Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 26 Jan 2010 01:10:08 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Jan/26/t1264493552vpokvo2x53s2w2j.htm/, Retrieved Fri, 01 Nov 2024 00:10:17 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=72524, Retrieved Fri, 01 Nov 2024 00:10:17 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact182
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Partial Correlation] [CVM Paper: Partia...] [2009-12-17 09:09:51] [03d5b865e91ca35b5a5d21b8d6da5aba]
- RMPD  [Multiple Regression] [CVM Paper: Multip...] [2009-12-17 11:25:28] [03d5b865e91ca35b5a5d21b8d6da5aba]
-   PD    [Multiple Regression] [CVM Paper: Multip...] [2009-12-17 11:28:53] [03d5b865e91ca35b5a5d21b8d6da5aba]
-             [Multiple Regression] [] [2010-01-26 08:10:08] [ee8fc1691ecec7724e0ca78f0c288737] [Current]
Feedback Forum

Post a new message
Dataseries X:
25.6	7.4	1.8
23.7	7.1	2.7
22	6.8	2.3
21.3	6.9	1.9
20.7	7.2	2
20.4	7.4	2.3
20.3	7.3	2.8
20.4	6.9	2.4
19.8	6.9	2.3
19.5	6.8	2.7
23.1	7.1	2.7
23.5	7.2	2.9
23.5	7.1	3
22.9	7	2.2
21.9	6.9	2.3
21.5	7.1	2.8
20.5	7.3	2.8
20.2	7.5	2.8
19.4	7.5	2.2
19.2	7.5	2.6
18.8	7.3	2.8
18.8	7	2.5
22.6	6.7	2.4
23.3	6.5	2.3
23	6.5	1.9
21.4	6.5	1.7
19.9	6.6	2
18.8	6.8	2.1
18.6	6.9	1.7
18.4	6.9	1.8
18.6	6.8	1.8
19.9	6.8	1.8
19.2	6.5	1.3
18.4	6.1	1.3
21.1	6.1	1.3
20.5	5.9	1.2
19.1	5.7	1.4
18.1	5.9	2.2
17	5.9	2.9
17.1	6.1	3.1
17.4	6.3	3.5
16.8	6.2	3.6
15.3	5.9	4.4
14.3	5.7	4.1
13.4	5.4	5.1
15.3	5.6	5.8
22.1	6.2	5.9
23.7	6.3	5.4
22.2	6	5.5
19.5	5.6	4.8
16.6	5.5	3.2
17.3	5.9	2.7
19.8	6.5	2.1
21.2	6.8	1.9
21.5	6.8	0.6
20.6	6.5	0.7
19.1	6.2	-0.2
19.6	6.2	-1
23.5	6.5	-1.7
24	6.7	-0.7




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
W<25j[t] = + 6.0283260818606 + 2.69535910941759`W>25j`[t] -0.271201565433912Inflatie[t] -0.238306399471402M1[t] -1.47486330634128M2[t] -2.94805085936598M3[t] -3.82645389474653M4[t] -4.40827460192685M5[t] -4.71544560113093M6[t] -4.85845387804123M7[t] -4.52413730096343M8[t] -4.76743039081759M9[t] -4.18398729768748M10[t] -0.54712015654339M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
W<25j[t] =  +  6.0283260818606 +  2.69535910941759`W>25j`[t] -0.271201565433912Inflatie[t] -0.238306399471402M1[t] -1.47486330634128M2[t] -2.94805085936598M3[t] -3.82645389474653M4[t] -4.40827460192685M5[t] -4.71544560113093M6[t] -4.85845387804123M7[t] -4.52413730096343M8[t] -4.76743039081759M9[t] -4.18398729768748M10[t] -0.54712015654339M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]W<25j[t] =  +  6.0283260818606 +  2.69535910941759`W>25j`[t] -0.271201565433912Inflatie[t] -0.238306399471402M1[t] -1.47486330634128M2[t] -2.94805085936598M3[t] -3.82645389474653M4[t] -4.40827460192685M5[t] -4.71544560113093M6[t] -4.85845387804123M7[t] -4.52413730096343M8[t] -4.76743039081759M9[t] -4.18398729768748M10[t] -0.54712015654339M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
W<25j[t] = + 6.0283260818606 + 2.69535910941759`W>25j`[t] -0.271201565433912Inflatie[t] -0.238306399471402M1[t] -1.47486330634128M2[t] -2.94805085936598M3[t] -3.82645389474653M4[t] -4.40827460192685M5[t] -4.71544560113093M6[t] -4.85845387804123M7[t] -4.52413730096343M8[t] -4.76743039081759M9[t] -4.18398729768748M10[t] -0.54712015654339M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)6.02832608186062.098382.87280.0061360.003068
`W>25j`2.695359109417590.2995668.997600
Inflatie-0.2712015654339120.107819-2.51530.0154480.007724
M1-0.2383063994714020.740577-0.32180.7490730.374537
M2-1.474863306341280.740435-1.99190.0523390.02617
M3-2.948050859365980.740542-3.98090.0002420.000121
M4-3.826453894746530.739417-5.1755e-062e-06
M5-4.408274601926850.745741-5.911300
M6-4.715445601130930.75202-6.270400
M7-4.858453878041230.74618-6.511100
M8-4.524137300963430.740292-6.111300
M9-4.767430390817590.738669-6.454100
M10-4.183987297687480.740359-5.65131e-060
