Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 24 Dec 2010 13:05:44 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/24/t1293195814qon3xblbaurkxq2.htm/, Retrieved Sun, 10 Nov 2024 19:44:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=114891, Retrieved Sun, 10 Nov 2024 19:44:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact166
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [] [2008-12-08 19:22:39] [d2d412c7f4d35ffbf5ee5ee89db327d4]
- RMP   [ARIMA Forecasting] [] [2010-12-14 14:23:29] [abe7df3fc544bbb0ed435b4e9982bc91]
- RMPD      [Multiple Regression] [] [2010-12-24 13:05:44] [29eeba0e6ce2cd83aa315a4a7ff8c4aa] [Current]
Feedback Forum

Post a new message
Dataseries X:
6,4
7,7
9,2
8,6
7,4
8,6
6,2
6
6,6
5,1
4,7
5
3,6
1,9
-0,1
-5,7
-5,6
-6,4
-7,7
-8
-11,9
-15,4
-15,5
-13,4
-10,9
-10,8
-7,3
-6,5
-5,1
-5,3
-6,8
-8,4
-8,4
-9,7
-8,8
-9,6
-11,5
-11
-14,9
-16,2
-14,4
-17,3
-15,7
-12,6
-9,4
-8,1
-5,4
-4,6
-4,9
-4
-3,1
-1,3
0
-0,4
3
0,4
1,2
0,6
-1,3
-3,2
-1,8
-3,6
-4,2
-6,9
-8
-7,5
-8,2
-7,6
-3,7
-1,7
-0,7
0,2
0,6
2,2
3,3
5,3
5,5
6,3
7,7
6,5
5,5
6,9
5,7
6,9
6,1
4,8
3,7
5,8
6,8
8,5
7,2
5
4,7
2,3
2,4
0,1
1,9
1,7
2
-1,9
0,5
-1,3
-3,3
-2,8
-8
-13,9
-21,9
-28,8
-27,6
-31,4
-31,8
-29,4
-27,6
-23,6
-22,8
-18,2
-17,8
-14,2
-8,8
-7,9
-7
-7
-3,6
-2,4
-4,9
-7,7
-6,5
-5,1
-3,4
-2,8
0,8




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 10 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]10 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Conjunctuur[t] = -1.90042553191490 + 1.15503223726628M1[t] + 0.810025789813028M2[t] + 1.11047388781432M3[t] + 0.820012894906516M4[t] + 1.34773372018053M5[t] + 1.33909090909092M6[t] + 1.32135718891038M7[t] + 1.56725983236622M8[t] + 1.64043520309478M9[t] + 1.12270148291425M10[t] + 1.36860412637009M11[t] -0.054993552546744t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Conjunctuur[t] =  -1.90042553191490 +  1.15503223726628M1[t] +  0.810025789813028M2[t] +  1.11047388781432M3[t] +  0.820012894906516M4[t] +  1.34773372018053M5[t] +  1.33909090909092M6[t] +  1.32135718891038M7[t] +  1.56725983236622M8[t] +  1.64043520309478M9[t] +  1.12270148291425M10[t] +  1.36860412637009M11[t] -0.054993552546744t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Conjunctuur[t] =  -1.90042553191490 +  1.15503223726628M1[t] +  0.810025789813028M2[t] +  1.11047388781432M3[t] +  0.820012894906516M4[t] +  1.34773372018053M5[t] +  1.33909090909092M6[t] +  1.32135718891038M7[t] +  1.56725983236622M8[t] +  1.64043520309478M9[t] +  1.12270148291425M10[t] +  1.36860412637009M11[t] -0.054993552546744t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Conjunctuur[t] = -1.90042553191490 + 1.15503223726628M1[t] + 0.810025789813028M2[t] + 1.11047388781432M3[t] + 0.820012894906516M4[t] + 1.34773372018053M5[t] + 1.33909090909092M6[t] + 1.32135718891038M7[t] + 1.56725983236622M8[t] + 1.64043520309478M9[t] + 1.12270148291425M10[t] + 1.36860412637009M11[t] -0.054993552546744t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-1.900425531914903.341484-0.56870.5706150.285308
