Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 20 Dec 2009 11:40:45 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/20/t126133462228l8dx0jsbo7thd.htm/, Retrieved Sun, 10 Nov 2024 19:47:15 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=69980, Retrieved Sun, 10 Nov 2024 19:47:15 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact152
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2009-12-20 18:40:45] [09bbdaa13608b41d3e388e84e1f7dd72] [Current]
Feedback Forum

Post a new message
Dataseries X:
4138	613	5560
4634	611	3922
3996	594	3759
4308	595	4138
4143	591	4634
4429	589	3996
5219	584	4308
4929	573	4143
5755	567	4429
5592	569	5219
4163	621	4929
4962	629	5755
5208	628	5592
4755	612	4163
4491	595	4962
5732	597	5208
5731	593	4755
5040	590	4491
6102	580	5732
4904	574	5731
5369	573	5040
5578	573	6102
4619	620	4904
4731	626	5369
5011	620	5578
5299	588	4619
4146	566	4731
4625	557	5011
4736	561	5299
4219	549	4146
5116	532	4625
4205	526	4736
4121	511	4219
5103	499	5116
4300	555	4205
4578	565	4121
3809	542	5103
5526	527	4300
4247	510	4578
3830	514	3809
4394	517	5526
4826	508	4247
4409	493	3830
4569	490	4394
4106	469	4826
4794	478	4409
3914	528	4569
3793	534	4106
4405	518	4794
4022	506	3914
4100	502	3793
4788	516	4405
3163	528	4022
3585	533	4100
3903	536	4788
4178	537	3163
3863	524	3585
4187	536	3903




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 1793.72489341894 + 1.6063977661368X[t] + 0.427962828713485`yt-3`[t] -252.499755260931M1[t] + 603.668966609273M2[t] -90.4715413427234M3[t] + 312.032103289648M4[t] -47.4313553108066M5[t] + 234.187147811827M6[t] + 590.986007695037M7[t] + 311.521538341208M8[t] + 430.915726239081M9[t] + 618.343590382069M10[t] -185.133169059902M11[t] -9.78223844663726t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  1793.72489341894 +  1.6063977661368X[t] +  0.427962828713485`yt-3`[t] -252.499755260931M1[t] +  603.668966609273M2[t] -90.4715413427234M3[t] +  312.032103289648M4[t] -47.4313553108066M5[t] +  234.187147811827M6[t] +  590.986007695037M7[t] +  311.521538341208M8[t] +  430.915726239081M9[t] +  618.343590382069M10[t] -185.133169059902M11[t] -9.78223844663726t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  1793.72489341894 +  1.6063977661368X[t] +  0.427962828713485`yt-3`[t] -252.499755260931M1[t] +  603.668966609273M2[t] -90.4715413427234M3[t] +  312.032103289648M4[t] -47.4313553108066M5[t] +  234.187147811827M6[t] +  590.986007695037M7[t] +  311.521538341208M8[t] +  430.915726239081M9[t] +  618.343590382069M10[t] -185.133169059902M11[t] -9.78223844663726t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 1793.72489341894 + 1.6063977661368X[t] + 0.427962828713485`yt-3`[t] -252.499755260931M1[t] + 603.668966609273M2[t] -90.4715413427234M3[t] + 312.032103289648M4[t] -47.4313553108066M5[t] + 234.187147811827M6[t] + 590.986007695037M7[t] + 311.521538341208M8[t] + 430.915726239081M9[t] + 618.343590382069M10[t] -185.133169059902M11[t] -9.78223844663726t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1793.724893418942025.6731840.88550.3808150.190407
X1.60639776613683.0602660.52490.6023340.301167
`yt-3`0.4279628287134850.1296773.30020.0019480.000974
M1-252.499755260931333.21998-0.75780.4527290.226365
M2603.668966609273345.1161881.74920.0873960.043698
M3-90.4715413427234351.353336-0.25750.7980250.399013
M4312.032103289648344.5179750.90570.3701380.185069
M5-47.4313553108066339.38632-0.13980.8895050.444753
M6234.187147811827348.3527580.67230.5050080.252504
M7590.986007695037348.3547761.69650.0970190.048509
M8311.521538341208353.3271560.88170.3828520.191426
M9430.915726239081364.9101921.18090.244140.12207