M11-0.547120156543390.738546-0.74080.4625750.231288

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 6.0283260818606 & 2.09838 & 2.8728 & 0.006136 & 0.003068 \tabularnewline
`W>25j` & 2.69535910941759 & 0.299566 & 8.9976 & 0 & 0 \tabularnewline
Inflatie & -0.271201565433912 & 0.107819 & -2.5153 & 0.015448 & 0.007724 \tabularnewline
M1 & -0.238306399471402 & 0.740577 & -0.3218 & 0.749073 & 0.374537 \tabularnewline
M2 & -1.47486330634128 & 0.740435 & -1.9919 & 0.052339 & 0.02617 \tabularnewline
M3 & -2.94805085936598 & 0.740542 & -3.9809 & 0.000242 & 0.000121 \tabularnewline
M4 & -3.82645389474653 & 0.739417 & -5.175 & 5e-06 & 2e-06 \tabularnewline
M5 & -4.40827460192685 & 0.745741 & -5.9113 & 0 & 0 \tabularnewline
M6 & -4.71544560113093 & 0.75202 & -6.2704 & 0 & 0 \tabularnewline
M7 & -4.85845387804123 & 0.74618 & -6.5111 & 0 & 0 \tabularnewline
M8 & -4.52413730096343 & 0.740292 & -6.1113 & 0 & 0 \tabularnewline
M9 & -4.76743039081759 & 0.738669 & -6.4541 & 0 & 0 \tabularnewline
M10 & -4.18398729768748 & 0.740359 & -5.6513 & 1e-06 & 0 \tabularnewline
M11 & -0.54712015654339 & 0.738546 & -0.7408 & 0.462575 & 0.231288 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]6.0283260818606[/C][C]2.09838[/C][C]2.8728[/C][C]0.006136[/C][C]0.003068[/C][/ROW]
[ROW][C]`W>25j`[/C][C]2.69535910941759[/C][C]0.299566[/C][C]8.9976[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Inflatie[/C][C]-0.271201565433912[/C][C]0.107819[/C][C]-2.5153[/C][C]0.015448[/C][C]0.007724[/C][/ROW]
[ROW][C]M1[/C][C]-0.238306399471402[/C][C]0.740577[/C][C]-0.3218[/C][C]0.749073[/C][C]0.374537[/C][/ROW]
[ROW][C]M2[/C][C]-1.47486330634128[/C][C]0.740435[/C][C]-1.9919[/C][C]0.052339[/C][C]0.02617[/C][/ROW]
[ROW][C]M3[/C][C]-2.94805085936598[/C][C]0.740542[/C][C]-3.9809[/C][C]0.000242[/C][C]0.000121[/C][/ROW]
[ROW][C]M4[/C][C]-3.82645389474653[/C][C]0.739417[/C][C]-5.175[/C][C]5e-06[/C][C]2e-06[/C][/ROW]
[ROW][C]M5[/C][C]-4.40827460192685[/C][C]0.745741[/C][C]-5.9113[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M6[/C][C]-4.71544560113093[/C][C]0.75202[/C][C]-6.2704[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M7[/C][C]-4.85845387804123[/C][C]0.74618[/C][C]-6.5111[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]-4.52413730096343[/C][C]0.740292[/C][C]-6.1113[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]-4.76743039081759[/C][C]0.738669[/C][C]-6.4541[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M10[/C][C]-4.18398729768748[/C][C]0.740359[/C][C]-5.6513[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]M11[/C][C]-0.54712015654339[/C][C]0.738546[/C][C]-0.7408[/C][C]0.462575[/C][C]0.231288[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)6.02832608186062.098382.87280.0061360.003068
`W>25j`2.695359109417590.2995668.997600
Inflatie-0.2712015654339120.107819-2.51530.0154480.007724
M1-0.2383063994714020.740577-0.32180.7490730.374537
M2-1.474863306341280.740435-1.99190.0523390.02617
M3-2.948050859365980.740542-3.98090.0002420.000121
M4-3.826453894746530.739417-5.1755e-062e-06
M5-4.408274601926850.745741-5.911300
M6-4.715445601130930.75202-6.270400
M7-4.858453878041230.74618-6.511100
M8-4.524137300963430.740292-6.111300
M9-4.767430390817590.738669-6.454100
M10-4.183987297687480.740359-5.65131e-060
M11-0.547120156543390.738546-0.74080.4625750.231288







Multiple Linear Regression - Regression Statistics
Multiple R0.913680740314576
R-squared0.834812495221791
Adjusted R-squared0.788129069958384
F-TEST (value)17.8824173785758
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value8.79296635503124e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.16761859153805
Sum Squared Residuals62.7133260640438

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.913680740314576 \tabularnewline
R-squared & 0.834812495221791 \tabularnewline
Adjusted R-squared & 0.788129069958384 \tabularnewline