M11.155032237266284.1575770.27780.7816410.390821
M20.8100257898130284.1570510.19490.8458410.42292
M31.110473887814324.1566410.26720.7898150.394908
M40.8200128949065164.1563490.19730.8439390.421969
M51.347733720180534.1561740.32430.7463060.373153
M61.339090909090924.1561150.32220.7478730.373937
M71.321357188910384.1561740.31790.7511030.375551
M81.567259832366224.1563490.37710.7067940.353397
M91.640435203094784.1566410.39470.6938110.346905
M101.122701482914254.1570510.27010.7875770.393788
M111.368604126370094.1575770.32920.7426010.3713
t-0.0549935525467440.022048-2.49420.0140080.007004

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -1.90042553191490 & 3.341484 & -0.5687 & 0.570615 & 0.285308 \tabularnewline
M1 & 1.15503223726628 & 4.157577 & 0.2778 & 0.781641 & 0.390821 \tabularnewline
M2 & 0.810025789813028 & 4.157051 & 0.1949 & 0.845841 & 0.42292 \tabularnewline
M3 & 1.11047388781432 & 4.156641 & 0.2672 & 0.789815 & 0.394908 \tabularnewline
M4 & 0.820012894906516 & 4.156349 & 0.1973 & 0.843939 & 0.421969 \tabularnewline
M5 & 1.34773372018053 & 4.156174 & 0.3243 & 0.746306 & 0.373153 \tabularnewline
M6 & 1.33909090909092 & 4.156115 & 0.3222 & 0.747873 & 0.373937 \tabularnewline
M7 & 1.32135718891038 & 4.156174 & 0.3179 & 0.751103 & 0.375551 \tabularnewline
M8 & 1.56725983236622 & 4.156349 & 0.3771 & 0.706794 & 0.353397 \tabularnewline
M9 & 1.64043520309478 & 4.156641 & 0.3947 & 0.693811 & 0.346905 \tabularnewline
M10 & 1.12270148291425 & 4.157051 & 0.2701 & 0.787577 & 0.393788 \tabularnewline
M11 & 1.36860412637009 & 4.157577 & 0.3292 & 0.742601 & 0.3713 \tabularnewline
t & -0.054993552546744 & 0.022048 & -2.4942 & 0.014008 & 0.007004 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-1.90042553191490[/C][C]3.341484[/C][C]-0.5687[/C][C]0.570615[/C][C]0.285308[/C][/ROW]
[ROW][C]M1[/C][C]1.15503223726628[/C][C]4.157577[/C][C]0.2778[/C][C]0.781641[/C][C]0.390821[/C][/ROW]
[ROW][C]M2[/C][C]0.810025789813028[/C][C]4.157051[/C][C]0.1949[/C][C]0.845841[/C][C]0.42292[/C][/ROW]
[ROW][C]M3[/C][C]1.11047388781432[/C][C]4.156641[/C][C]0.2672[/C][C]0.789815[/C][C]0.394908[/C][/ROW]
[ROW][C]M4[/C][C]0.820012894906516[/C][C]4.156349[/C][C]0.1973[/C][C]0.843939[/C][C]0.421969[/C][/ROW]
[ROW][C]M5[/C][C]1.34773372018053[/C][C]4.156174[/C][C]0.3243[/C][C]0.746306[/C][C]0.373153[/C][/ROW]
[ROW][C]M6[/C][C]1.33909090909092[/C][C]4.156115[/C][C]0.3222[/C][C]0.747873[/C][C]0.373937[/C][/ROW]
[ROW][C]M7[/C][C]1.32135718891038[/C][C]4.156174[/C][C]0.3179[/C][C]0.751103[/C][C]0.375551[/C][/ROW]
[ROW][C]M8[/C][C]1.56725983236622[/C][C]4.156349[/C][C]0.3771[/C][C]0.706794[/C][C]0.353397[/C][/ROW]
[ROW][C]M9[/C][C]1.64043520309478[/C][C]4.156641[/C][C]0.3947[/C][C]0.693811[/C][C]0.346905[/C][/ROW]
[ROW][C]M10[/C][C]1.12270148291425[/C][C]4.157051[/C][C]0.2701[/C][C]0.787577[/C][C]0.393788[/C][/ROW]
[ROW][C]M11[/C][C]1.36860412637009[/C][C]4.157577[/C][C]0.3292[/C][C]0.742601[/C][C]0.3713[/C][/ROW]
[ROW][C]t[/C][C]-0.054993552546744[/C][C]0.022048[/C][C]-2.4942[/C][C]0.014008[/C][C]0.007004[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-1.900425531914903.341484-0.56870.5706150.285308
