Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationMon, 31 May 2010 13:38:37 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/May/31/t1275313211gr24ctehktzlymt.htm/, Retrieved Thu, 31 Oct 2024 22:50:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=76736, Retrieved Thu, 31 Oct 2024 22:50:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W61
Estimated Impact225
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Inschrijving nieu...] [2010-05-31 13:38:37] [181f2439255053cc457d7672472fa443] [Current]
-    D    [Exponential Smoothing] [] [2010-12-26 20:46:21] [74be16979710d4c4e7c6647856088456]
-    D    [Exponential Smoothing] [] [2010-12-26 21:05:11] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
41086
39690
43129
37863
35953
29133
24693
22205
21725
27192
21790
13253
37702
30364
32609
30212
29965
28352
25814
22414
20506
28806
22228
13971
36845
35338
35022
34777
26887
23970
22780
17351
21382
24561
17409
11514
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=76736&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=76736&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=76736&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.225679028753479
beta0.000941496286975265
gamma0.443442884267471

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.225679028753479 \tabularnewline
beta & 0.000941496286975265 \tabularnewline
gamma & 0.443442884267471 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=76736&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.225679028753479[/C][/ROW]
[ROW][C]beta[/C][C]0.000941496286975265[/C][/ROW]
[ROW][C]gamma[/C][C]0.443442884267471[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=76736&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=76736&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.225679028753479
beta0.000941496286975265
gamma0.443442884267471







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
133770241487.9961256583-3785.99612565827
143036432384.2423306439-2020.24233064395
153260934048.8239474295-1439.82394742945
163021230953.0817784327-741.081778432705
172996530167.161562525-202.161562524972
182835228194.2876712472157.71232875279
192581422076.54434447413737.45565552587
202241420801.92075326871612.07924673134
212050621128.7820231166-622.782023116553
222880626754.52591915832051.47408084169
232222822076.067331151.932668999951
241397113470.8643970095500.135602990518
253684537059.4733194593-214.473319459285
263533829795.48397040955542.51602959046
273502233348.72441949451673.27558050553
283477731163.74413083453613.25586916551
292688731542.0186569777-4655.01865697772
302397028668.3449958553-4698.34499585533
312278022752.225994223727.7740057763112
321735120061.3545527706-2710.35455277064
332138218709.04253007232672.95746992771
342456125498.99603427-937.996034270021
351740920022.1189854634-2613.1189854634
361151411945.6711210861-431.671121086054
373151431811.1427395242-297.142739524152
382707127135.2239715725-64.2239715724645
392946227863.02418044141598.97581955856
402610526585.9480635964-480.948063596363
412239723768.4474504728-1371.44745047278
422384321869.56385517681973.43614482318
432170519509.10820626772195.89179373227
441808916761.28097596471327.71902403535
