Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 26 Jan 2010 01:25:42 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Jan/26/t1264494431ol9awus5qxo7ecr.htm/, Retrieved Fri, 01 Nov 2024 00:38:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=72537, Retrieved Fri, 01 Nov 2024 00:38:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact230
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Partial Correlation] [CVM Paper: Partia...] [2009-12-17 09:09:51] [03d5b865e91ca35b5a5d21b8d6da5aba]
- RMPD  [Multiple Regression] [CVM Paper: Multip...] [2009-12-17 11:25:28] [03d5b865e91ca35b5a5d21b8d6da5aba]
-   PD    [Multiple Regression] [CVM Paper: Multip...] [2009-12-17 11:28:53] [03d5b865e91ca35b5a5d21b8d6da5aba]
-   P         [Multiple Regression] [examen bloggen] [2010-01-26 08:25:42] [4563e36d4b7005634fe3557528d9fcab] [Current]
Feedback Forum

Post a new message
Dataseries X:
25.6	7.4	1.8
23.7	7.1	2.7
22	6.8	2.3
21.3	6.9	1.9
20.7	7.2	2
20.4	7.4	2.3
20.3	7.3	2.8
20.4	6.9	2.4
19.8	6.9	2.3
19.5	6.8	2.7
23.1	7.1	2.7
23.5	7.2	2.9
23.5	7.1	3
22.9	7	2.2
21.9	6.9	2.3
21.5	7.1	2.8
20.5	7.3	2.8
20.2	7.5	2.8
19.4	7.5	2.2
19.2	7.5	2.6
18.8	7.3	2.8
18.8	7	2.5
22.6	6.7	2.4
23.3	6.5	2.3
23	6.5	1.9
21.4	6.5	1.7
19.9	6.6	2
18.8	6.8	2.1
18.6	6.9	1.7
18.4	6.9	1.8
18.6	6.8	1.8
19.9	6.8	1.8
19.2	6.5	1.3
18.4	6.1	1.3
21.1	6.1	1.3
20.5	5.9	1.2
19.1	5.7	1.4
18.1	5.9	2.2
17	5.9	2.9
17.1	6.1	3.1
17.4	6.3	3.5
16.8	6.2	3.6
15.3	5.9	4.4
14.3	5.7	4.1
13.4	5.4	5.1
15.3	5.6	5.8
22.1	6.2	5.9
23.7	6.3	5.4
22.2	6	5.5
19.5	5.6	4.8
16.6	5.5	3.2
17.3	5.9	2.7
19.8	6.5	2.1
21.2	6.8	1.9
21.5	6.8	0.6
20.6	6.5	0.7
19.1	6.2	-0.2
19.6	6.2	-1
23.5	6.5	-1.7
24	6.7	-0.7




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
W<25j[t] = -0.85984552928061 + 3.54483298931266`W>25j`[t] -0.171607853890170Inflatie[t] + 0.0397278955082736M1[t] -1.12623947562415M2[t] -2.54488958002931M3[t] -3.63953232460585M4[t] -4.48059367685237M5[t] -4.92702449418643M6[t] -5.00448146757193M7[t] -4.54462317350121M8[t] -4.62640371693578M9[t] -3.97237108806821M10[t] -0.505813455539065M11[t] + 0.0313473298499503t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
W<25j[t] =  -0.85984552928061 +  3.54483298931266`W>25j`[t] -0.171607853890170Inflatie[t] +  0.0397278955082736M1[t] -1.12623947562415M2[t] -2.54488958002931M3[t] -3.63953232460585M4[t] -4.48059367685237M5[t] -4.92702449418643M6[t] -5.00448146757193M7[t] -4.54462317350121M8[t] -4.62640371693578M9[t] -3.97237108806821M10[t] -0.505813455539065M11[t] +  0.0313473298499503t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]W<25j[t] =  -0.85984552928061 +  3.54483298931266`W>25j`[t] -0.171607853890170Inflatie[t] +  0.0397278955082736M1[t] -1.12623947562415M2[t] -2.54488958002931M3[t] -3.63953232460585M4[t] -4.48059367685237M5[t] -4.92702449418643M6[t] -5.00448146757193M7[t] -4.54462317350121M8[t] -4.62640371693578M9[t] -3.97237108806821M10[t] -0.505813455539065M11[t] +  0.0313473298499503t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
W<25j[t] = -0.85984552928061 + 3.54483298931266`W>25j`[t] -0.171607853890170Inflatie[t] + 0.0397278955082736M1[t] -1.12623947562415M2[t] -2.54488958002931M3[t] -3.63953232460585M4[t] -4.48059367685237M5[t] -4.92702449418643M6[t] -5.00448146757193M7[t] -4.54462317350121M8[t] -4.62640371693578M9[t] -3.97237108806821M10[t] -0.505813455539065M11[t] + 0.0313473298499503t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-0.859845529280613.749455-0.22930.8196550.409828
`W>25j`3.544832989312660.484637.314500
Inflatie-0.1716078538901700.113298-1.51470.136850.068425
M10.03972789550827360.7234480.05490.956450.478225
M2-1.126239475624150.729722-1.54340.1297420.064871
M3-2.544889580029310.735711-3.45910.0011970.000598
M4-3.639532324605850.716151-5.08217e-063e-06
M5-4.480593676852370.717846-6.241700
M6-4.927024494186430.729603-6.75300
M7-5.004481467571930.720622-6.944700