M11.155032237266284.1575770.27780.7816410.390821
M20.8100257898130284.1570510.19490.8458410.42292
M31.110473887814324.1566410.26720.7898150.394908
M40.8200128949065164.1563490.19730.8439390.421969
M51.347733720180534.1561740.32430.7463060.373153
M61.339090909090924.1561150.32220.7478730.373937
M71.321357188910384.1561740.31790.7511030.375551
M81.567259832366224.1563490.37710.7067940.353397
M91.640435203094784.1566410.39470.6938110.346905
M101.122701482914254.1570510.27010.7875770.393788
M111.368604126370094.1575770.32920.7426010.3713
t-0.0549935525467440.022048-2.49420.0140080.007004







Multiple Linear Regression - Regression Statistics
Multiple R0.227359729148448
R-squared0.0516924464384556
Adjusted R-squared-0.0447456098559387
F-TEST (value)0.536017091433854
F-TEST (DF numerator)12
F-TEST (DF denominator)118
p-value0.88736113578945
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9.51205301061793
Sum Squared Residuals10676.5399922631

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.227359729148448 \tabularnewline
R-squared & 0.0516924464384556 \tabularnewline
Adjusted R-squared & -0.0447456098559387 \tabularnewline
F-TEST (value) & 0.536017091433854 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 118 \tabularnewline
p-value & 0.88736113578945 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 9.51205301061793 \tabularnewline
Sum Squared Residuals & 10676.5399922631 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.227359729148448[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0516924464384556[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.0447456098559387[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]0.536017091433854[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]118[/C][/ROW]
[ROW][C]p-value[/C][C]0.88736113578945[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]9.51205301061793[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]10676.5399922631[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.227359729148448
R-squared0.0516924464384556
Adjusted R-squared-0.0447456098559387
F-TEST (value)0.536017091433854
F-TEST (DF numerator)12
F-TEST (DF denominator)118
p-value0.88736113578945
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9.51205301061793
Sum Squared Residuals10676.5399922631







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
16.4-0.800386847195377.20038684719537
27.7-1.200386847195348.90038684719534
39.2-0.9549323017408210.1549323017408
48.6-1.300386847195349.90038684719534
57.4-0.8276595744680978.2276595744681
68.6-0.891295938104459.49129593810445
76.2-0.9640232108317247.16402321083172
86-0.773114119922646.77311411992264
96.6-0.7549323017408157.35493230174081
105.1-1.327659574468096.42765957446809
114.7-1.1367504835595.836750483559
125-2.560348162475837.56034816247583
133.6-1.460309477756295.06030947775629
141.9-1.860309477756293.76030947775629
15-0.1-1.614854932301741.51485493230174
16-5.7-1.96030947775628-3.73969052224372
