Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationMon, 26 Jan 2009 14:46:42 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Jan/26/t1233006448onydv2m3lv9ufkx.htm/, Retrieved Fri, 01 Nov 2024 00:15:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=36981, Retrieved Fri, 01 Nov 2024 00:15:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact253
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Standard Deviation Plot] [standard deviatio...] [2009-01-08 21:49:18] [65364f12da24daf6c8f7985fc762862c]
- RMPD  [Classical Decomposition] [decompositie - te...] [2009-01-15 16:48:00] [74be16979710d4c4e7c6647856088456]
- RMP       [Exponential Smoothing] [opg10 oef2 - volk...] [2009-01-26 21:46:42] [9e20205489828c19845a9d736cd20362] [Current]
Feedback Forum

Post a new message
Dataseries X:
93,89
93,36
92,25
91,07
90,93
90,68
90,65
90,6
90,02
89,74
89,31
89,16
89,15
88,98
88,25
87,36
87,13
86,93
86,93
86,93
86,98
86,16
85,88
85,91
85,91
85,6
84,9
83,67
83,41
83,33
83,32
83,3
82,73
82,2
81,7
81,52
81,52
81,55
81,89
81,8
81,84
81,77
81,77
82,98
83,13
82,84
82,8
82,8
82,8
82,98
81,91
81,64
81,4
81,21
81,21
81,23
81,01
80,55
80,5
80,54
80,54
80,72
80,63
80,36
79,88
79,66
79,66
79,13
78,81
78,67
78,43
78,13
78,13
78,07
76,94
74,97
75
75,1
75,1
75,02
73,87
73,18
72,55
72,42
72,4
72,45
71,42
70,89
70,42
69,57
69,57
69,44
68,25
66,86
66,5
66,46




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36981&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36981&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36981&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ 72.249.76.132







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.99995743816477
beta0
gamma0

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.99995743816477 \tabularnewline
beta & 0 \tabularnewline
gamma & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36981&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.99995743816477[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36981&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36981&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.99995743816477
beta0
gamma0







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
293.3693.89-0.530000000000001
392.2593.3600225577727-1.11002255777267
491.0792.2500472445972-1.18004724459722
590.9391.0700502249764-0.140050224976378
690.6890.9300059607946-0.250005960794596
790.6590.6800106407125-0.0300106407125185
890.690.650001277308-0.0500012773079561
990.0290.6000021281461-0.58000212814612
1089.7490.020024685955-0.280024685955013
1189.3189.7400119183645-0.430011918364528
1289.1689.3100183020964-0.150018302096427
1389.1589.1600063850542-0.0100063850542398
1488.9889.1500004258901-0.170000425890109
1588.2588.9800072355301-0.73000723553011
1687.3688.2500310704477-0.890031070447677
1787.1387.3600378813558-0.23003788135577
1886.9387.1300097908344-0.200009790834386
1986.9386.9300085127838-8.51278376501341e-06
2086.9386.9300000003623-3.6231995181879e-10
2186.9886.930.049999999999983
2286.1686.9799978719083-0.819997871908257
2385.8886.1600349006143-0.280034900614311
2485.9185.88001191879930.0299880812006990
2585.9185.90999872365221.27634777413732e-06
2685.685.9099999999457-0.309999999945674
2784.985.600013194169-0.700013194168918
2883.6784.9000297938462-1.23002979384623
2983.4183.6700523523254-0.260052352325417
3083.3383.4100110683054-0.0800110683053674
3183.3283.3300034054179-0.0100034054179048
3283.383.3200004257633-0.0200004257632855
3382.7383.3000008512548-0.570000851254818