M10618.343590382069360.8072951.71380.0937710.046885
M11-185.133169059902344.065913-0.53810.59330.29665
t-9.782238446637267.018747-1.39370.1705610.08528

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 1793.72489341894 & 2025.673184 & 0.8855 & 0.380815 & 0.190407 \tabularnewline
X & 1.6063977661368 & 3.060266 & 0.5249 & 0.602334 & 0.301167 \tabularnewline
`yt-3` & 0.427962828713485 & 0.129677 & 3.3002 & 0.001948 & 0.000974 \tabularnewline
M1 & -252.499755260931 & 333.21998 & -0.7578 & 0.452729 & 0.226365 \tabularnewline
M2 & 603.668966609273 & 345.116188 & 1.7492 & 0.087396 & 0.043698 \tabularnewline
M3 & -90.4715413427234 & 351.353336 & -0.2575 & 0.798025 & 0.399013 \tabularnewline
M4 & 312.032103289648 & 344.517975 & 0.9057 & 0.370138 & 0.185069 \tabularnewline
M5 & -47.4313553108066 & 339.38632 & -0.1398 & 0.889505 & 0.444753 \tabularnewline
M6 & 234.187147811827 & 348.352758 & 0.6723 & 0.505008 & 0.252504 \tabularnewline
M7 & 590.986007695037 & 348.354776 & 1.6965 & 0.097019 & 0.048509 \tabularnewline
M8 & 311.521538341208 & 353.327156 & 0.8817 & 0.382852 & 0.191426 \tabularnewline
M9 & 430.915726239081 & 364.910192 & 1.1809 & 0.24414 & 0.12207 \tabularnewline
M10 & 618.343590382069 & 360.807295 & 1.7138 & 0.093771 & 0.046885 \tabularnewline
M11 & -185.133169059902 & 344.065913 & -0.5381 & 0.5933 & 0.29665 \tabularnewline
t & -9.78223844663726 & 7.018747 & -1.3937 & 0.170561 & 0.08528 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]1793.72489341894[/C][C]2025.673184[/C][C]0.8855[/C][C]0.380815[/C][C]0.190407[/C][/ROW]
[ROW][C]X[/C][C]1.6063977661368[/C][C]3.060266[/C][C]0.5249[/C][C]0.602334[/C][C]0.301167[/C][/ROW]
[ROW][C]`yt-3`[/C][C]0.427962828713485[/C][C]0.129677[/C][C]3.3002[/C][C]0.001948[/C][C]0.000974[/C][/ROW]
[ROW][C]M1[/C][C]-252.499755260931[/C][C]333.21998[/C][C]-0.7578[/C][C]0.452729[/C][C]0.226365[/C][/ROW]
[ROW][C]M2[/C][C]603.668966609273[/C][C]345.116188[/C][C]1.7492[/C][C]0.087396[/C][C]0.043698[/C][/ROW]
[ROW][C]M3[/C][C]-90.4715413427234[/C][C]351.353336[/C][C]-0.2575[/C][C]0.798025[/C][C]0.399013[/C][/ROW]
[ROW][C]M4[/C][C]312.032103289648[/C][C]344.517975[/C][C]0.9057[/C][C]0.370138[/C][C]0.185069[/C][/ROW]
[ROW][C]M5[/C][C]-47.4313553108066[/C][C]339.38632[/C][C]-0.1398[/C][C]0.889505[/C][C]0.444753[/C][/ROW]
[ROW][C]M6[/C][C]234.187147811827[/C][C]348.352758[/C][C]0.6723[/C][C]0.505008[/C][C]0.252504[/C][/ROW]
[ROW][C]M7[/C][C]590.986007695037[/C][C]348.354776[/C][C]1.6965[/C][C]0.097019[/C][C]0.048509[/C][/ROW]
[ROW][C]M8[/C][C]311.521538341208[/C][C]353.327156[/C][C]0.8817[/C][C]0.382852[/C][C]0.191426[/C][/ROW]
[ROW][C]M9[/C][C]430.915726239081[/C][C]364.910192[/C][C]1.1809[/C][C]0.24414[/C][C]0.12207[/C][/ROW]
[ROW][C]M10[/C][C]618.343590382069[/C][C]360.807295[/C][C]1.7138[/C][C]0.093771[/C][C]0.046885[/C][/ROW]
[ROW][C]M11[/C][C]-185.133169059902[/C][C]344.065913[/C][C]-0.5381[/C][C]0.5933[/C][C]0.29665[/C][/ROW]
[ROW][C]t[/C][C]-9.78223844663726[/C][C]7.018747[/C][C]-1.3937[/C][C]0.170561[/C][C]0.08528[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1793.724893418942025.6731840.88550.3808150.190407
X1.60639776613683.0602660.52490.6023340.301167
`yt-3`0.4279628287134850.1296773.30020.0019480.000974
M1-252.499755260931333.21998-0.75780.4527290.226365
M2603.668966609273345.1161881.74920.0873960.043698
M3-90.4715413427234351.353336-0.25750.7980250.399013
M4312.032103289648344.5179750.90570.3701380.185069
M5-47.4313553108066339.38632-0.13980.8895050.444753
M6234.187147811827348.3527580.67230.5050080.252504
M7590.986007695037348.3547761.69650.0970190.048509
M8311.521538341208353.3271560.88170.3828520.191426