452076418040.74222789212723.25777210785
462531623196.82850721182119.17149278816
471770418102.3007276653-398.30072766529
481554811461.2235378714086.77646212899
492802933585.8002125536-5556.80021255356
502938327714.04861898481668.95138101521
513643829460.21037802766977.78962197236
523203428524.13301245673509.86698754333
532267925984.1070779225-3305.10707792255
542431924768.3603312266-449.360331226591
551800421738.5190502818-3734.51905028182
561753717326.1475284397210.852471560305
572036618790.7238567441575.276143256
582278223364.3485694364-582.34856943641
591916917096.14672940692072.85327059313
601380712536.44630626191270.55369373807
612974329375.0615334871367.938466512893
622559127375.1673514991-1784.16735149907
632909629845.1799392567-749.179939256737
642648226329.5061513026152.493848697366
652240521403.18892294811001.81107705188
662704422062.65158253614981.34841746389
671797019291.1739870883-1321.17398708832
681873016843.7925925231886.20740747698
691968419125.9670976018558.032902398219
701978522648.0790967238-2863.07909672385
711847916985.57738857391493.42261142614
721069812280.7803828343-1582.78038283435

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 37702 & 41487.9961256583 & -3785.99612565827 \tabularnewline
14 & 30364 & 32384.2423306439 & -2020.24233064395 \tabularnewline
15 & 32609 & 34048.8239474295 & -1439.82394742945 \tabularnewline
16 & 30212 & 30953.0817784327 & -741.081778432705 \tabularnewline
17 & 29965 & 30167.161562525 & -202.161562524972 \tabularnewline
18 & 28352 & 28194.2876712472 & 157.71232875279 \tabularnewline
19 & 25814 & 22076.5443444741 & 3737.45565552587 \tabularnewline
20 & 22414 & 20801.9207532687 & 1612.07924673134 \tabularnewline
21 & 20506 & 21128.7820231166 & -622.782023116553 \tabularnewline
22 & 28806 & 26754.5259191583 & 2051.47408084169 \tabularnewline
23 & 22228 & 22076.067331 & 151.932668999951 \tabularnewline
24 & 13971 & 13470.8643970095 & 500.135602990518 \tabularnewline
25 & 36845 & 37059.4733194593 & -214.473319459285 \tabularnewline
26 & 35338 & 29795.4839704095 & 5542.51602959046 \tabularnewline
27 & 35022 & 33348.7244194945 & 1673.27558050553 \tabularnewline
28 & 34777 & 31163.7441308345 & 3613.25586916551 \tabularnewline
29 & 26887 & 31542.0186569777 & -4655.01865697772 \tabularnewline
30 & 23970 & 28668.3449958553 & -4698.34499585533 \tabularnewline
31 & 22780 & 22752.2259942237 & 27.7740057763112 \tabularnewline
32 & 17351 & 20061.3545527706 & -2710.35455277064 \tabularnewline
33 & 21382 & 18709.0425300723 & 2672.95746992771 \tabularnewline
34 & 24561 & 25498.99603427 & -937.996034270021 \tabularnewline
35 & 17409 & 20022.1189854634 & -2613.1189854634 \tabularnewline
36 & 11514 & 11945.6711210861 & -431.671121086054 \tabularnewline
37 & 31514 & 31811.1427395242 & -297.142739524152 \tabularnewline
38 & 27071 & 27135.2239715725 & -64.2239715724645 \tabularnewline
39 & 29462 & 27863.0241804414 & 1598.97581955856 \tabularnewline
40 & 26105 & 26585.9480635964 & -480.948063596363 \tabularnewline
41 & 22397 & 23768.4474504728 & -1371.44745047278 \tabularnewline
42 & 23843 & 21869.5638551768 & 1973.43614482318 \tabularnewline
43 & 21705 & 19509.1082062677 & 2195.89179373227 \tabularnewline