3482.282.7300242602823-0.530024260282303
3581.782.2000225588052-0.500022558805242
3681.5281.7000212818778-0.180021281877757
3781.5281.5200076620361-7.66203612556637e-06
3881.5581.52000000032610.0299999996738904
3981.8981.5499987231450.340001276855034
4081.881.8899855289217-0.0899855289216731
4181.8481.80000382994930.0399961700507419
4281.7781.8399982976896-0.0699982976896081
4381.7781.770002979256-2.97925602410487e-06
4482.9881.77000000012681.20999999987320
4583.1382.97994850017940.150051499820606
4682.8483.1299936135328-0.289993613532772
4782.882.8400123426604-0.040012342660404
4882.882.8000017029987-1.70299874469038e-06
4982.882.8000000000725-7.24895699022454e-11
5082.9882.80.180000000000007
5181.9182.9799923388697-1.06999233886967
5281.6481.9100455408376-0.270045540837614
5381.481.6400114936338-0.240011493633816
5481.2181.4000102153297-0.190010215329664
5581.2181.2100080871835-8.08718347400372e-06
5681.2381.21000000034420.0199999996558091
5781.0181.2299991487633-0.219999148763307
5880.5581.0100093635675-0.460009363567536
5980.580.5500195788427-0.0500195788427362
6080.5480.5000021289250.0399978710749451
6180.5480.53999829761721.7023827894036e-06
6280.7280.53999999992760.180000000072440
6380.6380.7199923388696-0.0899923388696493
6480.3680.630003830239-0.270003830239091
6579.8880.3600114918585-0.480011491858548
6679.6679.88002043017-0.220020430170024
6779.6679.6600093644733-9.36447329991097e-06
6879.1379.6600000003986-0.530000000398573
6978.8179.1300225577727-0.320022557772688
7078.6778.8100136207474-0.140013620747368
7178.4378.6700059592366-0.240005959236640
7278.1378.4300102150941-0.300010215094105
7378.1378.1300127689853-1.27689853428592e-05
7478.0778.1300000005435-0.0600000005434822
7576.9478.0700025537101-1.13000255371013
7674.9776.9400480949825-1.97004809498250
777574.97008384886240.0299161511375843
7875.174.99999872671370.100001273286296
7975.175.09999574376234.25623771604933e-06
8075.0275.0999999998188-0.0799999998188525
8173.8775.0200034049468-1.15000340494680
8273.1873.8700489462554-0.69004894625543
8372.5573.1800293697496-0.630029369749565
8472.4272.5500268152062-0.130026815206222
8572.472.4200055341799-0.0200055341798731
8672.4572.40000085147230.0499991485277462
8771.4272.4499978719445-1.02999787194447
8870.8971.4200438385997-0.53004383859971
8970.4270.8900225596385-0.470022559638522
9069.5770.4200200050227-0.850020005022742
9169.5769.5700361784114-3.61784113920294e-05
9269.4469.5700000015398-0.130000001539813
9368.2569.4400055330386-1.19000553303863
9466.8668.2500506488194-1.39005064881943
9566.566.8600591631067-0.360059163106683
9666.4666.5000153247788-0.0400153247787784

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 93.36 & 93.89 & -0.530000000000001 \tabularnewline
3 & 92.25 & 93.3600225577727 & -1.11002255777267 \tabularnewline
4 & 91.07 & 92.2500472445972 & -1.18004724459722 \tabularnewline
5 & 90.93 & 91.0700502249764 & -0.140050224976378 \tabularnewline
6 & 90.68 & 90.9300059607946 & -0.250005960794596 \tabularnewline
7 & 90.65 & 90.6800106407125 & -0.0300106407125185 \tabularnewline
8 & 90.6 & 90.650001277308 & -0.0500012773079561 \tabularnewline
9 & 90.02 & 90.6000021281461 & -0.58000212814612 \tabularnewline
10 & 89.74 & 90.020024685955 & -0.280024685955013 \tabularnewline
11 & 89.31 & 89.7400119183645 & -0.430011918364528 \tabularnewline
12 & 89.16 & 89.3100183020964 & -0.150018302096427 \tabularnewline
13 & 89.15 & 89.1600063850542 & -0.0100063850542398 \tabularnewline
14 & 88.98 & 89.1500004258901 & -0.170000425890109 \tabularnewline
