C]1.94953333354587[/C][C]-0.0495333335458656[/C][/ROW]
[ROW][C]16[/C][C]1.96[/C][C]2.01172976444937[/C][C]-0.0517297644493735[/C][/ROW]
[ROW][C]17[/C][C]1.94[/C][C]1.98416928914675[/C][C]-0.0441692891467469[/C][/ROW]
[ROW][C]18[/C][C]1.92[/C][C]1.95149315970507[/C][C]-0.0314931597050747[/C][/ROW]
[ROW][C]19[/C][C]1.79[/C][C]1.81623833987934[/C][C]-0.0262383398793444[/C][/ROW]
[ROW][C]20[/C][C]1.77[/C][C]1.79666871199340[/C][C]-0.0266687119934028[/C][/ROW]
[ROW][C]21[/C][C]1.74[/C][C]1.76085433335414[/C][C]-0.0208543333541389[/C][/ROW]
[ROW][C]22[/C][C]1.75[/C][C]1.76978609271535[/C][C]-0.0197860927153466[/C][/ROW]
[ROW][C]23[/C][C]1.86[/C][C]1.88596407019132[/C][C]-0.0259640701913233[/C][/ROW]
[ROW][C]24[/C][C]1.84[/C][C]1.86927749873068[/C][C]-0.0292774987306774[/C][/ROW]
[ROW][C]25[/C][C]1.77[/C][C]1.81724755007505[/C][C]-0.0472475500750542[/C][/ROW]
[ROW][C]26[/C][C]1.98[/C][C]1.94455617580194[/C][C]0.0354438241980597[/C][/ROW]
[ROW][C]27[/C][C]1.94[/C][C]1.85535251443699[/C][C]0.0846474855630066[/C][/ROW]
[ROW][C]28[/C][C]1.85[/C][C]1.94006304763562[/C][C]-0.0900630476356186[/C][/ROW]
[ROW][C]29[/C][C]1.84[/C][C]1.91001195080999[/C][C]-0.0700119508099881[/C][/ROW]
[ROW][C]30[/C][C]1.82[/C][C]1.88047967667071[/C][C]-0.0604796766707134[/C][/ROW]
[ROW][C]31[/C][C]1.83[/C][C]1.74662650483443[/C][C]0.083373495165572[/C][/ROW]
[ROW][C]32[/C][C]1.91[/C][C]1.74779040282999[/C][C]0.162209597170006[/C][/ROW]
[ROW][C]33[/C][C]1.85[/C][C]1.75119032703091[/C][C]0.0988096729690888[/C][/ROW]
[ROW][C]34[/C][C]1.81[/C][C]1.78360806801659[/C][C]0.0263919319834058[/C][/ROW]
[ROW][C]35[/C][C]1.83[/C][C]1.90705051993986[/C][C]-0.0770505199398563[/C][/ROW]
[ROW][C]36[/C][C]1.79[/C][C]1.87843399063379[/C][C]-0.0884339906337896[/C][/ROW]
[ROW][C]37[/C][C]1.8[/C][C]1.8037281799364[/C][C]-0.00372817993640151[/C][/ROW]
[ROW][C]38[/C][C]1.82[/C][C]1.99152833346388[/C][C]-0.171528333463879[/C][/ROW]
[ROW][C]39[/C][C]1.88[/C][C]1.89282645916319[/C][C]-0.0128264591631935[/C][/ROW]
[ROW][C]40[/C][C]2.01[/C][C]1.85379841514258[/C][C]0.156201584857424[/C][/ROW]
[ROW][C]41[/C][C]1.97[/C][C]1.88219200395413[/C][C]0.0878079960458682[/C][/ROW]
[ROW][C]42[/C][C]1.92[/C][C]1.88782753206184[/C][C]0.0321724679381643[/C][/ROW]
[ROW][C]43[/C][C]1.98[/C][C]1.85666170713813[/C][C]0.123338292861873[/C][/ROW]
[ROW][C]44[/C][C]2.02[/C][C]1.91243148901862[/C][C]0.107568510981381[/C][/ROW]
[ROW][C]45[/C][C]1.9[/C][C]1.86460648426151[/C][C]0.0353935157384941[/C][/ROW]
[ROW][C]46[/C][C]1.94[/C][C]1.84058686347180[/C][C]0.099413136528196[/C][/ROW]
[ROW][C]47[/C][C]1.96[/C][C]1.91678471635249[/C][C]0.0432152836475135[/C][/ROW]
[ROW][C]48[/C][C]1.84[/C][C]1.90268797928788[/C][C]-0.0626879792878834[/C][/ROW]
[ROW][C]49[/C][C]1.87[/C][C]1.88365369817882[/C][C]-0.0136536981788193[/C][/ROW]
[ROW][C]50[/C][C]1.84[/C][C]1.97042878644653[/C][C]-0.130428786446534[/C][/ROW]
[ROW][C]51[/C][C]2.07[/C][C]1.97669132994389[/C][C]0.0933086700561141[/C][/ROW]
[ROW][C]52[/C][C]2.08[/C][C]2.06206385664245[/C][C]0.0179361433575496[/C][/ROW]
[ROW][C]53[/C][C]2.14[/C][C]2.02062895463934[/C][C]0.119371045360660[/C][/ROW]
[ROW][C]54[/C][C]2.15[/C][C]1.99652261921517[/C][C]0.153477380784831[/C][/ROW]
[ROW][C]55[/C][C]2.05[/C][C]2.04340358601369[/C][C]0.00659641398631017[/C][/ROW]
[ROW][C]56[/C][C]2.05[/C][C]2.06788414170704[/C][C]-0.0178841417070443[/C][/ROW]
[ROW][C]57[/C][C]1.95[/C][C]1.94893186022411[/C][C]0.00106813977588693[/C][/ROW]
[ROW][C]58[/C][C]2.02[/C][C]1.95664630686942[/C][C]0.063353693130582[/C][/ROW]
[ROW][C]59[/C][C]2.02[/C][C]1.99259420093664[/C][C]0.0274057990633565[/C][/ROW]
[ROW][C]60[/C][C]1.88[/C][C]1.90929770788939[/C][C]-0.029297707889389[/C][/ROW]