44 & 18089 & 16761.2809759647 & 1327.71902403535 \tabularnewline
45 & 20764 & 18040.7422278921 & 2723.25777210785 \tabularnewline
46 & 25316 & 23196.8285072118 & 2119.17149278816 \tabularnewline
47 & 17704 & 18102.3007276653 & -398.30072766529 \tabularnewline
48 & 15548 & 11461.223537871 & 4086.77646212899 \tabularnewline
49 & 28029 & 33585.8002125536 & -5556.80021255356 \tabularnewline
50 & 29383 & 27714.0486189848 & 1668.95138101521 \tabularnewline
51 & 36438 & 29460.2103780276 & 6977.78962197236 \tabularnewline
52 & 32034 & 28524.1330124567 & 3509.86698754333 \tabularnewline
53 & 22679 & 25984.1070779225 & -3305.10707792255 \tabularnewline
54 & 24319 & 24768.3603312266 & -449.360331226591 \tabularnewline
55 & 18004 & 21738.5190502818 & -3734.51905028182 \tabularnewline
56 & 17537 & 17326.1475284397 & 210.852471560305 \tabularnewline
57 & 20366 & 18790.723856744 & 1575.276143256 \tabularnewline
58 & 22782 & 23364.3485694364 & -582.34856943641 \tabularnewline
59 & 19169 & 17096.1467294069 & 2072.85327059313 \tabularnewline
60 & 13807 & 12536.4463062619 & 1270.55369373807 \tabularnewline
61 & 29743 & 29375.0615334871 & 367.938466512893 \tabularnewline
62 & 25591 & 27375.1673514991 & -1784.16735149907 \tabularnewline
63 & 29096 & 29845.1799392567 & -749.179939256737 \tabularnewline
64 & 26482 & 26329.5061513026 & 152.493848697366 \tabularnewline
65 & 22405 & 21403.1889229481 & 1001.81107705188 \tabularnewline
66 & 27044 & 22062.6515825361 & 4981.34841746389 \tabularnewline
67 & 17970 & 19291.1739870883 & -1321.17398708832 \tabularnewline
68 & 18730 & 16843.792592523 & 1886.20740747698 \tabularnewline
69 & 19684 & 19125.9670976018 & 558.032902398219 \tabularnewline
70 & 19785 & 22648.0790967238 & -2863.07909672385 \tabularnewline
71 & 18479 & 16985.5773885739 & 1493.42261142614 \tabularnewline
72 & 10698 & 12280.7803828343 & -1582.78038283435 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=76736&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]37702[/C][C]41487.9961256583[/C][C]-3785.99612565827[/C][/ROW]
[ROW][C]14[/C][C]30364[/C][C]32384.2423306439[/C][C]-2020.24233064395[/C][/ROW]
[ROW][C]15[/C][C]32609[/C][C]34048.8239474295[/C][C]-1439.82394742945[/C][/ROW]
[ROW][C]16[/C][C]30212[/C][C]30953.0817784327[/C][C]-741.081778432705[/C][/ROW]
[ROW][C]17[/C][C]29965[/C][C]30167.161562525[/C][C]-202.161562524972[/C][/ROW]
[ROW][C]18[/C][C]28352[/C][C]28194.2876712472[/C][C]157.71232875279[/C][/ROW]
[ROW][C]19[/C][C]25814[/C][C]22076.5443444741[/C][C]3737.45565552587[/C][/ROW]
[ROW][C]20[/C][C]22414[/C][C]20801.9207532687[/C][C]1612.07924673134[/C][/ROW]
[ROW][C]21[/C][C]20506[/C][C]21128.7820231166[/C][C]-622.782023116553[/C][/ROW]
[ROW][C]22[/C][C]28806[/C][C]26754.5259191583[/C][C]2051.47408084169[/C][/ROW]
[ROW][C]23[/C][C]22228[/C][C]22076.067331[/C][C]151.932668999951[/C][/ROW]
[ROW][C]24[/C][C]13971[/C][C]13470.8643970095[/C][C]500.135602990518[/C][/ROW]
[ROW][C]25[/C][C]36845[/C][C]37059.4733194593[/C][C]-214.473319459285[/C][/ROW]
[ROW][C]26[/C][C]35338[/C][C]29795.4839704095[/C][C]5542.51602959046[/C][/ROW]
[ROW][C]27[/C][C]35022[/C][C]33348.7244194945[/C][C]1673.27558050553[/C][/ROW]
[ROW][C]28[/C][C]34777[/C][C]31163.7441308345[/C][C]3613.25586916551[/C][/ROW]