M8-4.544623173501210.711902-6.383800
M9-4.626403716935780.71322-6.486600
M10-3.972371088068210.718493-5.52882e-061e-06
M11-0.5058134555390650.710413-0.7120.480140.24007
t0.03134732984995030.0143822.17960.0345580.017279

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -0.85984552928061 & 3.749455 & -0.2293 & 0.819655 & 0.409828 \tabularnewline
`W>25j` & 3.54483298931266 & 0.48463 & 7.3145 & 0 & 0 \tabularnewline
Inflatie & -0.171607853890170 & 0.113298 & -1.5147 & 0.13685 & 0.068425 \tabularnewline
M1 & 0.0397278955082736 & 0.723448 & 0.0549 & 0.95645 & 0.478225 \tabularnewline
M2 & -1.12623947562415 & 0.729722 & -1.5434 & 0.129742 & 0.064871 \tabularnewline
M3 & -2.54488958002931 & 0.735711 & -3.4591 & 0.001197 & 0.000598 \tabularnewline
M4 & -3.63953232460585 & 0.716151 & -5.0821 & 7e-06 & 3e-06 \tabularnewline
M5 & -4.48059367685237 & 0.717846 & -6.2417 & 0 & 0 \tabularnewline
M6 & -4.92702449418643 & 0.729603 & -6.753 & 0 & 0 \tabularnewline
M7 & -5.00448146757193 & 0.720622 & -6.9447 & 0 & 0 \tabularnewline
M8 & -4.54462317350121 & 0.711902 & -6.3838 & 0 & 0 \tabularnewline
M9 & -4.62640371693578 & 0.71322 & -6.4866 & 0 & 0 \tabularnewline
M10 & -3.97237108806821 & 0.718493 & -5.5288 & 2e-06 & 1e-06 \tabularnewline
M11 & -0.505813455539065 & 0.710413 & -0.712 & 0.48014 & 0.24007 \tabularnewline
t & 0.0313473298499503 & 0.014382 & 2.1796 & 0.034558 & 0.017279 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-0.85984552928061[/C][C]3.749455[/C][C]-0.2293[/C][C]0.819655[/C][C]0.409828[/C][/ROW]
[ROW][C]`W>25j`[/C][C]3.54483298931266[/C][C]0.48463[/C][C]7.3145[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Inflatie[/C][C]-0.171607853890170[/C][C]0.113298[/C][C]-1.5147[/C][C]0.13685[/C][C]0.068425[/C][/ROW]
[ROW][C]M1[/C][C]0.0397278955082736[/C][C]0.723448[/C][C]0.0549[/C][C]0.95645[/C][C]0.478225[/C][/ROW]
[ROW][C]M2[/C][C]-1.12623947562415[/C][C]0.729722[/C][C]-1.5434[/C][C]0.129742[/C][C]0.064871[/C][/ROW]
[ROW][C]M3[/C][C]-2.54488958002931[/C][C]0.735711[/C][C]-3.4591[/C][C]0.001197[/C][C]0.000598[/C][/ROW]
[ROW][C]M4[/C][C]-3.63953232460585[/C][C]0.716151[/C][C]-5.0821[/C][C]7e-06[/C][C]3e-06[/C][/ROW]
[ROW][C]M5[/C][C]-4.48059367685237[/C][C]0.717846[/C][C]-6.2417[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M6[/C][C]-4.92702449418643[/C][C]0.729603[/C][C]-6.753[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M7[/C][C]-5.00448146757193[/C][C]0.720622[/C][C]-6.9447[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]-4.54462317350121[/C][C]0.711902[/C][C]-6.3838[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]-4.62640371693578[/C][C]0.71322[/C][C]-6.4866[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M10[/C][C]-3.97237108806821[/C][C]0.718493[/C][C]-5.5288[/C][C]2e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]M11[/C][C]-0.505813455539065[/C][C]0.710413[/C][C]-0.712[/C][C]0.48014[/C][C]0.24007[/C][/ROW]
[ROW][C]t[/C][C]0.0313473298499503[/C][C]0.014382[/C][C]2.1796[/C][C]0.034558[/C][C]0.017279[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-0.859845529280613.749455-0.22930.8196550.409828
`W>25j`3.544832989312660.484637.314500
Inflatie-0.1716078538901700.113298-1.51470.136850.068425
M10.03972789550827360.7234480.05490.956450.478225
M2-1.126239475624150.729722-1.54340.1297420.064871
M3-2.544889580029310.735711-3.45910.0011970.000598
M4-3.639532324605850.716151-5.08217e-063e-06
M5-4.480593676852370.717846-6.241700
M6-4.927024494186430.729603-6.75300
M7-5.004481467571930.720622-6.944700
M8-4.544623173501210.711902-6.383800
M9-4.626403716935780.71322-6.486600
M10-3.972371088068210.718493-5.52882e-061e-06
M11-0.5058134555390650.710413-0.7120.480140.24007
t0.03134732984995030.0143822.17960.0345580.017279







Multiple Linear Regression - Regression Statistics
Multiple R0.922272475482965
R-squared0.850586519033475
Adjusted R-squared0.804102324955001
F-TEST (value)18.2984030571235