F-TEST (value) & 17.8824173785758 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 46 \tabularnewline
p-value & 8.79296635503124e-14 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.16761859153805 \tabularnewline
Sum Squared Residuals & 62.7133260640438 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.913680740314576[/C][/ROW]
[ROW][C]R-squared[/C][C]0.834812495221791[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.788129069958384[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]17.8824173785758[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]46[/C][/ROW]
[ROW][C]p-value[/C][C]8.79296635503124e-14[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.16761859153805[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]62.7133260640438[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.913680740314576
R-squared0.834812495221791
Adjusted R-squared0.788129069958384
F-TEST (value)17.8824173785758
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value8.79296635503124e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.16761859153805
Sum Squared Residuals62.7133260640438







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
125.625.24751427429840.352485725701641
223.722.95826822571260.741731774287357
32220.78495356603621.21504643396377
421.320.2845670677711.01543293222899
520.720.48423393687260.215766063127420
620.420.6347742899218-0.234774289921848
720.320.08662931935280.213370680647179
820.419.45128287883720.948717121162844
919.819.23510994552640.564890054473616
1019.519.44053650154120.0594634984588263
1123.123.8860113755105-0.78601137551053
1223.524.6484271299089-1.14842712990890
1323.524.1134646629523-0.613464662952346
1422.922.82433309748780.0756669025121628
1521.921.0544894769780.845510523022009
1621.520.5795574807640.920442519235997
1720.520.5368085954672-0.0368085954672038
1820.220.7687094181466-0.568709418146646
1919.420.7884220804967-1.38842208049668
2019.221.0142580314009-1.81425803140093
2118.820.1776528065765-1.37765280657646
2218.820.0338486365115-1.23384863651147
2322.622.8892282013737-0.289228201373672
2423.322.92439669257690.375603307423065
252322.79457091927910.205429080720904
2621.421.612254325496-0.212254325495997
2719.920.3272422137829-0.427242213782885
2818.819.9607908437425-1.16079084374246
2918.619.7569866736775-1.15698667367747
3018.419.42269551793-1.02269551793001
3118.619.0101513300779-0.410151330077933
3219.919.34446790715570.555532092844254
3319.218.42816786719330.771832132806741
3418.417.93346731655630.466532683443667
3521.121.5703344577004-0.470334457700419
3620.521.6055029489037-1.10550294890369
3719.120.7738844144620-1.67388441446198
3818.119.8594380771285-1.75943807712849
391718.1964094283001-1.19640942830005
4017.117.8028379017162-0.702837901716238
4117.417.6516083902459-0.251608390245877
4216.817.0477813235566-0.247781323556649
4315.315.8792040614739-0.579204061473933
4414.315.7558092862984-1.45580928629840
4513.414.4327068981850-1.03270689818505
4615.315.3653807173949-0.0653807173949337
4722.120.59234316764621.50765683235381
4823.721.54460001784832.15539998215171
4922.220.47056572900821.72943427099178
5019.518.34570627417501.15429372582496
5116.617.0369053149028-0.436905314902841
5217.317.3722467060063-0.0722467060062862
5319.818.57036240373691.22963759626313
5421.219.12603945044482.07396054955515
5521.519.33559320859862.16440679140137
5620.618.83418189630781.76581810369223
5719.118.02636248251881.07363751748115
5819.618.82676682799610.773233172003911
5923.523.46208279776920.0379172022308077
602424.2770732107622-0.277073210762190

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 25.6 & 25.2475142742984 & 0.352485725701641 \tabularnewline
2 & 23.7 & 22.9582682257126 & 0.741731774287357 \tabularnewline
3 & 22 & 20.7849535660362 & 1.21504643396377 \tabularnewline
4 & 21.3 & 20.284567067771 & 1.01543293222899 \tabularnewline