17-5.6-1.48758220502901-4.11241779497099
18-6.4-1.55121856866538-4.84878143133462
19-7.7-1.62394584139265-6.07605415860735
20-8-1.43303675048356-6.56696324951644
21-11.9-1.41485493230174-10.4851450676983
22-15.4-1.98758220502901-13.4124177949710
23-15.5-1.79667311411992-13.7033268858801
24-13.4-3.22027079303675-10.1797292069632
25-10.9-2.12023210831722-8.77976789168278
26-10.8-2.52023210831721-8.27976789168279
27-7.3-2.27477756286267-5.02522243713733
28-6.5-2.62023210831721-3.87976789168279
29-5.1-2.14750483558994-2.95249516441006
30-5.3-2.21114119922630-3.08885880077370
31-6.8-2.28386847195358-4.51613152804642
32-8.4-2.09295938104449-6.30704061895551
33-8.4-2.07477756286267-6.32522243713734
34-9.7-2.64750483558994-7.05249516441006
35-8.8-2.45659574468085-6.34340425531915
36-9.6-3.88019342359768-5.71980657640232
37-11.5-2.78015473887815-8.71984526112185
38-11-3.18015473887814-7.81984526112186
39-14.9-2.9347001934236-11.9652998065764
40-16.2-3.28015473887814-12.9198452611219
41-14.4-2.80742746615087-11.5925725338491
42-17.3-2.87106382978723-14.4289361702128
43-15.7-2.9437911025145-12.7562088974855
44-12.6-2.75288201160542-9.84711798839458
45-9.4-2.73470019342359-6.6652998065764
46-8.1-3.30742746615087-4.79257253384913
47-5.4-3.11651837524178-2.28348162475822
48-4.6-4.54011605415861-0.0598839458413878
49-4.9-3.44007736943908-1.45992263056092
50-4-3.84007736943907-0.159922630560931
51-3.1-3.594622823984530.494622823984528
52-1.3-3.940077369439072.64007736943907
530-3.467350096711803.46735009671180
54-0.4-3.530986460348163.13098646034816
553-3.603713733075446.60371373307544
560.4-3.412804642166343.81280464216634
571.2-3.394622823984524.59462282398452
580.6-3.96735009671184.5673500967118
59-1.3-3.776441005802712.47644100580271
60-3.2-5.200038684719542.00003868471954
61-1.8-4.100000000000012.30000000000001
62-3.6-4.50.899999999999997
63-4.2-4.254545454545460.0545454545454559
64-6.9-4.59999999999999-2.30000000000001
65-8-4.12727272727272-3.87272727272728
66-7.5-4.19090909090909-3.30909090909091
67-8.2-4.26363636363636-3.93636363636363
68-7.6-4.07272727272727-3.52727272727273
69-3.7-4.054545454545450.354545454545453
70-1.7-4.627272727272732.92727272727273
71-0.7-4.436363636363643.73636363636364
720.2-5.859961315280476.05996131528047
730.6-4.759922630560945.35992263056094
742.2-5.159922630560937.35992263056093
753.3-4.914468085106388.21446808510638
765.3-5.2599226305609210.5599226305609
775.5-4.7871953578336510.2871953578336
786.3-4.8508317214700211.1508317214700
797.7-4.9235589941972912.6235589941973
806.5-4.732649903288211.2326499032882
815.5-4.7144680851063810.2144680851064
826.9-5.2871953578336612.1871953578337
835.7-5.0962862669245710.7962862669246
846.9-6.519883945841413.4198839458414
856.1-5.4198452611218611.5198452611219
864.8-5.8198452611218610.6198452611219
873.7-5.574390715667319.27439071566731
885.8-5.9198452611218511.7198452611219
896.8-5.4471179883945812.2471179883946
908.5-5.5107543520309414.0107543520309
917.2-5.5834816247582112.7834816247582
925-5.3925725338491310.3925725338491
934.7-5.3743907156673110.0743907156673