[ROW][C]29[/C][C]26887[/C][C]31542.0186569777[/C][C]-4655.01865697772[/C][/ROW]
[ROW][C]30[/C][C]23970[/C][C]28668.3449958553[/C][C]-4698.34499585533[/C][/ROW]
[ROW][C]31[/C][C]22780[/C][C]22752.2259942237[/C][C]27.7740057763112[/C][/ROW]
[ROW][C]32[/C][C]17351[/C][C]20061.3545527706[/C][C]-2710.35455277064[/C][/ROW]
[ROW][C]33[/C][C]21382[/C][C]18709.0425300723[/C][C]2672.95746992771[/C][/ROW]
[ROW][C]34[/C][C]24561[/C][C]25498.99603427[/C][C]-937.996034270021[/C][/ROW]
[ROW][C]35[/C][C]17409[/C][C]20022.1189854634[/C][C]-2613.1189854634[/C][/ROW]
[ROW][C]36[/C][C]11514[/C][C]11945.6711210861[/C][C]-431.671121086054[/C][/ROW]
[ROW][C]37[/C][C]31514[/C][C]31811.1427395242[/C][C]-297.142739524152[/C][/ROW]
[ROW][C]38[/C][C]27071[/C][C]27135.2239715725[/C][C]-64.2239715724645[/C][/ROW]
[ROW][C]39[/C][C]29462[/C][C]27863.0241804414[/C][C]1598.97581955856[/C][/ROW]
[ROW][C]40[/C][C]26105[/C][C]26585.9480635964[/C][C]-480.948063596363[/C][/ROW]
[ROW][C]41[/C][C]22397[/C][C]23768.4474504728[/C][C]-1371.44745047278[/C][/ROW]
[ROW][C]42[/C][C]23843[/C][C]21869.5638551768[/C][C]1973.43614482318[/C][/ROW]
[ROW][C]43[/C][C]21705[/C][C]19509.1082062677[/C][C]2195.89179373227[/C][/ROW]
[ROW][C]44[/C][C]18089[/C][C]16761.2809759647[/C][C]1327.71902403535[/C][/ROW]
[ROW][C]45[/C][C]20764[/C][C]18040.7422278921[/C][C]2723.25777210785[/C][/ROW]
[ROW][C]46[/C][C]25316[/C][C]23196.8285072118[/C][C]2119.17149278816[/C][/ROW]
[ROW][C]47[/C][C]17704[/C][C]18102.3007276653[/C][C]-398.30072766529[/C][/ROW]
[ROW][C]48[/C][C]15548[/C][C]11461.223537871[/C][C]4086.77646212899[/C][/ROW]
[ROW][C]49[/C][C]28029[/C][C]33585.8002125536[/C][C]-5556.80021255356[/C][/ROW]
[ROW][C]50[/C][C]29383[/C][C]27714.0486189848[/C][C]1668.95138101521[/C][/ROW]
[ROW][C]51[/C][C]36438[/C][C]29460.2103780276[/C][C]6977.78962197236[/C][/ROW]
[ROW][C]52[/C][C]32034[/C][C]28524.1330124567[/C][C]3509.86698754333[/C][/ROW]
[ROW][C]53[/C][C]22679[/C][C]25984.1070779225[/C][C]-3305.10707792255[/C][/ROW]
[ROW][C]54[/C][C]24319[/C][C]24768.3603312266[/C][C]-449.360331226591[/C][/ROW]
[ROW][C]55[/C][C]18004[/C][C]21738.5190502818[/C][C]-3734.51905028182[/C][/ROW]
[ROW][C]56[/C][C]17537[/C][C]17326.1475284397[/C][C]210.852471560305[/C][/ROW]
[ROW][C]57[/C][C]20366[/C][C]18790.723856744[/C][C]1575.276143256[/C][/ROW]
[ROW][C]58[/C][C]22782[/C][C]23364.3485694364[/C][C]-582.34856943641[/C][/ROW]
[ROW][C]59[/C][C]19169[/C][C]17096.1467294069[/C][C]2072.85327059313[/C][/ROW]
[ROW][C]60[/C][C]13807[/C][C]12536.4463062619[/C][C]1270.55369373807[/C][/ROW]
[ROW][C]61[/C][C]29743[/C][C]29375.0615334871[/C][C]367.938466512893[/C][/ROW]
[ROW][C]62[/C][C]25591[/C][C]27375.1673514991[/C][C]-1784.16735149907[/C][/ROW]
[ROW][C]63[/C][C]29096[/C][C]29845.1799392567[/C][C]-749.179939256737[/C][/ROW]
[ROW][C]64[/C][C]26482[/C][C]26329.5061513026[/C][C]152.493848697366[/C][/ROW]
[ROW][C]65[/C][C]22405[/C][C]21403.1889229481[/C][C]1001.81107705188[/C][/ROW]
[ROW][C]66[/C][C]27044[/C][C]22062.6515825361[/C][C]4981.34841746389[/C][/ROW]
[ROW][C]67[/C][C]17970[/C][C]19291.1739870883[/C][C]-1321.17398708832[/C][/ROW]
[ROW][C]68[/C][C]18730[/C][C]16843.792592523[/C][C]1886.20740747698[/C][/ROW]
[ROW][C]69[/C][C]19684[/C][C]19125.9670976018[/C][C]558.032902398219[/C][/ROW]