15 & 88.25 & 88.9800072355301 & -0.73000723553011 \tabularnewline
16 & 87.36 & 88.2500310704477 & -0.890031070447677 \tabularnewline
17 & 87.13 & 87.3600378813558 & -0.23003788135577 \tabularnewline
18 & 86.93 & 87.1300097908344 & -0.200009790834386 \tabularnewline
19 & 86.93 & 86.9300085127838 & -8.51278376501341e-06 \tabularnewline
20 & 86.93 & 86.9300000003623 & -3.6231995181879e-10 \tabularnewline
21 & 86.98 & 86.93 & 0.049999999999983 \tabularnewline
22 & 86.16 & 86.9799978719083 & -0.819997871908257 \tabularnewline
23 & 85.88 & 86.1600349006143 & -0.280034900614311 \tabularnewline
24 & 85.91 & 85.8800119187993 & 0.0299880812006990 \tabularnewline
25 & 85.91 & 85.9099987236522 & 1.27634777413732e-06 \tabularnewline
26 & 85.6 & 85.9099999999457 & -0.309999999945674 \tabularnewline
27 & 84.9 & 85.600013194169 & -0.700013194168918 \tabularnewline
28 & 83.67 & 84.9000297938462 & -1.23002979384623 \tabularnewline
29 & 83.41 & 83.6700523523254 & -0.260052352325417 \tabularnewline
30 & 83.33 & 83.4100110683054 & -0.0800110683053674 \tabularnewline
31 & 83.32 & 83.3300034054179 & -0.0100034054179048 \tabularnewline
32 & 83.3 & 83.3200004257633 & -0.0200004257632855 \tabularnewline
33 & 82.73 & 83.3000008512548 & -0.570000851254818 \tabularnewline
34 & 82.2 & 82.7300242602823 & -0.530024260282303 \tabularnewline
35 & 81.7 & 82.2000225588052 & -0.500022558805242 \tabularnewline
36 & 81.52 & 81.7000212818778 & -0.180021281877757 \tabularnewline
37 & 81.52 & 81.5200076620361 & -7.66203612556637e-06 \tabularnewline
38 & 81.55 & 81.5200000003261 & 0.0299999996738904 \tabularnewline
39 & 81.89 & 81.549998723145 & 0.340001276855034 \tabularnewline
40 & 81.8 & 81.8899855289217 & -0.0899855289216731 \tabularnewline
41 & 81.84 & 81.8000038299493 & 0.0399961700507419 \tabularnewline
42 & 81.77 & 81.8399982976896 & -0.0699982976896081 \tabularnewline
43 & 81.77 & 81.770002979256 & -2.97925602410487e-06 \tabularnewline
44 & 82.98 & 81.7700000001268 & 1.20999999987320 \tabularnewline
45 & 83.13 & 82.9799485001794 & 0.150051499820606 \tabularnewline
46 & 82.84 & 83.1299936135328 & -0.289993613532772 \tabularnewline
47 & 82.8 & 82.8400123426604 & -0.040012342660404 \tabularnewline
48 & 82.8 & 82.8000017029987 & -1.70299874469038e-06 \tabularnewline
49 & 82.8 & 82.8000000000725 & -7.24895699022454e-11 \tabularnewline
50 & 82.98 & 82.8 & 0.180000000000007 \tabularnewline
51 & 81.91 & 82.9799923388697 & -1.06999233886967 \tabularnewline
52 & 81.64 & 81.9100455408376 & -0.270045540837614 \tabularnewline
53 & 81.4 & 81.6400114936338 & -0.240011493633816 \tabularnewline
54 & 81.21 & 81.4000102153297 & -0.190010215329664 \tabularnewline
55 & 81.21 & 81.2100080871835 & -8.08718347400372e-06 \tabularnewline
56 & 81.23 & 81.2100000003442 & 0.0199999996558091 \tabularnewline
57 & 81.01 & 81.2299991487633 & -0.219999148763307 \tabularnewline
58 & 80.55 & 81.0100093635675 & -0.460009363567536 \tabularnewline
59 & 80.5 & 80.5500195788427 & -0.0500195788427362 \tabularnewline
60 & 80.54 & 80.500002128925 & 0.0399978710749451 \tabularnewline
61 & 80.54 & 80.5399982976172 & 1.7023827894036e-06 \tabularnewline
62 & 80.72 & 80.5399999999276 & 0.180000000072440 \tabularnewline
63 & 80.63 & 80.7199923388696 & -0.0899923388696493 \tabularnewline
64 & 80.36 & 80.630003830239 & -0.270003830239091 \tabularnewline
65 & 79.88 & 80.3600114918585 & -0.480011491858548 \tabularnewline
66 & 79.66 & 79.88002043017 & -0.220020430170024 \tabularnewline
67 & 79.66 & 79.6600093644733 & -9.36447329991097e-06 \tabularnewline