942.3-5.947117988394598.24711798839459
952.4-5.756208897485498.1562088974855
960.1-7.179806576402337.27980657640233
971.9-6.079767891682797.97976789168279
981.7-6.479767891682788.17976789168278
992-6.234313346228248.23431334622824
100-1.9-6.579767891682784.67976789168278
1010.5-6.107040618955516.60704061895551
102-1.3-6.170676982591874.87067698259187
103-3.3-6.243404255319152.94340425531915
104-2.8-6.052495164410063.25249516441006
105-8-6.03431334622824-1.96568665377176
106-13.9-6.60704061895551-7.29295938104449
107-21.9-6.41613152804642-15.4838684719536
108-28.8-7.83972920696325-20.9602707930367
109-27.6-6.73969052224371-20.8603094777563
110-31.4-7.1396905222437-24.2603094777563
111-31.8-6.89423597678917-24.9057640232108
112-29.4-7.2396905222437-22.1603094777563
113-27.6-6.76696324951644-20.8330367504836
114-23.6-6.83059961315279-16.7694003868472
115-22.8-6.90332688588007-15.8966731141199
116-18.2-6.71241779497098-11.4875822050290
117-17.8-6.69423597678916-11.1057640232108
118-14.2-7.26696324951644-6.93303675048356
119-8.8-7.07605415860735-1.72394584139265
120-7.9-8.499651837524180.599651837524182
121-7-7.399613152804650.399613152804649
122-7-7.799613152804640.79961315280464
123-3.6-7.55415860735013.9541586073501
124-2.4-7.899613152804645.49961315280464
125-4.9-7.426885880077372.52688588007736
126-7.7-7.49052224371373-0.209477756286270
127-6.5-7.5632495164411.06324951644101
128-5.1-7.372340425531922.27234042553192
129-3.4-7.35415860735013.9541586073501
130-2.8-7.926885880077375.12688588007737
1310.8-7.735976789168288.53597678916828

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 6.4 & -0.80038684719537 & 7.20038684719537 \tabularnewline
2 & 7.7 & -1.20038684719534 & 8.90038684719534 \tabularnewline
3 & 9.2 & -0.95493230174082 & 10.1549323017408 \tabularnewline
4 & 8.6 & -1.30038684719534 & 9.90038684719534 \tabularnewline
5 & 7.4 & -0.827659574468097 & 8.2276595744681 \tabularnewline
6 & 8.6 & -0.89129593810445 & 9.49129593810445 \tabularnewline
7 & 6.2 & -0.964023210831724 & 7.16402321083172 \tabularnewline
8 & 6 & -0.77311411992264 & 6.77311411992264 \tabularnewline
9 & 6.6 & -0.754932301740815 & 7.35493230174081 \tabularnewline
10 & 5.1 & -1.32765957446809 & 6.42765957446809 \tabularnewline
11 & 4.7 & -1.136750483559 & 5.836750483559 \tabularnewline
12 & 5 & -2.56034816247583 & 7.56034816247583 \tabularnewline
13 & 3.6 & -1.46030947775629 & 5.06030947775629 \tabularnewline
14 & 1.9 & -1.86030947775629 & 3.76030947775629 \tabularnewline
15 & -0.1 & -1.61485493230174 & 1.51485493230174 \tabularnewline
16 & -5.7 & -1.96030947775628 & -3.73969052224372 \tabularnewline
17 & -5.6 & -1.48758220502901 & -4.11241779497099 \tabularnewline
18 & -6.4 & -1.55121856866538 & -4.84878143133462 \tabularnewline
19 & -7.7 & -1.62394584139265 & -6.07605415860735 \tabularnewline
20 & -8 & -1.43303675048356 & -6.56696324951644 \tabularnewline
21 & -11.9 & -1.41485493230174 & -10.4851450676983 \tabularnewline
22 & -15.4 & -1.98758220502901 & -13.4124177949710 \tabularnewline