5 & 20.7 & 20.4842339368726 & 0.215766063127420 \tabularnewline
6 & 20.4 & 20.6347742899218 & -0.234774289921848 \tabularnewline
7 & 20.3 & 20.0866293193528 & 0.213370680647179 \tabularnewline
8 & 20.4 & 19.4512828788372 & 0.948717121162844 \tabularnewline
9 & 19.8 & 19.2351099455264 & 0.564890054473616 \tabularnewline
10 & 19.5 & 19.4405365015412 & 0.0594634984588263 \tabularnewline
11 & 23.1 & 23.8860113755105 & -0.78601137551053 \tabularnewline
12 & 23.5 & 24.6484271299089 & -1.14842712990890 \tabularnewline
13 & 23.5 & 24.1134646629523 & -0.613464662952346 \tabularnewline
14 & 22.9 & 22.8243330974878 & 0.0756669025121628 \tabularnewline
15 & 21.9 & 21.054489476978 & 0.845510523022009 \tabularnewline
16 & 21.5 & 20.579557480764 & 0.920442519235997 \tabularnewline
17 & 20.5 & 20.5368085954672 & -0.0368085954672038 \tabularnewline
18 & 20.2 & 20.7687094181466 & -0.568709418146646 \tabularnewline
19 & 19.4 & 20.7884220804967 & -1.38842208049668 \tabularnewline
20 & 19.2 & 21.0142580314009 & -1.81425803140093 \tabularnewline
21 & 18.8 & 20.1776528065765 & -1.37765280657646 \tabularnewline
22 & 18.8 & 20.0338486365115 & -1.23384863651147 \tabularnewline
23 & 22.6 & 22.8892282013737 & -0.289228201373672 \tabularnewline
24 & 23.3 & 22.9243966925769 & 0.375603307423065 \tabularnewline
25 & 23 & 22.7945709192791 & 0.205429080720904 \tabularnewline
26 & 21.4 & 21.612254325496 & -0.212254325495997 \tabularnewline
27 & 19.9 & 20.3272422137829 & -0.427242213782885 \tabularnewline
28 & 18.8 & 19.9607908437425 & -1.16079084374246 \tabularnewline
29 & 18.6 & 19.7569866736775 & -1.15698667367747 \tabularnewline
30 & 18.4 & 19.42269551793 & -1.02269551793001 \tabularnewline
31 & 18.6 & 19.0101513300779 & -0.410151330077933 \tabularnewline
32 & 19.9 & 19.3444679071557 & 0.555532092844254 \tabularnewline
33 & 19.2 & 18.4281678671933 & 0.771832132806741 \tabularnewline
34 & 18.4 & 17.9334673165563 & 0.466532683443667 \tabularnewline
35 & 21.1 & 21.5703344577004 & -0.470334457700419 \tabularnewline
36 & 20.5 & 21.6055029489037 & -1.10550294890369 \tabularnewline
37 & 19.1 & 20.7738844144620 & -1.67388441446198 \tabularnewline
38 & 18.1 & 19.8594380771285 & -1.75943807712849 \tabularnewline
39 & 17 & 18.1964094283001 & -1.19640942830005 \tabularnewline
40 & 17.1 & 17.8028379017162 & -0.702837901716238 \tabularnewline
41 & 17.4 & 17.6516083902459 & -0.251608390245877 \tabularnewline
42 & 16.8 & 17.0477813235566 & -0.247781323556649 \tabularnewline
43 & 15.3 & 15.8792040614739 & -0.579204061473933 \tabularnewline
44 & 14.3 & 15.7558092862984 & -1.45580928629840 \tabularnewline
45 & 13.4 & 14.4327068981850 & -1.03270689818505 \tabularnewline
46 & 15.3 & 15.3653807173949 & -0.0653807173949337 \tabularnewline
47 & 22.1 & 20.5923431676462 & 1.50765683235381 \tabularnewline
48 & 23.7 & 21.5446000178483 & 2.15539998215171 \tabularnewline
49 & 22.2 & 20.4705657290082 & 1.72943427099178 \tabularnewline
50 & 19.5 & 18.3457062741750 & 1.15429372582496 \tabularnewline
51 & 16.6 & 17.0369053149028 & -0.436905314902841 \tabularnewline
52 & 17.3 & 17.3722467060063 & -0.0722467060062862 \tabularnewline
53 & 19.8 & 18.5703624037369 & 1.22963759626313 \tabularnewline
54 & 21.2 & 19.1260394504448 & 2.07396054955515 \tabularnewline
55 & 21.5 & 19.3355932085986 & 2.16440679140137 \tabularnewline
56 & 20.6 & 18.8341818963078 & 1.76581810369223 \tabularnewline
57 & 19.1 & 18.0263624825188 & 1.07363751748115 \tabularnewline
58 & 19.6 & 18.8267668279961 & 0.773233172003911 \tabularnewline
59 & 23.5 & 23.4620827977692 & 0.0379172022308077 \tabularnewline
60 & 24 & 24.2770732107622 & -0.277073210762190 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]25.6[/C][C]25.2475142742984[/C][C]0.352485725701641[/C][/ROW]
[ROW][C]2[/C][C]23.7[/C][C]22.9582682257126[/C][C]0.741731774287357[/C][/ROW]
[ROW][C]3[/C][C]22[/C][C]20.7849535660362[/C][C]1.21504643396377[/C][/ROW]