F-TEST (DF numerator)14
F-TEST (DF denominator)45
p-value4.45199432874688e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.12274196540784
Sum Squared Residuals56.7247284399538

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.922272475482965 \tabularnewline
R-squared & 0.850586519033475 \tabularnewline
Adjusted R-squared & 0.804102324955001 \tabularnewline
F-TEST (value) & 18.2984030571235 \tabularnewline
F-TEST (DF numerator) & 14 \tabularnewline
F-TEST (DF denominator) & 45 \tabularnewline
p-value & 4.45199432874688e-14 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.12274196540784 \tabularnewline
Sum Squared Residuals & 56.7247284399538 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.922272475482965[/C][/ROW]
[ROW][C]R-squared[/C][C]0.850586519033475[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.804102324955001[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]18.2984030571235[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]14[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]45[/C][/ROW]
[ROW][C]p-value[/C][C]4.45199432874688e-14[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.12274196540784[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]56.7247284399538[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.922272475482965
R-squared0.850586519033475
Adjusted R-squared0.804102324955001
F-TEST (value)18.2984030571235
F-TEST (DF numerator)14
F-TEST (DF denominator)45
p-value4.45199432874688e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.12274196540784
Sum Squared Residuals56.7247284399538







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
125.625.13409967998910.465900320010903
223.722.78158267341160.918417326588387
32220.39947314361871.60052685638134
421.319.75930416937941.54069583062059
520.719.99587925838760.704120741612372
620.420.2382800125990.161719987401000
720.319.75188314318710.548116856812906
820.418.89379871293881.50620128706123
919.818.86052628474320.93947371525684
1019.519.12277980297330.377220197026652
1123.123.6841346621462-0.584134662146236
1223.524.5414571756885-1.04145717568849
1323.524.2408883167264-0.740888316726426
1422.922.88907125962480.0109287403751691
1521.921.13012440074930.769875599250668
1621.520.68999165694020.810008343059813
1720.520.5892442324062-0.0892442324061564
1820.220.8831273427846-0.68312734278458
1919.420.9399824115831-1.53998241158313
2019.221.3625448939477-2.16254489394773
2118.820.5688235117225-1.76882351172254
2218.820.2422359298133-1.44223592981331
2322.622.6938517807876-0.093851780787630
2423.322.53920675370310.76079324629687
252322.67892512061740.321074879382581
2621.421.578626650113-0.178626650112986
2719.920.494324818322-0.594324818321984
2818.820.1228352160689-1.32283521606891
2918.619.7362476341597-1.13624763415968
3018.419.3040033612866-0.904003361286556
3118.618.9034104188197-0.303410418819732
3219.919.39461604274040.505383957259591
3319.218.36653685930710.83346314069293
3418.417.63398362229950.766016377700477
3521.121.1318885846786-0.031888584678619
3620.520.9772435575941-0.477243557594123
3719.120.3050306143118-1.20503061431178
3818.119.7420908877797-1.64209088777970
391718.2346626155014-1.23466261550137
4017.117.8460122278593-0.746012227859276
4117.417.6766216617692-0.276621661769181
4216.816.8898940899648-0.0898940899647866
4315.315.6430482665233-0.343048266523299
4414.315.4767696487485-1.17676964874849
4513.414.1912786844799-0.791278684479897
4615.315.4654997433368-0.165499743336828
4722.121.07314371391451.02685628608549
4823.722.05059172517991.64940827482012
4922.221.04105626835531.15894373164472
5019.518.60862852907090.891371470929134
5116.617.1414150218087-0.541415021808654
5217.317.5818567297522-0.281856729752217
5319.819.00200721327740.797992786722647
5421.219.68469519336511.51530480663492
5521.519.86167575988671.63832424011326
5620.619.27227070162461.3277292983754