68 & 79.13 & 79.6600000003986 & -0.530000000398573 \tabularnewline
69 & 78.81 & 79.1300225577727 & -0.320022557772688 \tabularnewline
70 & 78.67 & 78.8100136207474 & -0.140013620747368 \tabularnewline
71 & 78.43 & 78.6700059592366 & -0.240005959236640 \tabularnewline
72 & 78.13 & 78.4300102150941 & -0.300010215094105 \tabularnewline
73 & 78.13 & 78.1300127689853 & -1.27689853428592e-05 \tabularnewline
74 & 78.07 & 78.1300000005435 & -0.0600000005434822 \tabularnewline
75 & 76.94 & 78.0700025537101 & -1.13000255371013 \tabularnewline
76 & 74.97 & 76.9400480949825 & -1.97004809498250 \tabularnewline
77 & 75 & 74.9700838488624 & 0.0299161511375843 \tabularnewline
78 & 75.1 & 74.9999987267137 & 0.100001273286296 \tabularnewline
79 & 75.1 & 75.0999957437623 & 4.25623771604933e-06 \tabularnewline
80 & 75.02 & 75.0999999998188 & -0.0799999998188525 \tabularnewline
81 & 73.87 & 75.0200034049468 & -1.15000340494680 \tabularnewline
82 & 73.18 & 73.8700489462554 & -0.69004894625543 \tabularnewline
83 & 72.55 & 73.1800293697496 & -0.630029369749565 \tabularnewline
84 & 72.42 & 72.5500268152062 & -0.130026815206222 \tabularnewline
85 & 72.4 & 72.4200055341799 & -0.0200055341798731 \tabularnewline
86 & 72.45 & 72.4000008514723 & 0.0499991485277462 \tabularnewline
87 & 71.42 & 72.4499978719445 & -1.02999787194447 \tabularnewline
88 & 70.89 & 71.4200438385997 & -0.53004383859971 \tabularnewline
89 & 70.42 & 70.8900225596385 & -0.470022559638522 \tabularnewline
90 & 69.57 & 70.4200200050227 & -0.850020005022742 \tabularnewline
91 & 69.57 & 69.5700361784114 & -3.61784113920294e-05 \tabularnewline
92 & 69.44 & 69.5700000015398 & -0.130000001539813 \tabularnewline
93 & 68.25 & 69.4400055330386 & -1.19000553303863 \tabularnewline
94 & 66.86 & 68.2500506488194 & -1.39005064881943 \tabularnewline
95 & 66.5 & 66.8600591631067 & -0.360059163106683 \tabularnewline
96 & 66.46 & 66.5000153247788 & -0.0400153247787784 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36981&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]93.36[/C][C]93.89[/C][C]-0.530000000000001[/C][/ROW]
[ROW][C]3[/C][C]92.25[/C][C]93.3600225577727[/C][C]-1.11002255777267[/C][/ROW]
[ROW][C]4[/C][C]91.07[/C][C]92.2500472445972[/C][C]-1.18004724459722[/C][/ROW]
[ROW][C]5[/C][C]90.93[/C][C]91.0700502249764[/C][C]-0.140050224976378[/C][/ROW]
[ROW][C]6[/C][C]90.68[/C][C]90.9300059607946[/C][C]-0.250005960794596[/C][/ROW]
[ROW][C]7[/C][C]90.65[/C][C]90.6800106407125[/C][C]-0.0300106407125185[/C][/ROW]
[ROW][C]8[/C][C]90.6[/C][C]90.650001277308[/C][C]-0.0500012773079561[/C][/ROW]
[ROW][C]9[/C][C]90.02[/C][C]90.6000021281461[/C][C]-0.58000212814612[/C][/ROW]
[ROW][C]10[/C][C]89.74[/C][C]90.020024685955[/C][C]-0.280024685955013[/C][/ROW]
[ROW][C]11[/C][C]89.31[/C][C]89.7400119183645[/C][C]-0.430011918364528[/C][/ROW]
[ROW][C]12[/C][C]89.16[/C][C]89.3100183020964[/C][C]-0.150018302096427[/C][/ROW]
[ROW][C]13[/C][C]89.15[/C][C]89.1600063850542[/C][C]-0.0100063850542398[/C][/ROW]
[ROW][C]14[/C][C]88.98[/C][C]89.1500004258901[/C][C]-0.170000425890109[/C][/ROW]
[ROW][C]15[/C][C]88.25[/C][C]88.9800072355301[/C][C]-0.73000723553011[/C][/ROW]
[ROW][C]16[/C][C]87.36[/C][C]88.2500310704477[/C][C]-0.890031070447677[/C][/ROW]
[ROW][C]17[/C][C]87.13[/C][C]87.3600378813558[/C][C]-0.23003788135577[/C][/ROW]
[ROW][C]18[/C][C]86.93[/C][C]87.1300097908344[/C][C]-0.200009790834386[/C][/ROW]
[ROW][C]19[/C][C]86.93[/C][C]86.9300085127838[/C][C]-8.51278376501341e-06[/C][/ROW]