M9430.915726239081364.9101921.18090.244140.12207
M10618.343590382069360.8072951.71380.0937710.046885
M11-185.133169059902344.065913-0.53810.59330.29665
t-9.782238446637267.018747-1.39370.1705610.08528







Multiple Linear Regression - Regression Statistics
Multiple R0.736405222894403
R-squared0.542292652306156
Adjusted R-squared0.393271655382578
F-TEST (value)3.63903519303565
F-TEST (DF numerator)14
F-TEST (DF denominator)43
p-value0.000545270742913884
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation483.846579610374
Sum Squared Residuals10066623.0418283

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.736405222894403 \tabularnewline
R-squared & 0.542292652306156 \tabularnewline
Adjusted R-squared & 0.393271655382578 \tabularnewline
F-TEST (value) & 3.63903519303565 \tabularnewline
F-TEST (DF numerator) & 14 \tabularnewline
F-TEST (DF denominator) & 43 \tabularnewline
p-value & 0.000545270742913884 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 483.846579610374 \tabularnewline
Sum Squared Residuals & 10066623.0418283 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.736405222894403[/C][/ROW]
[ROW][C]R-squared[/C][C]0.542292652306156[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.393271655382578[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]3.63903519303565[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]14[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]43[/C][/ROW]
[ROW][C]p-value[/C][C]0.000545270742913884[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]483.846579610374[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]10066623.0418283[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.736405222894403
R-squared0.542292652306156
Adjusted R-squared0.393271655382578
F-TEST (value)3.63903519303565
F-TEST (DF numerator)14
F-TEST (DF denominator)43
p-value0.000545270742913884
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation483.846579610374
Sum Squared Residuals10066623.0418283







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
141384895.63805800023-757.638058000227
246345037.80863245882-403.808632458819
339964236.81918295556-240.819182955560
443084793.34489898984-485.344898989843
541434629.94317392009-486.943173920093
644294625.52635834461-196.526358344613
752195098.03539350911120.964606490892
849294720.50444354341208.495556456587
957554942.87537540988812.124624590116
1055925461.82443132216130.175568677837
1141634607.98889694576-444.988896945757
1249625149.68830620546-187.688306205456
1352084816.04197365145391.958026348548
1447555025.16721058526-270.167210585259
1544914635.87800230437-144.878002304375
1657325137.0910598859594.9089401141
1757314567.552610367051163.44738963295
1850404721.58749496428318.412505035723
1961025583.64200917292518.357990827083
2049045284.32895194692-380.328951946917
2153695096.612188991272.387811009003
2255785728.75433878107-150.754338781071
2346194478.29656710214140.703432897865
2447314862.28859966399-131.288599663992
2550114679.81245056072331.187549439278
2652995064.37785273168234.622147268322
2741464373.04619229394-227.046192293945
2846254871.13961062422-246.139610624224
2947364631.57279931116104.427200688837
3042194390.69114928687-171.691149286869
3151164915.39320365288200.606796347124
3242054664.01198324279-459.011983242786
3341214528.27118375710-407.271183757097
3451035070.522693615832.4773063841965
3543003957.34783367287342.65216632713
3645784112.81386433557465.18613566443
3738094233.8442198035-424.844219803498
3855264712.48058527808813.519414721915
3942474100.22274323747146.777256762526
4038304170.26632520708-340.266325207084
4143944540.65199835946-146.651998359458