5719.118.31283465974730.787165340252669
5819.619.1355009015770.464499098423013
5923.523.816981258473-0.316981258473003
602424.8915007878344-0.891500787834384

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 25.6 & 25.1340996799891 & 0.465900320010903 \tabularnewline
2 & 23.7 & 22.7815826734116 & 0.918417326588387 \tabularnewline
3 & 22 & 20.3994731436187 & 1.60052685638134 \tabularnewline
4 & 21.3 & 19.7593041693794 & 1.54069583062059 \tabularnewline
5 & 20.7 & 19.9958792583876 & 0.704120741612372 \tabularnewline
6 & 20.4 & 20.238280012599 & 0.161719987401000 \tabularnewline
7 & 20.3 & 19.7518831431871 & 0.548116856812906 \tabularnewline
8 & 20.4 & 18.8937987129388 & 1.50620128706123 \tabularnewline
9 & 19.8 & 18.8605262847432 & 0.93947371525684 \tabularnewline
10 & 19.5 & 19.1227798029733 & 0.377220197026652 \tabularnewline
11 & 23.1 & 23.6841346621462 & -0.584134662146236 \tabularnewline
12 & 23.5 & 24.5414571756885 & -1.04145717568849 \tabularnewline
13 & 23.5 & 24.2408883167264 & -0.740888316726426 \tabularnewline
14 & 22.9 & 22.8890712596248 & 0.0109287403751691 \tabularnewline
15 & 21.9 & 21.1301244007493 & 0.769875599250668 \tabularnewline
16 & 21.5 & 20.6899916569402 & 0.810008343059813 \tabularnewline
17 & 20.5 & 20.5892442324062 & -0.0892442324061564 \tabularnewline
18 & 20.2 & 20.8831273427846 & -0.68312734278458 \tabularnewline
19 & 19.4 & 20.9399824115831 & -1.53998241158313 \tabularnewline
20 & 19.2 & 21.3625448939477 & -2.16254489394773 \tabularnewline
21 & 18.8 & 20.5688235117225 & -1.76882351172254 \tabularnewline
22 & 18.8 & 20.2422359298133 & -1.44223592981331 \tabularnewline
23 & 22.6 & 22.6938517807876 & -0.093851780787630 \tabularnewline
24 & 23.3 & 22.5392067537031 & 0.76079324629687 \tabularnewline
25 & 23 & 22.6789251206174 & 0.321074879382581 \tabularnewline
26 & 21.4 & 21.578626650113 & -0.178626650112986 \tabularnewline
27 & 19.9 & 20.494324818322 & -0.594324818321984 \tabularnewline
28 & 18.8 & 20.1228352160689 & -1.32283521606891 \tabularnewline
29 & 18.6 & 19.7362476341597 & -1.13624763415968 \tabularnewline
30 & 18.4 & 19.3040033612866 & -0.904003361286556 \tabularnewline
31 & 18.6 & 18.9034104188197 & -0.303410418819732 \tabularnewline
32 & 19.9 & 19.3946160427404 & 0.505383957259591 \tabularnewline
33 & 19.2 & 18.3665368593071 & 0.83346314069293 \tabularnewline
34 & 18.4 & 17.6339836222995 & 0.766016377700477 \tabularnewline
35 & 21.1 & 21.1318885846786 & -0.031888584678619 \tabularnewline
36 & 20.5 & 20.9772435575941 & -0.477243557594123 \tabularnewline
37 & 19.1 & 20.3050306143118 & -1.20503061431178 \tabularnewline
38 & 18.1 & 19.7420908877797 & -1.64209088777970 \tabularnewline
39 & 17 & 18.2346626155014 & -1.23466261550137 \tabularnewline
40 & 17.1 & 17.8460122278593 & -0.746012227859276 \tabularnewline
41 & 17.4 & 17.6766216617692 & -0.276621661769181 \tabularnewline
42 & 16.8 & 16.8898940899648 & -0.0898940899647866 \tabularnewline
43 & 15.3 & 15.6430482665233 & -0.343048266523299 \tabularnewline
44 & 14.3 & 15.4767696487485 & -1.17676964874849 \tabularnewline
45 & 13.4 & 14.1912786844799 & -0.791278684479897 \tabularnewline
46 & 15.3 & 15.4654997433368 & -0.165499743336828 \tabularnewline
47 & 22.1 & 21.0731437139145 & 1.02685628608549 \tabularnewline
48 & 23.7 & 22.0505917251799 & 1.64940827482012 \tabularnewline
49 & 22.2 & 21.0410562683553 & 1.15894373164472 \tabularnewline
50 & 19.5 & 18.6086285290709 & 0.891371470929134 \tabularnewline
51 & 16.6 & 17.1414150218087 & -0.541415021808654 \tabularnewline
52 & 17.3 & 17.5818567297522 & -0.281856729752217 \tabularnewline
53 & 19.8 & 19.0020072132774 & 0.797992786722647 \tabularnewline
54 & 21.2 & 19.6846951933651 & 1.51530480663492 \tabularnewline
55 & 21.5 & 19.8616757598867 & 1.63832424011326 \tabularnewline
56 & 20.6 & 19.2722707016246 & 1.3277292983754 \tabularnewline
57 & 19.1 & 18.3128346597473 & 0.787165340252669 \tabularnewline