23 & -15.5 & -1.79667311411992 & -13.7033268858801 \tabularnewline
24 & -13.4 & -3.22027079303675 & -10.1797292069632 \tabularnewline
25 & -10.9 & -2.12023210831722 & -8.77976789168278 \tabularnewline
26 & -10.8 & -2.52023210831721 & -8.27976789168279 \tabularnewline
27 & -7.3 & -2.27477756286267 & -5.02522243713733 \tabularnewline
28 & -6.5 & -2.62023210831721 & -3.87976789168279 \tabularnewline
29 & -5.1 & -2.14750483558994 & -2.95249516441006 \tabularnewline
30 & -5.3 & -2.21114119922630 & -3.08885880077370 \tabularnewline
31 & -6.8 & -2.28386847195358 & -4.51613152804642 \tabularnewline
32 & -8.4 & -2.09295938104449 & -6.30704061895551 \tabularnewline
33 & -8.4 & -2.07477756286267 & -6.32522243713734 \tabularnewline
34 & -9.7 & -2.64750483558994 & -7.05249516441006 \tabularnewline
35 & -8.8 & -2.45659574468085 & -6.34340425531915 \tabularnewline
36 & -9.6 & -3.88019342359768 & -5.71980657640232 \tabularnewline
37 & -11.5 & -2.78015473887815 & -8.71984526112185 \tabularnewline
38 & -11 & -3.18015473887814 & -7.81984526112186 \tabularnewline
39 & -14.9 & -2.9347001934236 & -11.9652998065764 \tabularnewline
40 & -16.2 & -3.28015473887814 & -12.9198452611219 \tabularnewline
41 & -14.4 & -2.80742746615087 & -11.5925725338491 \tabularnewline
42 & -17.3 & -2.87106382978723 & -14.4289361702128 \tabularnewline
43 & -15.7 & -2.9437911025145 & -12.7562088974855 \tabularnewline
44 & -12.6 & -2.75288201160542 & -9.84711798839458 \tabularnewline
45 & -9.4 & -2.73470019342359 & -6.6652998065764 \tabularnewline
46 & -8.1 & -3.30742746615087 & -4.79257253384913 \tabularnewline
47 & -5.4 & -3.11651837524178 & -2.28348162475822 \tabularnewline
48 & -4.6 & -4.54011605415861 & -0.0598839458413878 \tabularnewline
49 & -4.9 & -3.44007736943908 & -1.45992263056092 \tabularnewline
50 & -4 & -3.84007736943907 & -0.159922630560931 \tabularnewline
51 & -3.1 & -3.59462282398453 & 0.494622823984528 \tabularnewline
52 & -1.3 & -3.94007736943907 & 2.64007736943907 \tabularnewline
53 & 0 & -3.46735009671180 & 3.46735009671180 \tabularnewline
54 & -0.4 & -3.53098646034816 & 3.13098646034816 \tabularnewline
55 & 3 & -3.60371373307544 & 6.60371373307544 \tabularnewline
56 & 0.4 & -3.41280464216634 & 3.81280464216634 \tabularnewline
57 & 1.2 & -3.39462282398452 & 4.59462282398452 \tabularnewline
58 & 0.6 & -3.9673500967118 & 4.5673500967118 \tabularnewline
59 & -1.3 & -3.77644100580271 & 2.47644100580271 \tabularnewline
60 & -3.2 & -5.20003868471954 & 2.00003868471954 \tabularnewline
61 & -1.8 & -4.10000000000001 & 2.30000000000001 \tabularnewline
62 & -3.6 & -4.5 & 0.899999999999997 \tabularnewline
63 & -4.2 & -4.25454545454546 & 0.0545454545454559 \tabularnewline
64 & -6.9 & -4.59999999999999 & -2.30000000000001 \tabularnewline
65 & -8 & -4.12727272727272 & -3.87272727272728 \tabularnewline
66 & -7.5 & -4.19090909090909 & -3.30909090909091 \tabularnewline
67 & -8.2 & -4.26363636363636 & -3.93636363636363 \tabularnewline
68 & -7.6 & -4.07272727272727 & -3.52727272727273 \tabularnewline
69 & -3.7 & -4.05454545454545 & 0.354545454545453 \tabularnewline