4248264250.66622521567575.333774784325
4344094395.1263805866713.8736194133276
4445694342.4315148822226.568485117798
4541064603.18905324879-497.18905324879
4647944616.83175926685177.168240733150
4739143952.36670227924-38.3667022792384
4837933939.20922979498-146.209229794980
4944053945.6632979841459.336702015899
5040224396.16571894616-374.165718946159
5141003634.03387920865465.966120791354
5247884311.15810529295476.841894707051
5331633797.27941804223-634.279418042234
5435854110.52877218857-525.528772188566
5539034756.80301307843-853.803013078426
5641783773.72310638468404.276893615317
5738634043.05219859323-180.052198593231
5841874376.06677701411-189.066777014113

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 4138 & 4895.63805800023 & -757.638058000227 \tabularnewline
2 & 4634 & 5037.80863245882 & -403.808632458819 \tabularnewline
3 & 3996 & 4236.81918295556 & -240.819182955560 \tabularnewline
4 & 4308 & 4793.34489898984 & -485.344898989843 \tabularnewline
5 & 4143 & 4629.94317392009 & -486.943173920093 \tabularnewline
6 & 4429 & 4625.52635834461 & -196.526358344613 \tabularnewline
7 & 5219 & 5098.03539350911 & 120.964606490892 \tabularnewline
8 & 4929 & 4720.50444354341 & 208.495556456587 \tabularnewline
9 & 5755 & 4942.87537540988 & 812.124624590116 \tabularnewline
10 & 5592 & 5461.82443132216 & 130.175568677837 \tabularnewline
11 & 4163 & 4607.98889694576 & -444.988896945757 \tabularnewline
12 & 4962 & 5149.68830620546 & -187.688306205456 \tabularnewline
13 & 5208 & 4816.04197365145 & 391.958026348548 \tabularnewline
14 & 4755 & 5025.16721058526 & -270.167210585259 \tabularnewline
15 & 4491 & 4635.87800230437 & -144.878002304375 \tabularnewline
16 & 5732 & 5137.0910598859 & 594.9089401141 \tabularnewline
17 & 5731 & 4567.55261036705 & 1163.44738963295 \tabularnewline
18 & 5040 & 4721.58749496428 & 318.412505035723 \tabularnewline
19 & 6102 & 5583.64200917292 & 518.357990827083 \tabularnewline
20 & 4904 & 5284.32895194692 & -380.328951946917 \tabularnewline
21 & 5369 & 5096.612188991 & 272.387811009003 \tabularnewline
22 & 5578 & 5728.75433878107 & -150.754338781071 \tabularnewline
23 & 4619 & 4478.29656710214 & 140.703432897865 \tabularnewline
24 & 4731 & 4862.28859966399 & -131.288599663992 \tabularnewline
25 & 5011 & 4679.81245056072 & 331.187549439278 \tabularnewline
26 & 5299 & 5064.37785273168 & 234.622147268322 \tabularnewline
27 & 4146 & 4373.04619229394 & -227.046192293945 \tabularnewline
28 & 4625 & 4871.13961062422 & -246.139610624224 \tabularnewline
29 & 4736 & 4631.57279931116 & 104.427200688837 \tabularnewline
30 & 4219 & 4390.69114928687 & -171.691149286869 \tabularnewline
31 & 5116 & 4915.39320365288 & 200.606796347124 \tabularnewline
32 & 4205 & 4664.01198324279 & -459.011983242786 \tabularnewline
33 & 4121 & 4528.27118375710 & -407.271183757097 \tabularnewline
34 & 5103 & 5070.5226936158 & 32.4773063841965 \tabularnewline
35 & 4300 & 3957.34783367287 & 342.65216632713 \tabularnewline
36 & 4578 & 4112.81386433557 & 465.18613566443 \tabularnewline
37 & 3809 & 4233.8442198035 & -424.844219803498 \tabularnewline
38 & 5526 & 4712.48058527808 & 813.519414721915 \tabularnewline
39 & 4247 & 4100.22274323747 & 146.777256762526 \tabularnewline
40 & 3830 & 4170.26632520708 & -340.266325207084 \tabularnewline
41 & 4394 & 4540.65199835946 & -146.651998359458 \tabularnewline
42 & 4826 & 4250.66622521567 & 575.333774784325 \tabularnewline
43 & 4409 & 4395.12638058667 & 13.8736194133276 \tabularnewline
44 & 4569 & 4342.4315148822 & 226.568485117798 \tabularnewline
45 & 4106 & 4603.18905324879 & -497.18905324879 \tabularnewline
46 & 4794 & 4616.83175926685 & 177.168240733150 \tabularnewline