58 & 19.6 & 19.135500901577 & 0.464499098423013 \tabularnewline
59 & 23.5 & 23.816981258473 & -0.316981258473003 \tabularnewline
60 & 24 & 24.8915007878344 & -0.891500787834384 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]25.6[/C][C]25.1340996799891[/C][C]0.465900320010903[/C][/ROW]
[ROW][C]2[/C][C]23.7[/C][C]22.7815826734116[/C][C]0.918417326588387[/C][/ROW]
[ROW][C]3[/C][C]22[/C][C]20.3994731436187[/C][C]1.60052685638134[/C][/ROW]
[ROW][C]4[/C][C]21.3[/C][C]19.7593041693794[/C][C]1.54069583062059[/C][/ROW]
[ROW][C]5[/C][C]20.7[/C][C]19.9958792583876[/C][C]0.704120741612372[/C][/ROW]
[ROW][C]6[/C][C]20.4[/C][C]20.238280012599[/C][C]0.161719987401000[/C][/ROW]
[ROW][C]7[/C][C]20.3[/C][C]19.7518831431871[/C][C]0.548116856812906[/C][/ROW]
[ROW][C]8[/C][C]20.4[/C][C]18.8937987129388[/C][C]1.50620128706123[/C][/ROW]
[ROW][C]9[/C][C]19.8[/C][C]18.8605262847432[/C][C]0.93947371525684[/C][/ROW]
[ROW][C]10[/C][C]19.5[/C][C]19.1227798029733[/C][C]0.377220197026652[/C][/ROW]
[ROW][C]11[/C][C]23.1[/C][C]23.6841346621462[/C][C]-0.584134662146236[/C][/ROW]
[ROW][C]12[/C][C]23.5[/C][C]24.5414571756885[/C][C]-1.04145717568849[/C][/ROW]
[ROW][C]13[/C][C]23.5[/C][C]24.2408883167264[/C][C]-0.740888316726426[/C][/ROW]
[ROW][C]14[/C][C]22.9[/C][C]22.8890712596248[/C][C]0.0109287403751691[/C][/ROW]
[ROW][C]15[/C][C]21.9[/C][C]21.1301244007493[/C][C]0.769875599250668[/C][/ROW]
[ROW][C]16[/C][C]21.5[/C][C]20.6899916569402[/C][C]0.810008343059813[/C][/ROW]
[ROW][C]17[/C][C]20.5[/C][C]20.5892442324062[/C][C]-0.0892442324061564[/C][/ROW]
[ROW][C]18[/C][C]20.2[/C][C]20.8831273427846[/C][C]-0.68312734278458[/C][/ROW]
[ROW][C]19[/C][C]19.4[/C][C]20.9399824115831[/C][C]-1.53998241158313[/C][/ROW]
[ROW][C]20[/C][C]19.2[/C][C]21.3625448939477[/C][C]-2.16254489394773[/C][/ROW]
[ROW][C]21[/C][C]18.8[/C][C]20.5688235117225[/C][C]-1.76882351172254[/C][/ROW]
[ROW][C]22[/C][C]18.8[/C][C]20.2422359298133[/C][C]-1.44223592981331[/C][/ROW]
[ROW][C]23[/C][C]22.6[/C][C]22.6938517807876[/C][C]-0.093851780787630[/C][/ROW]
[ROW][C]24[/C][C]23.3[/C][C]22.5392067537031[/C][C]0.76079324629687[/C][/ROW]
[ROW][C]25[/C][C]23[/C][C]22.6789251206174[/C][C]0.321074879382581[/C][/ROW]
[ROW][C]26[/C][C]21.4[/C][C]21.578626650113[/C][C]-0.178626650112986[/C][/ROW]
[ROW][C]27[/C][C]19.9[/C][C]20.494324818322[/C][C]-0.594324818321984[/C][/ROW]
[ROW][C]28[/C][C]18.8[/C][C]20.1228352160689[/C][C]-1.32283521606891[/C][/ROW]
[ROW][C]29[/C][C]18.6[/C][C]19.7362476341597[/C][C]-1.13624763415968[/C][/ROW]
[ROW][C]30[/C][C]18.4[/C][C]19.3040033612866[/C][C]-0.904003361286556[/C][/ROW]
[ROW][C]31[/C][C]18.6[/C][C]18.9034104188197[/C][C]-0.303410418819732[/C][/ROW]
[ROW][C]32[/C][C]19.9[/C][C]19.3946160427404[/C][C]0.505383957259591[/C][/ROW]
[ROW][C]33[/C][C]19.2[/C][C]18.3665368593071[/C][C]0.83346314069293[/C][/ROW]
[ROW][C]34[/C][C]18.4[/C][C]17.6339836222995[/C][C]0.766016377700477[/C][/ROW]
[ROW][C]35[/C][C]21.1[/C][C]21.1318885846786[/C][C]-0.031888584678619[/C][/ROW]
[ROW][C]36[/C][C]20.5[/C][C]20.9772435575941[/C][C]-0.477243557594123[/C][/ROW]
[ROW][C]37[/C][C]19.1[/C][C]20.3050306143118[/C][C]-1.20503061431178[/C][/ROW]
[ROW][C]38[/C][C]18.1[/C][C]19.7420908877797[/C][C]-1.64209088777970[/C][/ROW]
[ROW][C]39[/C][C]17[/C][C]18.2346626155014[/C][C]-1.23466261550137[/C][/ROW]
[ROW][C]40[/C][C]17.1[/C][C]17.8460122278593[/C][C]-0.746012227859276[/C][/ROW]
[ROW][C]41[/C][C]17.4[/C][C]17.6766216617692[/C][C]-0.276621661769181[/C][/ROW]
[ROW][C]42[/C][C]16.8[/C][C]16.8898940899648[/C][C]-0.0898940899647866[/C][/ROW]
[ROW][C]43[/C][C]15.3[/C][C]15.6430482665233[/C][C]-0.343048266523299[/C][/ROW]
[ROW][C]44[/C][C]14.3[/C][C]15.4767696487485[/C][C]-1.17676964874849[/C][/ROW]
[ROW][C]45[/C][C]13.4[/C][C]14.1912786844799[/C][C]-0.791278684479897[/C][/ROW]
[ROW][C]46[/C][C]15.3[/C][C]15.4654997433368[/C][C]-0.165499743336828[/C][/ROW]