[ROW][C]4[/C][C]21.3[/C][C]20.284567067771[/C][C]1.01543293222899[/C][/ROW]
[ROW][C]5[/C][C]20.7[/C][C]20.4842339368726[/C][C]0.215766063127420[/C][/ROW]
[ROW][C]6[/C][C]20.4[/C][C]20.6347742899218[/C][C]-0.234774289921848[/C][/ROW]
[ROW][C]7[/C][C]20.3[/C][C]20.0866293193528[/C][C]0.213370680647179[/C][/ROW]
[ROW][C]8[/C][C]20.4[/C][C]19.4512828788372[/C][C]0.948717121162844[/C][/ROW]
[ROW][C]9[/C][C]19.8[/C][C]19.2351099455264[/C][C]0.564890054473616[/C][/ROW]
[ROW][C]10[/C][C]19.5[/C][C]19.4405365015412[/C][C]0.0594634984588263[/C][/ROW]
[ROW][C]11[/C][C]23.1[/C][C]23.8860113755105[/C][C]-0.78601137551053[/C][/ROW]
[ROW][C]12[/C][C]23.5[/C][C]24.6484271299089[/C][C]-1.14842712990890[/C][/ROW]
[ROW][C]13[/C][C]23.5[/C][C]24.1134646629523[/C][C]-0.613464662952346[/C][/ROW]
[ROW][C]14[/C][C]22.9[/C][C]22.8243330974878[/C][C]0.0756669025121628[/C][/ROW]
[ROW][C]15[/C][C]21.9[/C][C]21.054489476978[/C][C]0.845510523022009[/C][/ROW]
[ROW][C]16[/C][C]21.5[/C][C]20.579557480764[/C][C]0.920442519235997[/C][/ROW]
[ROW][C]17[/C][C]20.5[/C][C]20.5368085954672[/C][C]-0.0368085954672038[/C][/ROW]
[ROW][C]18[/C][C]20.2[/C][C]20.7687094181466[/C][C]-0.568709418146646[/C][/ROW]
[ROW][C]19[/C][C]19.4[/C][C]20.7884220804967[/C][C]-1.38842208049668[/C][/ROW]
[ROW][C]20[/C][C]19.2[/C][C]21.0142580314009[/C][C]-1.81425803140093[/C][/ROW]
[ROW][C]21[/C][C]18.8[/C][C]20.1776528065765[/C][C]-1.37765280657646[/C][/ROW]
[ROW][C]22[/C][C]18.8[/C][C]20.0338486365115[/C][C]-1.23384863651147[/C][/ROW]
[ROW][C]23[/C][C]22.6[/C][C]22.8892282013737[/C][C]-0.289228201373672[/C][/ROW]
[ROW][C]24[/C][C]23.3[/C][C]22.9243966925769[/C][C]0.375603307423065[/C][/ROW]
[ROW][C]25[/C][C]23[/C][C]22.7945709192791[/C][C]0.205429080720904[/C][/ROW]
[ROW][C]26[/C][C]21.4[/C][C]21.612254325496[/C][C]-0.212254325495997[/C][/ROW]
[ROW][C]27[/C][C]19.9[/C][C]20.3272422137829[/C][C]-0.427242213782885[/C][/ROW]
[ROW][C]28[/C][C]18.8[/C][C]19.9607908437425[/C][C]-1.16079084374246[/C][/ROW]
[ROW][C]29[/C][C]18.6[/C][C]19.7569866736775[/C][C]-1.15698667367747[/C][/ROW]
[ROW][C]30[/C][C]18.4[/C][C]19.42269551793[/C][C]-1.02269551793001[/C][/ROW]
[ROW][C]31[/C][C]18.6[/C][C]19.0101513300779[/C][C]-0.410151330077933[/C][/ROW]
[ROW][C]32[/C][C]19.9[/C][C]19.3444679071557[/C][C]0.555532092844254[/C][/ROW]
[ROW][C]33[/C][C]19.2[/C][C]18.4281678671933[/C][C]0.771832132806741[/C][/ROW]
[ROW][C]34[/C][C]18.4[/C][C]17.9334673165563[/C][C]0.466532683443667[/C][/ROW]
[ROW][C]35[/C][C]21.1[/C][C]21.5703344577004[/C][C]-0.470334457700419[/C][/ROW]
[ROW][C]36[/C][C]20.5[/C][C]21.6055029489037[/C][C]-1.10550294890369[/C][/ROW]
[ROW][C]37[/C][C]19.1[/C][C]20.7738844144620[/C][C]-1.67388441446198[/C][/ROW]
[ROW][C]38[/C][C]18.1[/C][C]19.8594380771285[/C][C]-1.75943807712849[/C][/ROW]
[ROW][C]39[/C][C]17[/C][C]18.1964094283001[/C][C]-1.19640942830005[/C][/ROW]
[ROW][C]40[/C][C]17.1[/C][C]17.8028379017162[/C][C]-0.702837901716238[/C][/ROW]
[ROW][C]41[/C][C]17.4[/C][C]17.6516083902459[/C][C]-0.251608390245877[/C][/ROW]
[ROW][C]42[/C][C]16.8[/C][C]17.0477813235566[/C][C]-0.247781323556649[/C][/ROW]
[ROW][C]43[/C][C]15.3[/C][C]15.8792040614739[/C][C]-0.579204061473933[/C][/ROW]
[ROW][C]44[/C][C]14.3[/C][C]15.7558092862984[/C][C]-1.45580928629840[/C][/ROW]
[ROW][C]45[/C][C]13.4[/C][C]14.4327068981850[/C][C]-1.03270689818505[/C][/ROW]
[ROW][C]46[/C][C]15.3[/C][C]15.3653807173949[/C][C]-0.0653807173949337[/C][/ROW]
[ROW][C]47[/C][C]22.1[/C][C]20.5923431676462[/C][C]1.50765683235381[/C][/ROW]
[ROW][C]48[/C][C]23.7[/C][C]21.5446000178483[/C][C]2.15539998215171[/C][/ROW]
[ROW][C]49[/C][C]22.2[/C][C]20.4705657290082[/C][C]1.72943427099178[/C][/ROW]
[ROW][C]50[/C][C]19.5[/C][C]18.3457062741750[/C][C]1.15429372582496[/C][/ROW]
[ROW][C]51[/C][C]16.6[/C][C]17.0369053149028[/C][C]-0.436905314902841[/C][/ROW]
[ROW][C]52[/C][C]17.3[/C][C]17.3722467060063[/C][C]-0.0722467060062862[/C][/ROW]