47 & 3914 & 3952.36670227924 & -38.3667022792384 \tabularnewline
48 & 3793 & 3939.20922979498 & -146.209229794980 \tabularnewline
49 & 4405 & 3945.6632979841 & 459.336702015899 \tabularnewline
50 & 4022 & 4396.16571894616 & -374.165718946159 \tabularnewline
51 & 4100 & 3634.03387920865 & 465.966120791354 \tabularnewline
52 & 4788 & 4311.15810529295 & 476.841894707051 \tabularnewline
53 & 3163 & 3797.27941804223 & -634.279418042234 \tabularnewline
54 & 3585 & 4110.52877218857 & -525.528772188566 \tabularnewline
55 & 3903 & 4756.80301307843 & -853.803013078426 \tabularnewline
56 & 4178 & 3773.72310638468 & 404.276893615317 \tabularnewline
57 & 3863 & 4043.05219859323 & -180.052198593231 \tabularnewline
58 & 4187 & 4376.06677701411 & -189.066777014113 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]4138[/C][C]4895.63805800023[/C][C]-757.638058000227[/C][/ROW]
[ROW][C]2[/C][C]4634[/C][C]5037.80863245882[/C][C]-403.808632458819[/C][/ROW]
[ROW][C]3[/C][C]3996[/C][C]4236.81918295556[/C][C]-240.819182955560[/C][/ROW]
[ROW][C]4[/C][C]4308[/C][C]4793.34489898984[/C][C]-485.344898989843[/C][/ROW]
[ROW][C]5[/C][C]4143[/C][C]4629.94317392009[/C][C]-486.943173920093[/C][/ROW]
[ROW][C]6[/C][C]4429[/C][C]4625.52635834461[/C][C]-196.526358344613[/C][/ROW]
[ROW][C]7[/C][C]5219[/C][C]5098.03539350911[/C][C]120.964606490892[/C][/ROW]
[ROW][C]8[/C][C]4929[/C][C]4720.50444354341[/C][C]208.495556456587[/C][/ROW]
[ROW][C]9[/C][C]5755[/C][C]4942.87537540988[/C][C]812.124624590116[/C][/ROW]
[ROW][C]10[/C][C]5592[/C][C]5461.82443132216[/C][C]130.175568677837[/C][/ROW]
[ROW][C]11[/C][C]4163[/C][C]4607.98889694576[/C][C]-444.988896945757[/C][/ROW]
[ROW][C]12[/C][C]4962[/C][C]5149.68830620546[/C][C]-187.688306205456[/C][/ROW]
[ROW][C]13[/C][C]5208[/C][C]4816.04197365145[/C][C]391.958026348548[/C][/ROW]
[ROW][C]14[/C][C]4755[/C][C]5025.16721058526[/C][C]-270.167210585259[/C][/ROW]
[ROW][C]15[/C][C]4491[/C][C]4635.87800230437[/C][C]-144.878002304375[/C][/ROW]
[ROW][C]16[/C][C]5732[/C][C]5137.0910598859[/C][C]594.9089401141[/C][/ROW]
[ROW][C]17[/C][C]5731[/C][C]4567.55261036705[/C][C]1163.44738963295[/C][/ROW]
[ROW][C]18[/C][C]5040[/C][C]4721.58749496428[/C][C]318.412505035723[/C][/ROW]
[ROW][C]19[/C][C]6102[/C][C]5583.64200917292[/C][C]518.357990827083[/C][/ROW]
[ROW][C]20[/C][C]4904[/C][C]5284.32895194692[/C][C]-380.328951946917[/C][/ROW]
[ROW][C]21[/C][C]5369[/C][C]5096.612188991[/C][C]272.387811009003[/C][/ROW]
[ROW][C]22[/C][C]5578[/C][C]5728.75433878107[/C][C]-150.754338781071[/C][/ROW]
[ROW][C]23[/C][C]4619[/C][C]4478.29656710214[/C][C]140.703432897865[/C][/ROW]
[ROW][C]24[/C][C]4731[/C][C]4862.28859966399[/C][C]-131.288599663992[/C][/ROW]
[ROW][C]25[/C][C]5011[/C][C]4679.81245056072[/C][C]331.187549439278[/C][/ROW]
[ROW][C]26[/C][C]5299[/C][C]5064.37785273168[/C][C]234.622147268322[/C][/ROW]
[ROW][C]27[/C][C]4146[/C][C]4373.04619229394[/C][C]-227.046192293945[/C][/ROW]
[ROW][C]28[/C][C]4625[/C][C]4871.13961062422[/C][C]-246.139610624224[/C][/ROW]
[ROW][C]29[/C][C]4736[/C][C]4631.57279931116[/C][C]104.427200688837[/C][/ROW]
[ROW][C]30[/C][C]4219[/C][C]4390.69114928687[/C][C]-171.691149286869[/C][/ROW]
[ROW][C]31[/C][C]5116[/C][C]4915.39320365288[/C][C]200.606796347124[/C][/ROW]
[ROW][C]32[/C][C]4205[/C][C]4664.01198324279[/C][C]-459.011983242786[/C][/ROW]
[ROW][C]33[/C][C]4121[/C][C]4528.27118375710[/C][C]-407.271183757097[/C][/ROW]
[ROW][C]34[/C][C]5103[/C][C]5070.5226936158[/C][C]32.4773063841965[/C][/ROW]
[ROW][C]35[/C][C]4300[/C][C]3957.34783367287[/C][C]342.65216632713[/C][/ROW]
[ROW][C]36[/C][C]4578[/C][C]4112.81386433557[/C][C]465.18613566443[/C][/ROW]
