Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationWed, 11 Aug 2010 21:23:44 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Aug/11/t1281561807akeifymrz0cbdbn.htm/, Retrieved Thu, 31 Oct 2024 23:28:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=78649, Retrieved Thu, 31 Oct 2024 23:28:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsMarianne Nykjaer
Estimated Impact191
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [Tijdreeks 2 stap 21] [2010-08-11 21:23:44] [aec95ccba2c38285ca49e8d90cbfedc9] [Current]
Feedback Forum

Post a new message
Dataseries X:
190
189
188
186
184
183
184
186
187
187
188
190
190
190
197
187
185
182
182
191
183
192
178
181
179
175
183
179
178
175
170
179
169
178
161
168
167
165
181
181
184
181
177
183
162
166
151
162
159
152
164
158
160
161
151
149
131
138
130
147
151
140
149
143
145
139
136
133
118
130
121
142
148
131
137
128
130
119
107
113
93
106
98
118




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78649&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78649&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78649&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1186.8333333333332.329000305762637
2186.55.5840682465222619
3174.56.2740446574467722
4171.66666666666710.798428617445333
515011.607207792026234
6137.2510.27021288617133
711916.453792047041155

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 186.833333333333 & 2.32900030576263 & 7 \tabularnewline
2 & 186.5 & 5.58406824652226 & 19 \tabularnewline
3 & 174.5 & 6.27404465744677 & 22 \tabularnewline
4 & 171.666666666667 & 10.7984286174453 & 33 \tabularnewline
5 & 150 & 11.6072077920262 & 34 \tabularnewline
6 & 137.25 & 10.270212886171 & 33 \tabularnewline
7 & 119 & 16.4537920470411 & 55 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78649&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]186.833333333333[/C][C]2.32900030576263[/C][C]7[/C][/ROW]
[ROW][C]2[/C][C]186.5[/C][C]5.58406824652226[/C][C]19[/C][/ROW]
[ROW][C]3[/C][C]174.5[/C][C]6.27404465744677[/C][C]22[/C][/ROW]
[ROW][C]4[/C][C]171.666666666667[/C][C]10.7984286174453[/C][C]33[/C][/ROW]
[ROW][C]5[/C][C]150[/C][C]11.6072077920262[/C][C]34[/C][/ROW]
[ROW][C]6[/C][C]137.25[/C][C]10.270212886171[/C][C]33[/C][/ROW]
[ROW][C]7[/C][C]119[/C][C]16.4537920470411[/C][C]55[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78649&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78649&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1186.8333333333332.329000305762637
2186.55.5840682465222619
3174.56.2740446574467722
4171.66666666666710.798428617445333
515011.607207792026234
6137.2510.27021288617133
711916.453792047041155







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha34.7335536504199
beta-0.159731841883654
S.D.0.0365534729444122
T-STAT-4.3698130168524
p-value0.00722333276782048

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 34.7335536504199 \tabularnewline
beta & -0.159731841883654 \tabularnewline
S.D. & 0.0365534729444122 \tabularnewline
T-STAT & -4.3698130168524 \tabularnewline
p-value & 0.00722333276782048 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78649&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]34.7335536504199[/C][/ROW]
[ROW][C]beta[/C][C]-0.159731841883654[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0365534729444122[/C][/ROW]
[ROW][C]T-STAT[/C][C]-4.3698130168524[/C][/ROW]
[ROW][C]p-value[/C][C]0.00722333276782048[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78649&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78649&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha34.7335536504199
beta-0.159731841883654
S.D.0.0365534729444122
T-STAT-4.3698130168524
p-value0.00722333276782048







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha17.2144673797357
beta-2.99170159803389
S.D.1.04214336597395
T-STAT-2.87071980277681
p-value0.0349651815894378
Lambda3.99170159803389

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 17.2144673797357 \tabularnewline
beta & -2.99170159803389 \tabularnewline
S.D. & 1.04214336597395 \tabularnewline
T-STAT & -2.87071980277681 \tabularnewline
p-value & 0.0349651815894378 \tabularnewline
Lambda & 3.99170159803389 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78649&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]17.2144673797357[/C][/ROW]
[ROW][C]beta[/C][C]-2.99170159803389[/C][/ROW]
[ROW][C]S.D.[/C][C]1.04214336597395[/C][/ROW]
[ROW][C]T-STAT[/C][C]-2.87071980277681[/C][/ROW]
[ROW][C]p-value[/C][C]0.0349651815894378[/C][/ROW]
[ROW][C]Lambda[/C][C]3.99170159803389[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78649&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78649&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha17.2144673797357
beta-2.99170159803389
S.D.1.04214336597395
T-STAT-2.87071980277681
p-value0.0349651815894378
Lambda3.99170159803389



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')