[ROW][C]20[/C][C]86.93[/C][C]86.9300000003623[/C][C]-3.6231995181879e-10[/C][/ROW]
[ROW][C]21[/C][C]86.98[/C][C]86.93[/C][C]0.049999999999983[/C][/ROW]
[ROW][C]22[/C][C]86.16[/C][C]86.9799978719083[/C][C]-0.819997871908257[/C][/ROW]
[ROW][C]23[/C][C]85.88[/C][C]86.1600349006143[/C][C]-0.280034900614311[/C][/ROW]
[ROW][C]24[/C][C]85.91[/C][C]85.8800119187993[/C][C]0.0299880812006990[/C][/ROW]
[ROW][C]25[/C][C]85.91[/C][C]85.9099987236522[/C][C]1.27634777413732e-06[/C][/ROW]
[ROW][C]26[/C][C]85.6[/C][C]85.9099999999457[/C][C]-0.309999999945674[/C][/ROW]
[ROW][C]27[/C][C]84.9[/C][C]85.600013194169[/C][C]-0.700013194168918[/C][/ROW]
[ROW][C]28[/C][C]83.67[/C][C]84.9000297938462[/C][C]-1.23002979384623[/C][/ROW]
[ROW][C]29[/C][C]83.41[/C][C]83.6700523523254[/C][C]-0.260052352325417[/C][/ROW]
[ROW][C]30[/C][C]83.33[/C][C]83.4100110683054[/C][C]-0.0800110683053674[/C][/ROW]
[ROW][C]31[/C][C]83.32[/C][C]83.3300034054179[/C][C]-0.0100034054179048[/C][/ROW]
[ROW][C]32[/C][C]83.3[/C][C]83.3200004257633[/C][C]-0.0200004257632855[/C][/ROW]
[ROW][C]33[/C][C]82.73[/C][C]83.3000008512548[/C][C]-0.570000851254818[/C][/ROW]
[ROW][C]34[/C][C]82.2[/C][C]82.7300242602823[/C][C]-0.530024260282303[/C][/ROW]
[ROW][C]35[/C][C]81.7[/C][C]82.2000225588052[/C][C]-0.500022558805242[/C][/ROW]
[ROW][C]36[/C][C]81.52[/C][C]81.7000212818778[/C][C]-0.180021281877757[/C][/ROW]
[ROW][C]37[/C][C]81.52[/C][C]81.5200076620361[/C][C]-7.66203612556637e-06[/C][/ROW]
[ROW][C]38[/C][C]81.55[/C][C]81.5200000003261[/C][C]0.0299999996738904[/C][/ROW]
[ROW][C]39[/C][C]81.89[/C][C]81.549998723145[/C][C]0.340001276855034[/C][/ROW]
[ROW][C]40[/C][C]81.8[/C][C]81.8899855289217[/C][C]-0.0899855289216731[/C][/ROW]
[ROW][C]41[/C][C]81.84[/C][C]81.8000038299493[/C][C]0.0399961700507419[/C][/ROW]
[ROW][C]42[/C][C]81.77[/C][C]81.8399982976896[/C][C]-0.0699982976896081[/C][/ROW]
[ROW][C]43[/C][C]81.77[/C][C]81.770002979256[/C][C]-2.97925602410487e-06[/C][/ROW]
[ROW][C]44[/C][C]82.98[/C][C]81.7700000001268[/C][C]1.20999999987320[/C][/ROW]
[ROW][C]45[/C][C]83.13[/C][C]82.9799485001794[/C][C]0.150051499820606[/C][/ROW]
[ROW][C]46[/C][C]82.84[/C][C]83.1299936135328[/C][C]-0.289993613532772[/C][/ROW]
[ROW][C]47[/C][C]82.8[/C][C]82.8400123426604[/C][C]-0.040012342660404[/C][/ROW]
[ROW][C]48[/C][C]82.8[/C][C]82.8000017029987[/C][C]-1.70299874469038e-06[/C][/ROW]
[ROW][C]49[/C][C]82.8[/C][C]82.8000000000725[/C][C]-7.24895699022454e-11[/C][/ROW]
[ROW][C]50[/C][C]82.98[/C][C]82.8[/C][C]0.180000000000007[/C][/ROW]
[ROW][C]51[/C][C]81.91[/C][C]82.9799923388697[/C][C]-1.06999233886967[/C][/ROW]
[ROW][C]52[/C][C]81.64[/C][C]81.9100455408376[/C][C]-0.270045540837614[/C][/ROW]
[ROW][C]53[/C][C]81.4[/C][C]81.6400114936338[/C][C]-0.240011493633816[/C][/ROW]
[ROW][C]54[/C][C]81.21[/C][C]81.4000102153297[/C][C]-0.190010215329664[/C][/ROW]
[ROW][C]55[/C][C]81.21[/C][C]81.2100080871835[/C][C]-8.08718347400372e-06[/C][/ROW]
[ROW][C]56[/C][C]81.23[/C][C]81.2100000003442[/C][C]0.0199999996558091[/C][/ROW]
[ROW][C]57[/C][C]81.01[/C][C]81.2299991487633[/C][C]-0.219999148763307[/C][/ROW]
[ROW][C]58[/C][C]80.55[/C][C]81.0100093635675[/C][C]-0.460009363567536[/C][/ROW]
[ROW][C]59[/C][C]80.5[/C][C]80.5500195788427[/C][C]-0.0500195788427362[/C][/ROW]
[ROW][C]60[/C][C]80.54[/C][C]80.500002128925[/C][C]0.0399978710749451[/C][/ROW]
[ROW][C]61[/C][C]80.54[/C][C]80.5399982976172[/C][C]1.7023827894036e-06[/C][/ROW]
[ROW][C]62[/C][C]80.72[/C][C]80.5399999999276[/C][C]0.180000000072440[/C][/ROW]
[ROW][C]63[/C][C]80.63[/C][C]80.7199923388696[/C][C]-0.0899923388696493[/C][/ROW]