[ROW][C]37[/C][C]3809[/C][C]4233.8442198035[/C][C]-424.844219803498[/C][/ROW]
[ROW][C]38[/C][C]5526[/C][C]4712.48058527808[/C][C]813.519414721915[/C][/ROW]
[ROW][C]39[/C][C]4247[/C][C]4100.22274323747[/C][C]146.777256762526[/C][/ROW]
[ROW][C]40[/C][C]3830[/C][C]4170.26632520708[/C][C]-340.266325207084[/C][/ROW]
[ROW][C]41[/C][C]4394[/C][C]4540.65199835946[/C][C]-146.651998359458[/C][/ROW]
[ROW][C]42[/C][C]4826[/C][C]4250.66622521567[/C][C]575.333774784325[/C][/ROW]
[ROW][C]43[/C][C]4409[/C][C]4395.12638058667[/C][C]13.8736194133276[/C][/ROW]
[ROW][C]44[/C][C]4569[/C][C]4342.4315148822[/C][C]226.568485117798[/C][/ROW]
[ROW][C]45[/C][C]4106[/C][C]4603.18905324879[/C][C]-497.18905324879[/C][/ROW]
[ROW][C]46[/C][C]4794[/C][C]4616.83175926685[/C][C]177.168240733150[/C][/ROW]
[ROW][C]47[/C][C]3914[/C][C]3952.36670227924[/C][C]-38.3667022792384[/C][/ROW]
[ROW][C]48[/C][C]3793[/C][C]3939.20922979498[/C][C]-146.209229794980[/C][/ROW]
[ROW][C]49[/C][C]4405[/C][C]3945.6632979841[/C][C]459.336702015899[/C][/ROW]
[ROW][C]50[/C][C]4022[/C][C]4396.16571894616[/C][C]-374.165718946159[/C][/ROW]
[ROW][C]51[/C][C]4100[/C][C]3634.03387920865[/C][C]465.966120791354[/C][/ROW]
[ROW][C]52[/C][C]4788[/C][C]4311.15810529295[/C][C]476.841894707051[/C][/ROW]
[ROW][C]53[/C][C]3163[/C][C]3797.27941804223[/C][C]-634.279418042234[/C][/ROW]
[ROW][C]54[/C][C]3585[/C][C]4110.52877218857[/C][C]-525.528772188566[/C][/ROW]
[ROW][C]55[/C][C]3903[/C][C]4756.80301307843[/C][C]-853.803013078426[/C][/ROW]
[ROW][C]56[/C][C]4178[/C][C]3773.72310638468[/C][C]404.276893615317[/C][/ROW]
[ROW][C]57[/C][C]3863[/C][C]4043.05219859323[/C][C]-180.052198593231[/C][/ROW]
[ROW][C]58[/C][C]4187[/C][C]4376.06677701411[/C][C]-189.066777014113[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
141384895.63805800023-757.638058000227
246345037.80863245882-403.808632458819
339964236.81918295556-240.819182955560
443084793.34489898984-485.344898989843
541434629.94317392009-486.943173920093
644294625.52635834461-196.526358344613
752195098.03539350911120.964606490892
849294720.50444354341208.495556456587
957554942.87537540988812.124624590116
1055925461.82443132216130.175568677837
1141634607.98889694576-444.988896945757
1249625149.68830620546-187.688306205456
1352084816.04197365145391.958026348548
1447555025.16721058526-270.167210585259
1544914635.87800230437-144.878002304375
1657325137.0910598859594.9089401141
1757314567.552610367051163.44738963295
1850404721.58749496428318.412505035723
1961025583.64200917292518.357990827083
2049045284.32895194692-380.328951946917
2153695096.612188991272.387811009003
2255785728.75433878107-150.754338781071
2346194478.29656710214140.703432897865
2447314862.28859966399-131.288599663992
2550114679.81245056072331.187549439278
2652995064.37785273168234.622147268322
2741464373.04619229394-227.046192293945
2846254871.13961062422-246.139610624224
2947364631.57279931116104.427200688837
3042194390.69114928687-171.691149286869
3151164915.39320365288200.606796347124
3242054664.01198324279-459.011983242786
3341214528.27118375710-407.271183757097
3451035070.522693615832.4773063841965
3543003957.34783367287342.65216632713
3645784112.81386433557465.18613566443
3738094233.8442198035-424.844219803498
3855264712.48058527808813.519414721915
3942474100.22274323747146.777256762526
4038304170.26632520708-340.266325207084
4143944540.65199835946-146.651998359458
4248264250.66622521567575.333774784325
4344094395.1263805866713.8736194133276
4445694342.4315148822226.568485117798
4541064603.18905324879-497.18905324879
4647944616.83175926685177.168240733150
4739143952.36670227924-38.3667022792384
4837933939.20922979498-146.209229794980