[ROW][C]53[/C][C]19.8[/C][C]18.5703624037369[/C][C]1.22963759626313[/C][/ROW]
[ROW][C]54[/C][C]21.2[/C][C]19.1260394504448[/C][C]2.07396054955515[/C][/ROW]
[ROW][C]55[/C][C]21.5[/C][C]19.3355932085986[/C][C]2.16440679140137[/C][/ROW]
[ROW][C]56[/C][C]20.6[/C][C]18.8341818963078[/C][C]1.76581810369223[/C][/ROW]
[ROW][C]57[/C][C]19.1[/C][C]18.0263624825188[/C][C]1.07363751748115[/C][/ROW]
[ROW][C]58[/C][C]19.6[/C][C]18.8267668279961[/C][C]0.773233172003911[/C][/ROW]
[ROW][C]59[/C][C]23.5[/C][C]23.4620827977692[/C][C]0.0379172022308077[/C][/ROW]
[ROW][C]60[/C][C]24[/C][C]24.2770732107622[/C][C]-0.277073210762190[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
125.625.24751427429840.352485725701641
223.722.95826822571260.741731774287357
32220.78495356603621.21504643396377
421.320.2845670677711.01543293222899
520.720.48423393687260.215766063127420
620.420.6347742899218-0.234774289921848
720.320.08662931935280.213370680647179
820.419.45128287883720.948717121162844
919.819.23510994552640.564890054473616
1019.519.44053650154120.0594634984588263
1123.123.8860113755105-0.78601137551053
1223.524.6484271299089-1.14842712990890
1323.524.1134646629523-0.613464662952346
1422.922.82433309748780.0756669025121628
1521.921.0544894769780.845510523022009
1621.520.5795574807640.920442519235997
1720.520.5368085954672-0.0368085954672038
1820.220.7687094181466-0.568709418146646
1919.420.7884220804967-1.38842208049668
2019.221.0142580314009-1.81425803140093
2118.820.1776528065765-1.37765280657646
2218.820.0338486365115-1.23384863651147
2322.622.8892282013737-0.289228201373672
2423.322.92439669257690.375603307423065
252322.79457091927910.205429080720904
2621.421.612254325496-0.212254325495997
2719.920.3272422137829-0.427242213782885
2818.819.9607908437425-1.16079084374246
2918.619.7569866736775-1.15698667367747
3018.419.42269551793-1.02269551793001
3118.619.0101513300779-0.410151330077933
3219.919.34446790715570.555532092844254
3319.218.42816786719330.771832132806741
3418.417.93346731655630.466532683443667
3521.121.5703344577004-0.470334457700419
3620.521.6055029489037-1.10550294890369
3719.120.7738844144620-1.67388441446198
3818.119.8594380771285-1.75943807712849
391718.1964094283001-1.19640942830005
4017.117.8028379017162-0.702837901716238
4117.417.6516083902459-0.251608390245877
4216.817.0477813235566-0.247781323556649
4315.315.8792040614739-0.579204061473933
4414.315.7558092862984-1.45580928629840
4513.414.4327068981850-1.03270689818505
4615.315.3653807173949-0.0653807173949337
4722.120.59234316764621.50765683235381
4823.721.54460001784832.15539998215171
4922.220.47056572900821.72943427099178
5019.518.34570627417501.15429372582496
5116.617.0369053149028-0.436905314902841
5217.317.3722467060063-0.0722467060062862
5319.818.57036240373691.22963759626313
5421.219.12603945044482.07396054955515
5521.519.33559320859862.16440679140137
5620.618.83418189630781.76581810369223
5719.118.02636248251881.07363751748115
5819.618.82676682799610.773233172003911
5923.523.46208279776920.0379172022308077
602424.2770732107622-0.277073210762190







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.02733971862822710.05467943725645420.972660281371773
180.007443372227345360.01488674445469070.992556627772655
190.0582420860078850.116484172015770.941757913992115
200.07713535811409860.1542707162281970.922864641885901
210.05124166914284790.1024833382856960.948758330857152
220.04326864619627480.08653729239254960.956731353803725
230.0330975633140590.0661951266281180.96690243668594
240.01888476970408680.03776953940817360.981115230295913
250.02729498553335160.05458997106670320.972705014466648
260.03850604875579890.07701209751159770.96149395124420
270.05719277631693980.1143855526338800.94280722368306
280.1403300791912600.2806601583825200.85966992080874
290.1931954280981780.3863908561963550.806804571901822
300.2591333429889570.5182666859779140.740866657011043