[ROW][C]70[/C][C]19785[/C][C]22648.0790967238[/C][C]-2863.07909672385[/C][/ROW]
[ROW][C]71[/C][C]18479[/C][C]16985.5773885739[/C][C]1493.42261142614[/C][/ROW]
[ROW][C]72[/C][C]10698[/C][C]12280.7803828343[/C][C]-1582.78038283435[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=76736&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=76736&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
133770241487.9961256583-3785.99612565827
143036432384.2423306439-2020.24233064395
153260934048.8239474295-1439.82394742945
163021230953.0817784327-741.081778432705
172996530167.161562525-202.161562524972
182835228194.2876712472157.71232875279
192581422076.54434447413737.45565552587
202241420801.92075326871612.07924673134
212050621128.7820231166-622.782023116553
222880626754.52591915832051.47408084169
232222822076.067331151.932668999951
241397113470.8643970095500.135602990518
253684537059.4733194593-214.473319459285
263533829795.48397040955542.51602959046
273502233348.72441949451673.27558050553
283477731163.74413083453613.25586916551
292688731542.0186569777-4655.01865697772
302397028668.3449958553-4698.34499585533
312278022752.225994223727.7740057763112
321735120061.3545527706-2710.35455277064
332138218709.04253007232672.95746992771
342456125498.99603427-937.996034270021
351740920022.1189854634-2613.1189854634
361151411945.6711210861-431.671121086054
373151431811.1427395242-297.142739524152
382707127135.2239715725-64.2239715724645
392946227863.02418044141598.97581955856
402610526585.9480635964-480.948063596363
412239723768.4474504728-1371.44745047278
422384321869.56385517681973.43614482318
432170519509.10820626772195.89179373227
441808916761.28097596471327.71902403535
452076418040.74222789212723.25777210785
462531623196.82850721182119.17149278816
471770418102.3007276653-398.30072766529
481554811461.2235378714086.77646212899
492802933585.8002125536-5556.80021255356
502938327714.04861898481668.95138101521
513643829460.21037802766977.78962197236
523203428524.13301245673509.86698754333
532267925984.1070779225-3305.10707792255
542431924768.3603312266-449.360331226591
551800421738.5190502818-3734.51905028182
561753717326.1475284397210.852471560305
572036618790.7238567441575.276143256
582278223364.3485694364-582.34856943641
591916917096.14672940692072.85327059313
601380712536.44630626191270.55369373807
612974329375.0615334871367.938466512893
622559127375.1673514991-1784.16735149907
632909629845.1799392567-749.179939256737
642648226329.5061513026152.493848697366
652240521403.18892294811001.81107705188
662704422062.65158253614981.34841746389
671797019291.1739870883-1321.17398708832
681873016843.7925925231886.20740747698
691968419125.9670976018558.032902398219
701978522648.0790967238-2863.07909672385
711847916985.57738857391493.42261142614
721069812280.7803828343-1582.78038283435







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
7326498.981865145723698.880672305229299.0830579861
7423934.863394319820956.288363422826913.4384252168
7526836.693618631223556.49257844330116.8946588194
7624042.233314809120686.841609156927397.6250204613
7719769.00758447416442.310680403623095.7044885444
7821288.456756201917662.497386314824914.416126089
7916072.176615047512656.443904698119487.909325397