70 & -1.7 & -4.62727272727273 & 2.92727272727273 \tabularnewline
71 & -0.7 & -4.43636363636364 & 3.73636363636364 \tabularnewline
72 & 0.2 & -5.85996131528047 & 6.05996131528047 \tabularnewline
73 & 0.6 & -4.75992263056094 & 5.35992263056094 \tabularnewline
74 & 2.2 & -5.15992263056093 & 7.35992263056093 \tabularnewline
75 & 3.3 & -4.91446808510638 & 8.21446808510638 \tabularnewline
76 & 5.3 & -5.25992263056092 & 10.5599226305609 \tabularnewline
77 & 5.5 & -4.78719535783365 & 10.2871953578336 \tabularnewline
78 & 6.3 & -4.85083172147002 & 11.1508317214700 \tabularnewline
79 & 7.7 & -4.92355899419729 & 12.6235589941973 \tabularnewline
80 & 6.5 & -4.7326499032882 & 11.2326499032882 \tabularnewline
81 & 5.5 & -4.71446808510638 & 10.2144680851064 \tabularnewline
82 & 6.9 & -5.28719535783366 & 12.1871953578337 \tabularnewline
83 & 5.7 & -5.09628626692457 & 10.7962862669246 \tabularnewline
84 & 6.9 & -6.5198839458414 & 13.4198839458414 \tabularnewline
85 & 6.1 & -5.41984526112186 & 11.5198452611219 \tabularnewline
86 & 4.8 & -5.81984526112186 & 10.6198452611219 \tabularnewline
87 & 3.7 & -5.57439071566731 & 9.27439071566731 \tabularnewline
88 & 5.8 & -5.91984526112185 & 11.7198452611219 \tabularnewline
89 & 6.8 & -5.44711798839458 & 12.2471179883946 \tabularnewline
90 & 8.5 & -5.51075435203094 & 14.0107543520309 \tabularnewline
91 & 7.2 & -5.58348162475821 & 12.7834816247582 \tabularnewline
92 & 5 & -5.39257253384913 & 10.3925725338491 \tabularnewline
93 & 4.7 & -5.37439071566731 & 10.0743907156673 \tabularnewline
94 & 2.3 & -5.94711798839459 & 8.24711798839459 \tabularnewline
95 & 2.4 & -5.75620889748549 & 8.1562088974855 \tabularnewline
96 & 0.1 & -7.17980657640233 & 7.27980657640233 \tabularnewline
97 & 1.9 & -6.07976789168279 & 7.97976789168279 \tabularnewline
98 & 1.7 & -6.47976789168278 & 8.17976789168278 \tabularnewline
99 & 2 & -6.23431334622824 & 8.23431334622824 \tabularnewline
100 & -1.9 & -6.57976789168278 & 4.67976789168278 \tabularnewline
101 & 0.5 & -6.10704061895551 & 6.60704061895551 \tabularnewline
102 & -1.3 & -6.17067698259187 & 4.87067698259187 \tabularnewline
103 & -3.3 & -6.24340425531915 & 2.94340425531915 \tabularnewline
104 & -2.8 & -6.05249516441006 & 3.25249516441006 \tabularnewline
105 & -8 & -6.03431334622824 & -1.96568665377176 \tabularnewline
106 & -13.9 & -6.60704061895551 & -7.29295938104449 \tabularnewline
107 & -21.9 & -6.41613152804642 & -15.4838684719536 \tabularnewline
108 & -28.8 & -7.83972920696325 & -20.9602707930367 \tabularnewline
109 & -27.6 & -6.73969052224371 & -20.8603094777563 \tabularnewline
110 & -31.4 & -7.1396905222437 & -24.2603094777563 \tabularnewline
111 & -31.8 & -6.89423597678917 & -24.9057640232108 \tabularnewline
112 & -29.4 & -7.2396905222437 & -22.1603094777563 \tabularnewline
113 & -27.6 & -6.76696324951644 & -20.8330367504836 \tabularnewline
114 & -23.6 & -6.83059961315279 & -16.7694003868472 \tabularnewline
115 & -22.8 & -6.90332688588007 & -15.8966731141199 \tabularnewline
116 & -18.2 & -6.71241779497098 & -11.4875822050290 \tabularnewline