[ROW][C]61[/C][C]1.96[/C][C]1.92677640429509[/C][C]0.0332235957049141[/C][/ROW]
[ROW][C]62[/C][C]1.93[/C][C]1.95155183104758[/C][C]-0.0215518310475755[/C][/ROW]
[ROW][C]63[/C][C]2.03[/C][C]2.12006250596533[/C][C]-0.0900625059653284[/C][/ROW]
[ROW][C]64[/C][C]2.1[/C][C]2.12577043605420[/C][C]-0.0257704360542048[/C][/ROW]
[ROW][C]65[/C][C]1.95[/C][C]2.1367943578158[/C][C]-0.186794357815799[/C][/ROW]
[ROW][C]66[/C][C]2.07[/C][C]2.07411805673626[/C][C]-0.0041180567362602[/C][/ROW]
[ROW][C]67[/C][C]2.09[/C][C]2.00402099173862[/C][C]0.0859790082613823[/C][/ROW]
[ROW][C]68[/C][C]2.01[/C][C]2.02863466461439[/C][C]-0.0186346646143853[/C][/ROW]
[ROW][C]69[/C][C]1.92[/C][C]1.92242522508468[/C][C]-0.00242522508467768[/C][/ROW]
[ROW][C]70[/C][C]1.99[/C][C]1.96618513221556[/C][C]0.0238148677844354[/C][/ROW]
[ROW][C]71[/C][C]2.11[/C][C]1.97287078172946[/C][C]0.137129218270541[/C][/ROW]
[ROW][C]72[/C][C]2[/C][C]1.87703909362869[/C][C]0.122960906371310[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36912&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36912&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
131.881.90227527799859-0.0222752779985915
142.012.05216565537804-0.0421656553780414
151.91.94953333354587-0.0495333335458656
161.962.01172976444937-0.0517297644493735
171.941.98416928914675-0.0441692891467469
181.921.95149315970507-0.0314931597050747
191.791.81623833987934-0.0262383398793444
201.771.79666871199340-0.0266687119934028
211.741.76085433335414-0.0208543333541389
221.751.76978609271535-0.0197860927153466
231.861.88596407019132-0.0259640701913233
241.841.86927749873068-0.0292774987306774
251.771.81724755007505-0.0472475500750542
261.981.944556175801940.0354438241980597
271.941.855352514436990.0846474855630066
281.851.94006304763562-0.0900630476356186
291.841.91001195080999-0.0700119508099881
301.821.88047967667071-0.0604796766707134
311.831.746626504834430.083373495165572
321.911.747790402829990.162209597170006
331.851.751190327030910.0988096729690888
341.811.783608068016590.0263919319834058
351.831.90705051993986-0.0770505199398563
361.791.87843399063379-0.0884339906337896
371.81.8037281799364-0.00372817993640151
381.821.99152833346388-0.171528333463879
391.881.89282645916319-0.0128264591631935
402.011.853798415142580.156201584857424
411.971.882192003954130.0878079960458682
421.921.887827532061840.0321724679381643
431.981.856661707138130.123338292861873
442.021.912431489018620.107568510981381
451.91.864606484261510.0353935157384941
461.941.840586863471800.099413136528196
471.961.916784716352490.0432152836475135
481.841.90268797928788-0.0626879792878834
491.871.88365369817882-0.0136536981788193
501.841.97042878644653-0.130428786446534
512.071.976691329943890.0933086700561141
522.082.062063856642450.0179361433575496
532.142.020628954639340.119371045360660
542.151.996522619215170.153477380784831
552.052.043403586013690.00659641398631017
562.052.06788414170704-0.0178841417070443
571.951.948931860224110.00106813977588693
582.021.956646306869420.063353693130582
592.021.992594200936640.0274057990633565
601.881.90929770788939-0.029297707889389
611.961.926776404295090.0332235957049141
621.931.95155183104758-0.0215518310475755
632.032.12006250596533-0.0900625059653284
642.12.12577043605420-0.0257704360542048
651.952.1367943578158-0.186794357815799
662.072.07411805673626-0.0041180567362602
672.092.004020991738620.0859790082613823
682.012.02863466461439-0.0186346646143853
691.921.92242522508468-0.00242522508467768
701.991.966185132215560.0238148677844354
712.111.972870781729460.137129218270541
7221.877039093628690.122960906371310