4944053945.6632979841459.336702015899
5040224396.16571894616-374.165718946159
5141003634.03387920865465.966120791354
5247884311.15810529295476.841894707051
5331633797.27941804223-634.279418042234
5435854110.52877218857-525.528772188566
5539034756.80301307843-853.803013078426
5641783773.72310638468404.276893615317
5738634043.05219859323-180.052198593231
5841874376.06677701411-189.066777014113







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
180.7211119754779360.5577760490441280.278888024522064
190.6155049319175050.7689901361649890.384495068082495
200.6311140430461270.7377719139077460.368885956953873
210.7956107756919230.4087784486161530.204389224308077
220.7425274849813390.5149450300373220.257472515018661
230.6616971898623160.6766056202753690.338302810137684
240.6490709637406190.7018580725187630.350929036259381
250.5782282749442560.8435434501114880.421771725055744
260.4880479478629060.9760958957258130.511952052137094
270.4221529386474640.8443058772949280.577847061352536
280.3366619774251420.6733239548502830.663338022574858
290.2761173738770170.5522347477540340.723882626122983
300.2055006300613310.4110012601226620.794499369938669
310.1640393401108480.3280786802216970.835960659889152
320.1569602196164690.3139204392329370.843039780383531
330.1290681921070190.2581363842140370.870931807892981
340.1231677381600730.2463354763201460.876832261839927
350.1146254339183260.2292508678366530.885374566081674
360.09120006910862440.1824001382172490.908799930891376
370.1126306870927820.2252613741855640.887369312907218
380.2951298423655640.5902596847311280.704870157634436
390.1986295377954860.3972590755909720.801370462204514
400.9239320166994680.1521359666010640.0760679833005322

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
18 & 0.721111975477936 & 0.557776049044128 & 0.278888024522064 \tabularnewline
19 & 0.615504931917505 & 0.768990136164989 & 0.384495068082495 \tabularnewline
20 & 0.631114043046127 & 0.737771913907746 & 0.368885956953873 \tabularnewline
21 & 0.795610775691923 & 0.408778448616153 & 0.204389224308077 \tabularnewline
22 & 0.742527484981339 & 0.514945030037322 & 0.257472515018661 \tabularnewline
23 & 0.661697189862316 & 0.676605620275369 & 0.338302810137684 \tabularnewline
24 & 0.649070963740619 & 0.701858072518763 & 0.350929036259381 \tabularnewline
25 & 0.578228274944256 & 0.843543450111488 & 0.421771725055744 \tabularnewline
26 & 0.488047947862906 & 0.976095895725813 & 0.511952052137094 \tabularnewline
27 & 0.422152938647464 & 0.844305877294928 & 0.577847061352536 \tabularnewline
28 & 0.336661977425142 & 0.673323954850283 & 0.663338022574858 \tabularnewline
29 & 0.276117373877017 & 0.552234747754034 & 0.723882626122983 \tabularnewline
30 & 0.205500630061331 & 0.411001260122662 & 0.794499369938669 \tabularnewline
31 & 0.164039340110848 & 0.328078680221697 & 0.835960659889152 \tabularnewline
32 & 0.156960219616469 & 0.313920439232937 & 0.843039780383531 \tabularnewline
33 & 0.129068192107019 & 0.258136384214037 & 0.870931807892981 \tabularnewline
34 & 0.123167738160073 & 0.246335476320146 & 0.876832261839927 \tabularnewline
35 & 0.114625433918326 & 0.229250867836653 & 0.885374566081674 \tabularnewline
36 & 0.0912000691086244 & 0.182400138217249 & 0.908799930891376 \tabularnewline
37 & 0.112630687092782 & 0.225261374185564 & 0.887369312907218 \tabularnewline
38 & 0.295129842365564 & 0.590259684731128 & 0.704870157634436 \tabularnewline
39 & 0.198629537795486 & 0.397259075590972 & 0.801370462204514 \tabularnewline
40 & 0.923932016699468 & 0.152135966601064 & 0.0760679833005322 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]18[/C][C]0.721111975477936[/C][C]0.557776049044128[/C][C]0.278888024522064[/C][/ROW]