[ROW][C]64[/C][C]80.36[/C][C]80.630003830239[/C][C]-0.270003830239091[/C][/ROW]
[ROW][C]65[/C][C]79.88[/C][C]80.3600114918585[/C][C]-0.480011491858548[/C][/ROW]
[ROW][C]66[/C][C]79.66[/C][C]79.88002043017[/C][C]-0.220020430170024[/C][/ROW]
[ROW][C]67[/C][C]79.66[/C][C]79.6600093644733[/C][C]-9.36447329991097e-06[/C][/ROW]
[ROW][C]68[/C][C]79.13[/C][C]79.6600000003986[/C][C]-0.530000000398573[/C][/ROW]
[ROW][C]69[/C][C]78.81[/C][C]79.1300225577727[/C][C]-0.320022557772688[/C][/ROW]
[ROW][C]70[/C][C]78.67[/C][C]78.8100136207474[/C][C]-0.140013620747368[/C][/ROW]
[ROW][C]71[/C][C]78.43[/C][C]78.6700059592366[/C][C]-0.240005959236640[/C][/ROW]
[ROW][C]72[/C][C]78.13[/C][C]78.4300102150941[/C][C]-0.300010215094105[/C][/ROW]
[ROW][C]73[/C][C]78.13[/C][C]78.1300127689853[/C][C]-1.27689853428592e-05[/C][/ROW]
[ROW][C]74[/C][C]78.07[/C][C]78.1300000005435[/C][C]-0.0600000005434822[/C][/ROW]
[ROW][C]75[/C][C]76.94[/C][C]78.0700025537101[/C][C]-1.13000255371013[/C][/ROW]
[ROW][C]76[/C][C]74.97[/C][C]76.9400480949825[/C][C]-1.97004809498250[/C][/ROW]
[ROW][C]77[/C][C]75[/C][C]74.9700838488624[/C][C]0.0299161511375843[/C][/ROW]
[ROW][C]78[/C][C]75.1[/C][C]74.9999987267137[/C][C]0.100001273286296[/C][/ROW]
[ROW][C]79[/C][C]75.1[/C][C]75.0999957437623[/C][C]4.25623771604933e-06[/C][/ROW]
[ROW][C]80[/C][C]75.02[/C][C]75.0999999998188[/C][C]-0.0799999998188525[/C][/ROW]
[ROW][C]81[/C][C]73.87[/C][C]75.0200034049468[/C][C]-1.15000340494680[/C][/ROW]
[ROW][C]82[/C][C]73.18[/C][C]73.8700489462554[/C][C]-0.69004894625543[/C][/ROW]
[ROW][C]83[/C][C]72.55[/C][C]73.1800293697496[/C][C]-0.630029369749565[/C][/ROW]
[ROW][C]84[/C][C]72.42[/C][C]72.5500268152062[/C][C]-0.130026815206222[/C][/ROW]
[ROW][C]85[/C][C]72.4[/C][C]72.4200055341799[/C][C]-0.0200055341798731[/C][/ROW]
[ROW][C]86[/C][C]72.45[/C][C]72.4000008514723[/C][C]0.0499991485277462[/C][/ROW]
[ROW][C]87[/C][C]71.42[/C][C]72.4499978719445[/C][C]-1.02999787194447[/C][/ROW]
[ROW][C]88[/C][C]70.89[/C][C]71.4200438385997[/C][C]-0.53004383859971[/C][/ROW]
[ROW][C]89[/C][C]70.42[/C][C]70.8900225596385[/C][C]-0.470022559638522[/C][/ROW]
[ROW][C]90[/C][C]69.57[/C][C]70.4200200050227[/C][C]-0.850020005022742[/C][/ROW]
[ROW][C]91[/C][C]69.57[/C][C]69.5700361784114[/C][C]-3.61784113920294e-05[/C][/ROW]
[ROW][C]92[/C][C]69.44[/C][C]69.5700000015398[/C][C]-0.130000001539813[/C][/ROW]
[ROW][C]93[/C][C]68.25[/C][C]69.4400055330386[/C][C]-1.19000553303863[/C][/ROW]
[ROW][C]94[/C][C]66.86[/C][C]68.2500506488194[/C][C]-1.39005064881943[/C][/ROW]
[ROW][C]95[/C][C]66.5[/C][C]66.8600591631067[/C][C]-0.360059163106683[/C][/ROW]
[ROW][C]96[/C][C]66.46[/C][C]66.5000153247788[/C][C]-0.0400153247787784[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36981&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36981&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
293.3693.89-0.530000000000001
392.2593.3600225577727-1.11002255777267
491.0792.2500472445972-1.18004724459722
590.9391.0700502249764-0.140050224976378
690.6890.9300059607946-0.250005960794596
790.6590.6800106407125-0.0300106407125185
890.690.650001277308-0.0500012773079561
990.0290.6000021281461-0.58000212814612
1089.7490.020024685955-0.280024685955013
1189.3189.7400119183645-0.430011918364528
1289.1689.3100183020964-0.150018302096427
1389.1589.1600063850542-0.0100063850542398
1488.9889.1500004258901-0.170000425890109
1588.2588.9800072355301-0.73000723553011
1687.3688.2500310704477-0.890031070447677
1787.1387.3600378813558-0.23003788135577
1886.9387.1300097908344-0.200009790834386