8015124.888989785711597.600805592618652.1771739788
8116273.780768291712429.524494838620118.0370417449
8218070.92652369513805.65984937822336.1931980121
8315008.434190427611001.710892852419015.1574880027
849842.625886159177798.83392099711886.4178513213

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
73 & 26498.9818651457 & 23698.8806723052 & 29299.0830579861 \tabularnewline
74 & 23934.8633943198 & 20956.2883634228 & 26913.4384252168 \tabularnewline
75 & 26836.6936186312 & 23556.492578443 & 30116.8946588194 \tabularnewline
76 & 24042.2333148091 & 20686.8416091569 & 27397.6250204613 \tabularnewline
77 & 19769.007584474 & 16442.3106804036 & 23095.7044885444 \tabularnewline
78 & 21288.4567562019 & 17662.4973863148 & 24914.416126089 \tabularnewline
79 & 16072.1766150475 & 12656.4439046981 & 19487.909325397 \tabularnewline
80 & 15124.8889897857 & 11597.6008055926 & 18652.1771739788 \tabularnewline
81 & 16273.7807682917 & 12429.5244948386 & 20118.0370417449 \tabularnewline
82 & 18070.926523695 & 13805.659849378 & 22336.1931980121 \tabularnewline
83 & 15008.4341904276 & 11001.7108928524 & 19015.1574880027 \tabularnewline
84 & 9842.62588615917 & 7798.833920997 & 11886.4178513213 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=76736&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]73[/C][C]26498.9818651457[/C][C]23698.8806723052[/C][C]29299.0830579861[/C][/ROW]
[ROW][C]74[/C][C]23934.8633943198[/C][C]20956.2883634228[/C][C]26913.4384252168[/C][/ROW]
[ROW][C]75[/C][C]26836.6936186312[/C][C]23556.492578443[/C][C]30116.8946588194[/C][/ROW]
[ROW][C]76[/C][C]24042.2333148091[/C][C]20686.8416091569[/C][C]27397.6250204613[/C][/ROW]
[ROW][C]77[/C][C]19769.007584474[/C][C]16442.3106804036[/C][C]23095.7044885444[/C][/ROW]
[ROW][C]78[/C][C]21288.4567562019[/C][C]17662.4973863148[/C][C]24914.416126089[/C][/ROW]
[ROW][C]79[/C][C]16072.1766150475[/C][C]12656.4439046981[/C][C]19487.909325397[/C][/ROW]
[ROW][C]80[/C][C]15124.8889897857[/C][C]11597.6008055926[/C][C]18652.1771739788[/C][/ROW]
[ROW][C]81[/C][C]16273.7807682917[/C][C]12429.5244948386[/C][C]20118.0370417449[/C][/ROW]
[ROW][C]82[/C][C]18070.926523695[/C][C]13805.659849378[/C][C]22336.1931980121[/C][/ROW]
[ROW][C]83[/C][C]15008.4341904276[/C][C]11001.7108928524[/C][C]19015.1574880027[/C][/ROW]
[ROW][C]84[/C][C]9842.62588615917[/C][C]7798.833920997[/C][C]11886.4178513213[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=76736&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=76736&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
7326498.981865145723698.880672305229299.0830579861
7423934.863394319820956.288363422826913.4384252168
7526836.693618631223556.49257844330116.8946588194
7624042.233314809120686.841609156927397.6250204613
7719769.00758447416442.310680403623095.7044885444
7821288.456756201917662.497386314824914.416126089
7916072.176615047512656.443904698119487.909325397
8015124.888989785711597.600805592618652.1771739788
8116273.780768291712429.524494838620118.0370417449
8218070.92652369513805.65984937822336.1931980121
8315008.434190427611001.710892852419015.1574880027
849842.625886159177798.83392099711886.4178513213



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')