[ROW][C]19[/C][C]0.615504931917505[/C][C]0.768990136164989[/C][C]0.384495068082495[/C][/ROW]
[ROW][C]20[/C][C]0.631114043046127[/C][C]0.737771913907746[/C][C]0.368885956953873[/C][/ROW]
[ROW][C]21[/C][C]0.795610775691923[/C][C]0.408778448616153[/C][C]0.204389224308077[/C][/ROW]
[ROW][C]22[/C][C]0.742527484981339[/C][C]0.514945030037322[/C][C]0.257472515018661[/C][/ROW]
[ROW][C]23[/C][C]0.661697189862316[/C][C]0.676605620275369[/C][C]0.338302810137684[/C][/ROW]
[ROW][C]24[/C][C]0.649070963740619[/C][C]0.701858072518763[/C][C]0.350929036259381[/C][/ROW]
[ROW][C]25[/C][C]0.578228274944256[/C][C]0.843543450111488[/C][C]0.421771725055744[/C][/ROW]
[ROW][C]26[/C][C]0.488047947862906[/C][C]0.976095895725813[/C][C]0.511952052137094[/C][/ROW]
[ROW][C]27[/C][C]0.422152938647464[/C][C]0.844305877294928[/C][C]0.577847061352536[/C][/ROW]
[ROW][C]28[/C][C]0.336661977425142[/C][C]0.673323954850283[/C][C]0.663338022574858[/C][/ROW]
[ROW][C]29[/C][C]0.276117373877017[/C][C]0.552234747754034[/C][C]0.723882626122983[/C][/ROW]
[ROW][C]30[/C][C]0.205500630061331[/C][C]0.411001260122662[/C][C]0.794499369938669[/C][/ROW]
[ROW][C]31[/C][C]0.164039340110848[/C][C]0.328078680221697[/C][C]0.835960659889152[/C][/ROW]
[ROW][C]32[/C][C]0.156960219616469[/C][C]0.313920439232937[/C][C]0.843039780383531[/C][/ROW]
[ROW][C]33[/C][C]0.129068192107019[/C][C]0.258136384214037[/C][C]0.870931807892981[/C][/ROW]
[ROW][C]34[/C][C]0.123167738160073[/C][C]0.246335476320146[/C][C]0.876832261839927[/C][/ROW]
[ROW][C]35[/C][C]0.114625433918326[/C][C]0.229250867836653[/C][C]0.885374566081674[/C][/ROW]
[ROW][C]36[/C][C]0.0912000691086244[/C][C]0.182400138217249[/C][C]0.908799930891376[/C][/ROW]
[ROW][C]37[/C][C]0.112630687092782[/C][C]0.225261374185564[/C][C]0.887369312907218[/C][/ROW]
[ROW][C]38[/C][C]0.295129842365564[/C][C]0.590259684731128[/C][C]0.704870157634436[/C][/ROW]
[ROW][C]39[/C][C]0.198629537795486[/C][C]0.397259075590972[/C][C]0.801370462204514[/C][/ROW]
[ROW][C]40[/C][C]0.923932016699468[/C][C]0.152135966601064[/C][C]0.0760679833005322[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
180.7211119754779360.5577760490441280.278888024522064
190.6155049319175050.7689901361649890.384495068082495
200.6311140430461270.7377719139077460.368885956953873
210.7956107756919230.4087784486161530.204389224308077
220.7425274849813390.5149450300373220.257472515018661
230.6616971898623160.6766056202753690.338302810137684
240.6490709637406190.7018580725187630.350929036259381
250.5782282749442560.8435434501114880.421771725055744
260.4880479478629060.9760958957258130.511952052137094
270.4221529386474640.8443058772949280.577847061352536
280.3366619774251420.6733239548502830.663338022574858
290.2761173738770170.5522347477540340.723882626122983
300.2055006300613310.4110012601226620.794499369938669
310.1640393401108480.3280786802216970.835960659889152
320.1569602196164690.3139204392329370.843039780383531
330.1290681921070190.2581363842140370.870931807892981
340.1231677381600730.2463354763201460.876832261839927
350.1146254339183260.2292508678366530.885374566081674
360.09120006910862440.1824001382172490.908799930891376
370.1126306870927820.2252613741855640.887369312907218
380.2951298423655640.5902596847311280.704870157634436
390.1986295377954860.3972590755909720.801370462204514
400.9239320166994680.1521359666010640.0760679833005322







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69980&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69980&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69980&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}