1986.9386.9300085127838-8.51278376501341e-06
2086.9386.9300000003623-3.6231995181879e-10
2186.9886.930.049999999999983
2286.1686.9799978719083-0.819997871908257
2385.8886.1600349006143-0.280034900614311
2485.9185.88001191879930.0299880812006990
2585.9185.90999872365221.27634777413732e-06
2685.685.9099999999457-0.309999999945674
2784.985.600013194169-0.700013194168918
2883.6784.9000297938462-1.23002979384623
2983.4183.6700523523254-0.260052352325417
3083.3383.4100110683054-0.0800110683053674
3183.3283.3300034054179-0.0100034054179048
3283.383.3200004257633-0.0200004257632855
3382.7383.3000008512548-0.570000851254818
3482.282.7300242602823-0.530024260282303
3581.782.2000225588052-0.500022558805242
3681.5281.7000212818778-0.180021281877757
3781.5281.5200076620361-7.66203612556637e-06
3881.5581.52000000032610.0299999996738904
3981.8981.5499987231450.340001276855034
4081.881.8899855289217-0.0899855289216731
4181.8481.80000382994930.0399961700507419
4281.7781.8399982976896-0.0699982976896081
4381.7781.770002979256-2.97925602410487e-06
4482.9881.77000000012681.20999999987320
4583.1382.97994850017940.150051499820606
4682.8483.1299936135328-0.289993613532772
4782.882.8400123426604-0.040012342660404
4882.882.8000017029987-1.70299874469038e-06
4982.882.8000000000725-7.24895699022454e-11
5082.9882.80.180000000000007
5181.9182.9799923388697-1.06999233886967
5281.6481.9100455408376-0.270045540837614
5381.481.6400114936338-0.240011493633816
5481.2181.4000102153297-0.190010215329664
5581.2181.2100080871835-8.08718347400372e-06
5681.2381.21000000034420.0199999996558091
5781.0181.2299991487633-0.219999148763307
5880.5581.0100093635675-0.460009363567536
5980.580.5500195788427-0.0500195788427362
6080.5480.5000021289250.0399978710749451
6180.5480.53999829761721.7023827894036e-06
6280.7280.53999999992760.180000000072440
6380.6380.7199923388696-0.0899923388696493
6480.3680.630003830239-0.270003830239091
6579.8880.3600114918585-0.480011491858548
6679.6679.88002043017-0.220020430170024
6779.6679.6600093644733-9.36447329991097e-06
6879.1379.6600000003986-0.530000000398573
6978.8179.1300225577727-0.320022557772688
7078.6778.8100136207474-0.140013620747368
7178.4378.6700059592366-0.240005959236640
7278.1378.4300102150941-0.300010215094105
7378.1378.1300127689853-1.27689853428592e-05
7478.0778.1300000005435-0.0600000005434822
7576.9478.0700025537101-1.13000255371013
7674.9776.9400480949825-1.97004809498250
777574.97008384886240.0299161511375843
7875.174.99999872671370.100001273286296
7975.175.09999574376234.25623771604933e-06
8075.0275.0999999998188-0.0799999998188525
8173.8775.0200034049468-1.15000340494680
8273.1873.8700489462554-0.69004894625543
8372.5573.1800293697496-0.630029369749565
8472.4272.5500268152062-0.130026815206222
8572.472.4200055341799-0.0200055341798731
8672.4572.40000085147230.0499991485277462
8771.4272.4499978719445-1.02999787194447
8870.8971.4200438385997-0.53004383859971
8970.4270.8900225596385-0.470022559638522
9069.5770.4200200050227-0.850020005022742
9169.5769.5700361784114-3.61784113920294e-05
9269.4469.5700000015398-0.130000001539813
9368.2569.4400055330386-1.19000553303863
9466.8668.2500506488194-1.39005064881943
9566.566.8600591631067-0.360059163106683
9666.4666.5000153247788-0.0400153247787784







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
9766.460001703125765.593175514082367.326827892169
9866.460001703125765.234150437877767.6858529683736
9966.460001703125764.958657303259867.9613461029915
10066.460001703125764.726404665314768.1935987409367