[ROW][C]47[/C][C]22.1[/C][C]21.0731437139145[/C][C]1.02685628608549[/C][/ROW]
[ROW][C]48[/C][C]23.7[/C][C]22.0505917251799[/C][C]1.64940827482012[/C][/ROW]
[ROW][C]49[/C][C]22.2[/C][C]21.0410562683553[/C][C]1.15894373164472[/C][/ROW]
[ROW][C]50[/C][C]19.5[/C][C]18.6086285290709[/C][C]0.891371470929134[/C][/ROW]
[ROW][C]51[/C][C]16.6[/C][C]17.1414150218087[/C][C]-0.541415021808654[/C][/ROW]
[ROW][C]52[/C][C]17.3[/C][C]17.5818567297522[/C][C]-0.281856729752217[/C][/ROW]
[ROW][C]53[/C][C]19.8[/C][C]19.0020072132774[/C][C]0.797992786722647[/C][/ROW]
[ROW][C]54[/C][C]21.2[/C][C]19.6846951933651[/C][C]1.51530480663492[/C][/ROW]
[ROW][C]55[/C][C]21.5[/C][C]19.8616757598867[/C][C]1.63832424011326[/C][/ROW]
[ROW][C]56[/C][C]20.6[/C][C]19.2722707016246[/C][C]1.3277292983754[/C][/ROW]
[ROW][C]57[/C][C]19.1[/C][C]18.3128346597473[/C][C]0.787165340252669[/C][/ROW]
[ROW][C]58[/C][C]19.6[/C][C]19.135500901577[/C][C]0.464499098423013[/C][/ROW]
[ROW][C]59[/C][C]23.5[/C][C]23.816981258473[/C][C]-0.316981258473003[/C][/ROW]
[ROW][C]60[/C][C]24[/C][C]24.8915007878344[/C][C]-0.891500787834384[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
125.625.13409967998910.465900320010903
223.722.78158267341160.918417326588387
32220.39947314361871.60052685638134
421.319.75930416937941.54069583062059
520.719.99587925838760.704120741612372
620.420.2382800125990.161719987401000
720.319.75188314318710.548116856812906
820.418.89379871293881.50620128706123
919.818.86052628474320.93947371525684
1019.519.12277980297330.377220197026652
1123.123.6841346621462-0.584134662146236
1223.524.5414571756885-1.04145717568849
1323.524.2408883167264-0.740888316726426
1422.922.88907125962480.0109287403751691
1521.921.13012440074930.769875599250668
1621.520.68999165694020.810008343059813
1720.520.5892442324062-0.0892442324061564
1820.220.8831273427846-0.68312734278458
1919.420.9399824115831-1.53998241158313
2019.221.3625448939477-2.16254489394773
2118.820.5688235117225-1.76882351172254
2218.820.2422359298133-1.44223592981331
2322.622.6938517807876-0.093851780787630
2423.322.53920675370310.76079324629687
252322.67892512061740.321074879382581
2621.421.578626650113-0.178626650112986
2719.920.494324818322-0.594324818321984
2818.820.1228352160689-1.32283521606891
2918.619.7362476341597-1.13624763415968
3018.419.3040033612866-0.904003361286556
3118.618.9034104188197-0.303410418819732
3219.919.39461604274040.505383957259591
3319.218.36653685930710.83346314069293
3418.417.63398362229950.766016377700477
3521.121.1318885846786-0.031888584678619
3620.520.9772435575941-0.477243557594123
3719.120.3050306143118-1.20503061431178
3818.119.7420908877797-1.64209088777970
391718.2346626155014-1.23466261550137
4017.117.8460122278593-0.746012227859276
4117.417.6766216617692-0.276621661769181
4216.816.8898940899648-0.0898940899647866
4315.315.6430482665233-0.343048266523299
4414.315.4767696487485-1.17676964874849
4513.414.1912786844799-0.791278684479897
4615.315.4654997433368-0.165499743336828
4722.121.07314371391451.02685628608549
4823.722.05059172517991.64940827482012
4922.221.04105626835531.15894373164472
5019.518.60862852907090.891371470929134
5116.617.1414150218087-0.541415021808654
5217.317.5818567297522-0.281856729752217
5319.819.00200721327740.797992786722647
5421.219.68469519336511.51530480663492
5521.519.86167575988671.63832424011326
5620.619.27227070162461.3277292983754
5719.118.31283465974730.787165340252669
5819.619.1355009015770.464499098423013
5923.523.816981258473-0.316981258473003
602424.8915007878344-0.891500787834384







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
183.81648950483327e-057.63297900966653e-050.999961835104952
190.0320967081470920.0641934162941840.967903291852908
200.1538242211590380.3076484423180770.846175778840962
210.1314583816152980.2629167632305970.868541618384701
220.1151929544682040.2303859089364090.884807045531796