310.2977420869479250.595484173895850.702257913052075
320.3180403432685150.636080686537030.681959656731485
330.3245882454726520.6491764909453040.675411754527348
340.2454532424125780.4909064848251560.754546757587422
350.1756229039430950.3512458078861910.824377096056905
360.1594360440185700.3188720880371390.84056395598143
370.1753994297969480.3507988595938960.824600570203052
380.454407409009610.908814818019220.54559259099039
390.6846395841067190.6307208317865610.315360415893281
400.8051024498943960.3897951002112080.194897550105604
410.7937973060972490.4124053878055020.206202693902751
420.6793697407486030.6412605185027940.320630259251397
430.5490267374854840.9019465250290310.450973262514516

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.0273397186282271 & 0.0546794372564542 & 0.972660281371773 \tabularnewline
18 & 0.00744337222734536 & 0.0148867444546907 & 0.992556627772655 \tabularnewline
19 & 0.058242086007885 & 0.11648417201577 & 0.941757913992115 \tabularnewline
20 & 0.0771353581140986 & 0.154270716228197 & 0.922864641885901 \tabularnewline
21 & 0.0512416691428479 & 0.102483338285696 & 0.948758330857152 \tabularnewline
22 & 0.0432686461962748 & 0.0865372923925496 & 0.956731353803725 \tabularnewline
23 & 0.033097563314059 & 0.066195126628118 & 0.96690243668594 \tabularnewline
24 & 0.0188847697040868 & 0.0377695394081736 & 0.981115230295913 \tabularnewline
25 & 0.0272949855333516 & 0.0545899710667032 & 0.972705014466648 \tabularnewline
26 & 0.0385060487557989 & 0.0770120975115977 & 0.96149395124420 \tabularnewline
27 & 0.0571927763169398 & 0.114385552633880 & 0.94280722368306 \tabularnewline
28 & 0.140330079191260 & 0.280660158382520 & 0.85966992080874 \tabularnewline
29 & 0.193195428098178 & 0.386390856196355 & 0.806804571901822 \tabularnewline
30 & 0.259133342988957 & 0.518266685977914 & 0.740866657011043 \tabularnewline
31 & 0.297742086947925 & 0.59548417389585 & 0.702257913052075 \tabularnewline
32 & 0.318040343268515 & 0.63608068653703 & 0.681959656731485 \tabularnewline
33 & 0.324588245472652 & 0.649176490945304 & 0.675411754527348 \tabularnewline
34 & 0.245453242412578 & 0.490906484825156 & 0.754546757587422 \tabularnewline
35 & 0.175622903943095 & 0.351245807886191 & 0.824377096056905 \tabularnewline
36 & 0.159436044018570 & 0.318872088037139 & 0.84056395598143 \tabularnewline
37 & 0.175399429796948 & 0.350798859593896 & 0.824600570203052 \tabularnewline
38 & 0.45440740900961 & 0.90881481801922 & 0.54559259099039 \tabularnewline
39 & 0.684639584106719 & 0.630720831786561 & 0.315360415893281 \tabularnewline
40 & 0.805102449894396 & 0.389795100211208 & 0.194897550105604 \tabularnewline
41 & 0.793797306097249 & 0.412405387805502 & 0.206202693902751 \tabularnewline
42 & 0.679369740748603 & 0.641260518502794 & 0.320630259251397 \tabularnewline
43 & 0.549026737485484 & 0.901946525029031 & 0.450973262514516 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.0273397186282271[/C][C]0.0546794372564542[/C][C]0.972660281371773[/C][/ROW]
[ROW][C]18[/C][C]0.00744337222734536[/C][C]0.0148867444546907[/C][C]0.992556627772655[/C][/ROW]
[ROW][C]19[/C][C]0.058242086007885[/C][C]0.11648417201577[/C][C]0.941757913992115[/C][/ROW]
[ROW][C]20[/C][C]0.0771353581140986[/C][C]0.154270716228197[/C][C]0.922864641885901[/C][/ROW]
[ROW][C]21[/C][C]0.0512416691428479[/C][C]0.102483338285696[/C][C]0.948758330857152[/C][/ROW]
[ROW][C]22[/C][C]0.0432686461962748[/C][C]0.0865372923925496[/C][C]0.956731353803725[/C][/ROW]
[ROW][C]23[/C][C]0.033097563314059[/C][C]0.066195126628118[/C][C]0.96690243668594[/C][/ROW]
[ROW][C]24[/C][C]0.0188847697040868[/C][C]0.0377695394081736[/C][C]0.981115230295913[/C][/ROW]
[ROW][C]25[/C][C]0.0272949855333516[/C][C]0.0545899710667032[/C][C]0.972705014466648[/C][/ROW]
[ROW][C]26[/C][C]0.0385060487557989[/C][C]0.0770120975115977[/C][C]0.96149395124420[/C][/ROW]
