Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationThu, 19 Aug 2010 15:44:33 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Aug/19/t1282232740tx45bff1ggw2d5n.htm/, Retrieved Fri, 01 Nov 2024 00:05:21 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=79321, Retrieved Fri, 01 Nov 2024 00:05:21 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsGilian Keirsebelik
Estimated Impact150
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [tijdreeks A-Stap 26] [2010-08-19 15:44:33] [46199ea7e385a69efb178ac615a86e3a] [Current]
Feedback Forum

Post a new message
Dataseries X:
668
667
666
664
684
683
668
658
659
659
660
662
659
655
655
655
674
674
665
644
638
648
641
637
651
649
652
650
661
666
652
624
613
623
615
613
621
612
611
609
631
632
624
596
584
587
581
574
593
582
571
572
594
588
571
546
535
537
527
515
545
538
520
523
541
529
504
473
455
458
450
442
469
455
439
443
461
451
425
393
366
359
351
343
366
355
344
351
367
364
353
313
278
274
261
255
274
262
265
274
291
289
277
238
203
198
190
187
201
181
181
196
207
202
186
154
120
107
99
100




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79321&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79321&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79321&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1666.58.7230103227560826
2653.7512.785823114968937
3639.08333333333319.828621798406553
4605.16666666666720.238726753579658
5560.91666666666727.556415960825979
6498.16666666666739.632019500613103
7412.91666666666747.3256769309188126
8323.41666666666744.3200310414507112
9245.66666666666740.2860980608658104
10161.16666666666742.913937836163108

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 666.5 & 8.72301032275608 & 26 \tabularnewline
2 & 653.75 & 12.7858231149689 & 37 \tabularnewline
3 & 639.083333333333 & 19.8286217984065 & 53 \tabularnewline
4 & 605.166666666667 & 20.2387267535796 & 58 \tabularnewline
5 & 560.916666666667 & 27.5564159608259 & 79 \tabularnewline
6 & 498.166666666667 & 39.632019500613 & 103 \tabularnewline
7 & 412.916666666667 & 47.3256769309188 & 126 \tabularnewline
8 & 323.416666666667 & 44.3200310414507 & 112 \tabularnewline
9 & 245.666666666667 & 40.2860980608658 & 104 \tabularnewline
10 & 161.166666666667 & 42.913937836163 & 108 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79321&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]666.5[/C][C]8.72301032275608[/C][C]26[/C][/ROW]
[ROW][C]2[/C][C]653.75[/C][C]12.7858231149689[/C][C]37[/C][/ROW]
[ROW][C]3[/C][C]639.083333333333[/C][C]19.8286217984065[/C][C]53[/C][/ROW]
[ROW][C]4[/C][C]605.166666666667[/C][C]20.2387267535796[/C][C]58[/C][/ROW]
[ROW][C]5[/C][C]560.916666666667[/C][C]27.5564159608259[/C][C]79[/C][/ROW]
[ROW][C]6[/C][C]498.166666666667[/C][C]39.632019500613[/C][C]103[/C][/ROW]
[ROW][C]7[/C][C]412.916666666667[/C][C]47.3256769309188[/C][C]126[/C][/ROW]
[ROW][C]8[/C][C]323.416666666667[/C][C]44.3200310414507[/C][C]112[/C][/ROW]
[ROW][C]9[/C][C]245.666666666667[/C][C]40.2860980608658[/C][C]104[/C][/ROW]
[ROW][C]10[/C][C]161.166666666667[/C][C]42.913937836163[/C][C]108[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79321&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79321&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1666.58.7230103227560826
2653.7512.785823114968937
3639.08333333333319.828621798406553
4605.16666666666720.238726753579658
5560.91666666666727.556415960825979
6498.16666666666739.632019500613103
7412.91666666666747.3256769309188126
8323.41666666666744.3200310414507112
9245.66666666666740.2860980608658104
10161.16666666666742.913937836163108







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha61.9085186690045
beta-0.0661823727633077
S.D.0.0147112187519394
T-STAT-4.49876885656281
p-value0.00200535377238944

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 61.9085186690045 \tabularnewline
beta & -0.0661823727633077 \tabularnewline
S.D. & 0.0147112187519394 \tabularnewline
T-STAT & -4.49876885656281 \tabularnewline
p-value & 0.00200535377238944 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79321&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]61.9085186690045[/C][/ROW]
[ROW][C]beta[/C][C]-0.0661823727633077[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0147112187519394[/C][/ROW]
[ROW][C]T-STAT[/C][C]-4.49876885656281[/C][/ROW]
[ROW][C]p-value[/C][C]0.00200535377238944[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79321&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79321&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha61.9085186690045
beta-0.0661823727633077
S.D.0.0147112187519394
T-STAT-4.49876885656281
p-value0.00200535377238944







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha8.53593630999488
beta-0.864614665498906
S.D.0.302597931510111
T-STAT-2.85730527364829
p-value0.0212391893793298
Lambda1.86461466549891

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 8.53593630999488 \tabularnewline
beta & -0.864614665498906 \tabularnewline
S.D. & 0.302597931510111 \tabularnewline
T-STAT & -2.85730527364829 \tabularnewline
p-value & 0.0212391893793298 \tabularnewline
Lambda & 1.86461466549891 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79321&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]8.53593630999488[/C][/ROW]
[ROW][C]beta[/C][C]-0.864614665498906[/C][/ROW]
[ROW][C]S.D.[/C][C]0.302597931510111[/C][/ROW]
[ROW][C]T-STAT[/C][C]-2.85730527364829[/C][/ROW]
[ROW][C]p-value[/C][C]0.0212391893793298[/C][/ROW]
[ROW][C]Lambda[/C][C]1.86461466549891[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79321&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79321&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha8.53593630999488
beta-0.864614665498906
S.D.0.302597931510111
T-STAT-2.85730527364829
p-value0.0212391893793298
Lambda1.86461466549891



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')