230.06728089364043480.1345617872808700.932719106359565
240.05317453358774930.1063490671754990.94682546641225
250.03863315753879830.07726631507759660.961366842461202
260.03204276305915670.06408552611831340.967957236940843
270.02734107010989550.0546821402197910.972658929890104
280.04695356915298990.09390713830597970.95304643084701
290.03641198494867260.07282396989734520.963588015051327
300.03108629384430720.06217258768861440.968913706155693
310.02620480940815980.05240961881631960.97379519059184
320.06401441528261260.1280288305652250.935985584717387
330.06849322714404380.1369864542880880.931506772855956
340.06336565274206480.1267313054841300.936634347257935
350.068365416141170.136730832282340.93163458385883
360.3263294393682130.6526588787364260.673670560631787
370.6706288761881090.6587422476237820.329371123811891
380.6446067563847740.7107864872304520.355393243615226
390.5664410975656520.8671178048686970.433558902434348
400.4849711842416630.9699423684833260.515028815758337
410.5380296547446580.9239406905106850.461970345255342
420.4845457938289470.9690915876578940.515454206171053

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
18 & 3.81648950483327e-05 & 7.63297900966653e-05 & 0.999961835104952 \tabularnewline
19 & 0.032096708147092 & 0.064193416294184 & 0.967903291852908 \tabularnewline
20 & 0.153824221159038 & 0.307648442318077 & 0.846175778840962 \tabularnewline
21 & 0.131458381615298 & 0.262916763230597 & 0.868541618384701 \tabularnewline
22 & 0.115192954468204 & 0.230385908936409 & 0.884807045531796 \tabularnewline
23 & 0.0672808936404348 & 0.134561787280870 & 0.932719106359565 \tabularnewline
24 & 0.0531745335877493 & 0.106349067175499 & 0.94682546641225 \tabularnewline
25 & 0.0386331575387983 & 0.0772663150775966 & 0.961366842461202 \tabularnewline
26 & 0.0320427630591567 & 0.0640855261183134 & 0.967957236940843 \tabularnewline
27 & 0.0273410701098955 & 0.054682140219791 & 0.972658929890104 \tabularnewline
28 & 0.0469535691529899 & 0.0939071383059797 & 0.95304643084701 \tabularnewline
29 & 0.0364119849486726 & 0.0728239698973452 & 0.963588015051327 \tabularnewline
30 & 0.0310862938443072 & 0.0621725876886144 & 0.968913706155693 \tabularnewline
31 & 0.0262048094081598 & 0.0524096188163196 & 0.97379519059184 \tabularnewline
32 & 0.0640144152826126 & 0.128028830565225 & 0.935985584717387 \tabularnewline
33 & 0.0684932271440438 & 0.136986454288088 & 0.931506772855956 \tabularnewline
34 & 0.0633656527420648 & 0.126731305484130 & 0.936634347257935 \tabularnewline
35 & 0.06836541614117 & 0.13673083228234 & 0.93163458385883 \tabularnewline
36 & 0.326329439368213 & 0.652658878736426 & 0.673670560631787 \tabularnewline
37 & 0.670628876188109 & 0.658742247623782 & 0.329371123811891 \tabularnewline
38 & 0.644606756384774 & 0.710786487230452 & 0.355393243615226 \tabularnewline
39 & 0.566441097565652 & 0.867117804868697 & 0.433558902434348 \tabularnewline
40 & 0.484971184241663 & 0.969942368483326 & 0.515028815758337 \tabularnewline
41 & 0.538029654744658 & 0.923940690510685 & 0.461970345255342 \tabularnewline
42 & 0.484545793828947 & 0.969091587657894 & 0.515454206171053 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]18[/C][C]3.81648950483327e-05[/C][C]7.63297900966653e-05[/C][C]0.999961835104952[/C][/ROW]
[ROW][C]19[/C][C]0.032096708147092[/C][C]0.064193416294184[/C][C]0.967903291852908[/C][/ROW]
[ROW][C]20[/C][C]0.153824221159038[/C][C]0.307648442318077[/C][C]0.846175778840962[/C][/ROW]
[ROW][C]21[/C][C]0.131458381615298[/C][C]0.262916763230597[/C][C]0.868541618384701[/C][/ROW]
[ROW][C]22[/C][C]0.115192954468204[/C][C]0.230385908936409[/C][C]0.884807045531796[/C][/ROW]
[ROW][C]23[/C][C]0.0672808936404348[/C][C]0.134561787280870[/C][C]0.932719106359565[/C][/ROW]
[ROW][C]24[/C][C]0.0531745335877493[/C][C]0.106349067175499[/C][C]0.94682546641225[/C][/ROW]
[ROW][C]25[/C][C]0.0386331575387983[/C][C]0.0772663150775966[/C][C]0.961366842461202[/C][/ROW]