[ROW][C]27[/C][C]0.0571927763169398[/C][C]0.114385552633880[/C][C]0.94280722368306[/C][/ROW]
[ROW][C]28[/C][C]0.140330079191260[/C][C]0.280660158382520[/C][C]0.85966992080874[/C][/ROW]
[ROW][C]29[/C][C]0.193195428098178[/C][C]0.386390856196355[/C][C]0.806804571901822[/C][/ROW]
[ROW][C]30[/C][C]0.259133342988957[/C][C]0.518266685977914[/C][C]0.740866657011043[/C][/ROW]
[ROW][C]31[/C][C]0.297742086947925[/C][C]0.59548417389585[/C][C]0.702257913052075[/C][/ROW]
[ROW][C]32[/C][C]0.318040343268515[/C][C]0.63608068653703[/C][C]0.681959656731485[/C][/ROW]
[ROW][C]33[/C][C]0.324588245472652[/C][C]0.649176490945304[/C][C]0.675411754527348[/C][/ROW]
[ROW][C]34[/C][C]0.245453242412578[/C][C]0.490906484825156[/C][C]0.754546757587422[/C][/ROW]
[ROW][C]35[/C][C]0.175622903943095[/C][C]0.351245807886191[/C][C]0.824377096056905[/C][/ROW]
[ROW][C]36[/C][C]0.159436044018570[/C][C]0.318872088037139[/C][C]0.84056395598143[/C][/ROW]
[ROW][C]37[/C][C]0.175399429796948[/C][C]0.350798859593896[/C][C]0.824600570203052[/C][/ROW]
[ROW][C]38[/C][C]0.45440740900961[/C][C]0.90881481801922[/C][C]0.54559259099039[/C][/ROW]
[ROW][C]39[/C][C]0.684639584106719[/C][C]0.630720831786561[/C][C]0.315360415893281[/C][/ROW]
[ROW][C]40[/C][C]0.805102449894396[/C][C]0.389795100211208[/C][C]0.194897550105604[/C][/ROW]
[ROW][C]41[/C][C]0.793797306097249[/C][C]0.412405387805502[/C][C]0.206202693902751[/C][/ROW]
[ROW][C]42[/C][C]0.679369740748603[/C][C]0.641260518502794[/C][C]0.320630259251397[/C][/ROW]
[ROW][C]43[/C][C]0.549026737485484[/C][C]0.901946525029031[/C][C]0.450973262514516[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.02733971862822710.05467943725645420.972660281371773
180.007443372227345360.01488674445469070.992556627772655
190.0582420860078850.116484172015770.941757913992115
200.07713535811409860.1542707162281970.922864641885901
210.05124166914284790.1024833382856960.948758330857152
220.04326864619627480.08653729239254960.956731353803725
230.0330975633140590.0661951266281180.96690243668594
240.01888476970408680.03776953940817360.981115230295913
250.02729498553335160.05458997106670320.972705014466648
260.03850604875579890.07701209751159770.96149395124420
270.05719277631693980.1143855526338800.94280722368306
280.1403300791912600.2806601583825200.85966992080874
290.1931954280981780.3863908561963550.806804571901822
300.2591333429889570.5182666859779140.740866657011043
310.2977420869479250.595484173895850.702257913052075
320.3180403432685150.636080686537030.681959656731485
330.3245882454726520.6491764909453040.675411754527348
340.2454532424125780.4909064848251560.754546757587422
350.1756229039430950.3512458078861910.824377096056905
360.1594360440185700.3188720880371390.84056395598143
370.1753994297969480.3507988595938960.824600570203052
380.454407409009610.908814818019220.54559259099039
390.6846395841067190.6307208317865610.315360415893281
400.8051024498943960.3897951002112080.194897550105604
410.7937973060972490.4124053878055020.206202693902751
420.6793697407486030.6412605185027940.320630259251397
430.5490267374854840.9019465250290310.450973262514516







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level20.0740740740740741NOK
10% type I error level70.259259259259259NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 2 & 0.0740740740740741 & NOK \tabularnewline
10% type I error level & 7 & 0.259259259259259 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72524&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]2[/C][C]0.0740740740740741[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]7[/C][C]0.259259259259259[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72524&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72524&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level20.0740740740740741NOK
10% type I error level70.259259259259259NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}