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
731.961477157008421.840177381735162.08277693228167
741.946820172920121.821635502911252.07200484292900
752.078472059433091.949549998588962.20739412027722
762.140891370628122.009558657870172.27222408338607
772.056341083097761.920784092851362.19189807334417
782.142088098170202.003707477894872.28046871844553
792.126184364319851.985778200825012.26659052781469
802.069943532850571.928424671479882.21146239422126
811.974456760167451.828654336469392.12025918386551
822.036161380291121.885747428582092.18657533200015
832.107416996747231.957765444617012.25706854887745
841.97452119164158NANA

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
73 & 1.96147715700842 & 1.84017738173516 & 2.08277693228167 \tabularnewline
74 & 1.94682017292012 & 1.82163550291125 & 2.07200484292900 \tabularnewline
75 & 2.07847205943309 & 1.94954999858896 & 2.20739412027722 \tabularnewline
76 & 2.14089137062812 & 2.00955865787017 & 2.27222408338607 \tabularnewline
77 & 2.05634108309776 & 1.92078409285136 & 2.19189807334417 \tabularnewline
78 & 2.14208809817020 & 2.00370747789487 & 2.28046871844553 \tabularnewline
79 & 2.12618436431985 & 1.98577820082501 & 2.26659052781469 \tabularnewline
80 & 2.06994353285057 & 1.92842467147988 & 2.21146239422126 \tabularnewline
81 & 1.97445676016745 & 1.82865433646939 & 2.12025918386551 \tabularnewline
82 & 2.03616138029112 & 1.88574742858209 & 2.18657533200015 \tabularnewline
83 & 2.10741699674723 & 1.95776544461701 & 2.25706854887745 \tabularnewline
84 & 1.97452119164158 & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36912&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]73[/C][C]1.96147715700842[/C][C]1.84017738173516[/C][C]2.08277693228167[/C][/ROW]
[ROW][C]74[/C][C]1.94682017292012[/C][C]1.82163550291125[/C][C]2.07200484292900[/C][/ROW]
[ROW][C]75[/C][C]2.07847205943309[/C][C]1.94954999858896[/C][C]2.20739412027722[/C][/ROW]
[ROW][C]76[/C][C]2.14089137062812[/C][C]2.00955865787017[/C][C]2.27222408338607[/C][/ROW]
[ROW][C]77[/C][C]2.05634108309776[/C][C]1.92078409285136[/C][C]2.19189807334417[/C][/ROW]
[ROW][C]78[/C][C]2.14208809817020[/C][C]2.00370747789487[/C][C]2.28046871844553[/C][/ROW]
[ROW][C]79[/C][C]2.12618436431985[/C][C]1.98577820082501[/C][C]2.26659052781469[/C][/ROW]
[ROW][C]80[/C][C]2.06994353285057[/C][C]1.92842467147988[/C][C]2.21146239422126[/C][/ROW]
[ROW][C]81[/C][C]1.97445676016745[/C][C]1.82865433646939[/C][C]2.12025918386551[/C][/ROW]
[ROW][C]82[/C][C]2.03616138029112[/C][C]1.88574742858209[/C][C]2.18657533200015[/C][/ROW]
[ROW][C]83[/C][C]2.10741699674723[/C][C]1.95776544461701[/C][C]2.25706854887745[/C][/ROW]
[ROW][C]84[/C][C]1.97452119164158[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36912&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36912&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
731.961477157008421.840177381735162.08277693228167
741.946820172920121.821635502911252.07200484292900
752.078472059433091.949549998588962.20739412027722
762.140891370628122.009558657870172.27222408338607
772.056341083097761.920784092851362.19189807334417
782.142088098170202.003707477894872.28046871844553
792.126184364319851.985778200825012.26659052781469
802.069943532850571.928424671479882.21146239422126
811.974456760167451.828654336469392.12025918386551
822.036161380291121.885747428582092.18657533200015
832.107416996747231.957765444617012.25706854887745
841.97452119164158NANA



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=0, beta=0)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=0)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')