[ROW][C]26[/C][C]0.0320427630591567[/C][C]0.0640855261183134[/C][C]0.967957236940843[/C][/ROW]
[ROW][C]27[/C][C]0.0273410701098955[/C][C]0.054682140219791[/C][C]0.972658929890104[/C][/ROW]
[ROW][C]28[/C][C]0.0469535691529899[/C][C]0.0939071383059797[/C][C]0.95304643084701[/C][/ROW]
[ROW][C]29[/C][C]0.0364119849486726[/C][C]0.0728239698973452[/C][C]0.963588015051327[/C][/ROW]
[ROW][C]30[/C][C]0.0310862938443072[/C][C]0.0621725876886144[/C][C]0.968913706155693[/C][/ROW]
[ROW][C]31[/C][C]0.0262048094081598[/C][C]0.0524096188163196[/C][C]0.97379519059184[/C][/ROW]
[ROW][C]32[/C][C]0.0640144152826126[/C][C]0.128028830565225[/C][C]0.935985584717387[/C][/ROW]
[ROW][C]33[/C][C]0.0684932271440438[/C][C]0.136986454288088[/C][C]0.931506772855956[/C][/ROW]
[ROW][C]34[/C][C]0.0633656527420648[/C][C]0.126731305484130[/C][C]0.936634347257935[/C][/ROW]
[ROW][C]35[/C][C]0.06836541614117[/C][C]0.13673083228234[/C][C]0.93163458385883[/C][/ROW]
[ROW][C]36[/C][C]0.326329439368213[/C][C]0.652658878736426[/C][C]0.673670560631787[/C][/ROW]
[ROW][C]37[/C][C]0.670628876188109[/C][C]0.658742247623782[/C][C]0.329371123811891[/C][/ROW]
[ROW][C]38[/C][C]0.644606756384774[/C][C]0.710786487230452[/C][C]0.355393243615226[/C][/ROW]
[ROW][C]39[/C][C]0.566441097565652[/C][C]0.867117804868697[/C][C]0.433558902434348[/C][/ROW]
[ROW][C]40[/C][C]0.484971184241663[/C][C]0.969942368483326[/C][C]0.515028815758337[/C][/ROW]
[ROW][C]41[/C][C]0.538029654744658[/C][C]0.923940690510685[/C][C]0.461970345255342[/C][/ROW]
[ROW][C]42[/C][C]0.484545793828947[/C][C]0.969091587657894[/C][C]0.515454206171053[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
183.81648950483327e-057.63297900966653e-050.999961835104952
190.0320967081470920.0641934162941840.967903291852908
200.1538242211590380.3076484423180770.846175778840962
210.1314583816152980.2629167632305970.868541618384701
220.1151929544682040.2303859089364090.884807045531796
230.06728089364043480.1345617872808700.932719106359565
240.05317453358774930.1063490671754990.94682546641225
250.03863315753879830.07726631507759660.961366842461202
260.03204276305915670.06408552611831340.967957236940843
270.02734107010989550.0546821402197910.972658929890104
280.04695356915298990.09390713830597970.95304643084701
290.03641198494867260.07282396989734520.963588015051327
300.03108629384430720.06217258768861440.968913706155693
310.02620480940815980.05240961881631960.97379519059184
320.06401441528261260.1280288305652250.935985584717387
330.06849322714404380.1369864542880880.931506772855956
340.06336565274206480.1267313054841300.936634347257935
350.068365416141170.136730832282340.93163458385883
360.3263294393682130.6526588787364260.673670560631787
370.6706288761881090.6587422476237820.329371123811891
380.6446067563847740.7107864872304520.355393243615226
390.5664410975656520.8671178048686970.433558902434348
400.4849711842416630.9699423684833260.515028815758337
410.5380296547446580.9239406905106850.461970345255342
420.4845457938289470.9690915876578940.515454206171053







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level10.04NOK
5% type I error level10.04OK
10% type I error level90.36NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 1 & 0.04 & NOK \tabularnewline
5% type I error level & 1 & 0.04 & OK \tabularnewline
10% type I error level & 9 & 0.36 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=72537&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]1[/C][C]0.04[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]1[/C][C]0.04[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]9[/C][C]0.36[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=72537&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=72537&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level10.04NOK
5% type I error level10.04OK
10% type I error level90.36NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}