10166.460001703125764.521785416947768.3982179893036
10266.460001703125764.336795152998268.5832082532531
10366.460001703125764.166678843822468.7533245624289
10466.460001703125764.008338304634568.9116651016168
10566.460001703125763.859621518998869.0603818872525
10666.460001703125763.718961611390769.2010417948606
10766.460001703125763.585175714131469.33482769212
10866.460001703125763.457344854683769.4626585515676

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
97 & 66.4600017031257 & 65.5931755140823 & 67.326827892169 \tabularnewline
98 & 66.4600017031257 & 65.2341504378777 & 67.6858529683736 \tabularnewline
99 & 66.4600017031257 & 64.9586573032598 & 67.9613461029915 \tabularnewline
100 & 66.4600017031257 & 64.7264046653147 & 68.1935987409367 \tabularnewline
101 & 66.4600017031257 & 64.5217854169477 & 68.3982179893036 \tabularnewline
102 & 66.4600017031257 & 64.3367951529982 & 68.5832082532531 \tabularnewline
103 & 66.4600017031257 & 64.1666788438224 & 68.7533245624289 \tabularnewline
104 & 66.4600017031257 & 64.0083383046345 & 68.9116651016168 \tabularnewline
105 & 66.4600017031257 & 63.8596215189988 & 69.0603818872525 \tabularnewline
106 & 66.4600017031257 & 63.7189616113907 & 69.2010417948606 \tabularnewline
107 & 66.4600017031257 & 63.5851757141314 & 69.33482769212 \tabularnewline
108 & 66.4600017031257 & 63.4573448546837 & 69.4626585515676 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36981&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]97[/C][C]66.4600017031257[/C][C]65.5931755140823[/C][C]67.326827892169[/C][/ROW]
[ROW][C]98[/C][C]66.4600017031257[/C][C]65.2341504378777[/C][C]67.6858529683736[/C][/ROW]
[ROW][C]99[/C][C]66.4600017031257[/C][C]64.9586573032598[/C][C]67.9613461029915[/C][/ROW]
[ROW][C]100[/C][C]66.4600017031257[/C][C]64.7264046653147[/C][C]68.1935987409367[/C][/ROW]
[ROW][C]101[/C][C]66.4600017031257[/C][C]64.5217854169477[/C][C]68.3982179893036[/C][/ROW]
[ROW][C]102[/C][C]66.4600017031257[/C][C]64.3367951529982[/C][C]68.5832082532531[/C][/ROW]
[ROW][C]103[/C][C]66.4600017031257[/C][C]64.1666788438224[/C][C]68.7533245624289[/C][/ROW]
[ROW][C]104[/C][C]66.4600017031257[/C][C]64.0083383046345[/C][C]68.9116651016168[/C][/ROW]
[ROW][C]105[/C][C]66.4600017031257[/C][C]63.8596215189988[/C][C]69.0603818872525[/C][/ROW]
[ROW][C]106[/C][C]66.4600017031257[/C][C]63.7189616113907[/C][C]69.2010417948606[/C][/ROW]
[ROW][C]107[/C][C]66.4600017031257[/C][C]63.5851757141314[/C][C]69.33482769212[/C][/ROW]
[ROW][C]108[/C][C]66.4600017031257[/C][C]63.4573448546837[/C][C]69.4626585515676[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36981&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36981&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
9766.460001703125765.593175514082367.326827892169
9866.460001703125765.234150437877767.6858529683736
9966.460001703125764.958657303259867.9613461029915
10066.460001703125764.726404665314768.1935987409367
10166.460001703125764.521785416947768.3982179893036
10266.460001703125764.336795152998268.5832082532531
10366.460001703125764.166678843822468.7533245624289
10466.460001703125764.008338304634568.9116651016168
10566.460001703125763.859621518998869.0603818872525
10666.460001703125763.718961611390769.2010417948606
10766.460001703125763.585175714131469.33482769212
10866.460001703125763.457344854683769.4626585515676



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=0, beta=0)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=0)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')