117 & -17.8 & -6.69423597678916 & -11.1057640232108 \tabularnewline
118 & -14.2 & -7.26696324951644 & -6.93303675048356 \tabularnewline
119 & -8.8 & -7.07605415860735 & -1.72394584139265 \tabularnewline
120 & -7.9 & -8.49965183752418 & 0.599651837524182 \tabularnewline
121 & -7 & -7.39961315280465 & 0.399613152804649 \tabularnewline
122 & -7 & -7.79961315280464 & 0.79961315280464 \tabularnewline
123 & -3.6 & -7.5541586073501 & 3.9541586073501 \tabularnewline
124 & -2.4 & -7.89961315280464 & 5.49961315280464 \tabularnewline
125 & -4.9 & -7.42688588007737 & 2.52688588007736 \tabularnewline
126 & -7.7 & -7.49052224371373 & -0.209477756286270 \tabularnewline
127 & -6.5 & -7.563249516441 & 1.06324951644101 \tabularnewline
128 & -5.1 & -7.37234042553192 & 2.27234042553192 \tabularnewline
129 & -3.4 & -7.3541586073501 & 3.9541586073501 \tabularnewline
130 & -2.8 & -7.92688588007737 & 5.12688588007737 \tabularnewline
131 & 0.8 & -7.73597678916828 & 8.53597678916828 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]6.4[/C][C]-0.80038684719537[/C][C]7.20038684719537[/C][/ROW]
[ROW][C]2[/C][C]7.7[/C][C]-1.20038684719534[/C][C]8.90038684719534[/C][/ROW]
[ROW][C]3[/C][C]9.2[/C][C]-0.95493230174082[/C][C]10.1549323017408[/C][/ROW]
[ROW][C]4[/C][C]8.6[/C][C]-1.30038684719534[/C][C]9.90038684719534[/C][/ROW]
[ROW][C]5[/C][C]7.4[/C][C]-0.827659574468097[/C][C]8.2276595744681[/C][/ROW]
[ROW][C]6[/C][C]8.6[/C][C]-0.89129593810445[/C][C]9.49129593810445[/C][/ROW]
[ROW][C]7[/C][C]6.2[/C][C]-0.964023210831724[/C][C]7.16402321083172[/C][/ROW]
[ROW][C]8[/C][C]6[/C][C]-0.77311411992264[/C][C]6.77311411992264[/C][/ROW]
[ROW][C]9[/C][C]6.6[/C][C]-0.754932301740815[/C][C]7.35493230174081[/C][/ROW]
[ROW][C]10[/C][C]5.1[/C][C]-1.32765957446809[/C][C]6.42765957446809[/C][/ROW]
[ROW][C]11[/C][C]4.7[/C][C]-1.136750483559[/C][C]5.836750483559[/C][/ROW]
[ROW][C]12[/C][C]5[/C][C]-2.56034816247583[/C][C]7.56034816247583[/C][/ROW]
[ROW][C]13[/C][C]3.6[/C][C]-1.46030947775629[/C][C]5.06030947775629[/C][/ROW]
[ROW][C]14[/C][C]1.9[/C][C]-1.86030947775629[/C][C]3.76030947775629[/C][/ROW]
[ROW][C]15[/C][C]-0.1[/C][C]-1.61485493230174[/C][C]1.51485493230174[/C][/ROW]
[ROW][C]16[/C][C]-5.7[/C][C]-1.96030947775628[/C][C]-3.73969052224372[/C][/ROW]
[ROW][C]17[/C][C]-5.6[/C][C]-1.48758220502901[/C][C]-4.11241779497099[/C][/ROW]
[ROW][C]18[/C][C]-6.4[/C][C]-1.55121856866538[/C][C]-4.84878143133462[/C][/ROW]
[ROW][C]19[/C][C]-7.7[/C][C]-1.62394584139265[/C][C]-6.07605415860735[/C][/ROW]
[ROW][C]20[/C][C]-8[/C][C]-1.43303675048356[/C][C]-6.56696324951644[/C][/ROW]
[ROW][C]21[/C][C]-11.9[/C][C]-1.41485493230174[/C][C]-10.4851450676983[/C][/ROW]
[ROW][C]22[/C][C]-15.4[/C][C]-1.98758220502901[/C][C]-13.4124177949710[/C][/ROW]
[ROW][C]23[/C][C]-15.5[/C][C]-1.79667311411992[/C][C]-13.7033268858801[/C][/ROW]
[ROW][C]24[/C][C]-13.4[/C][C]-3.22027079303675[/C][C]-10.1797292069632[/C][/ROW]
[ROW][C]25[/C][C]-10.9[/C][C]-2.12023210831722[/C][C]-8.77976789168278[/C][/ROW]
[ROW][C]26[/C][C]-10.8[/C][C]-2.52023210831721[/C][C]-8.27976789168279[/C][/ROW]
[ROW][C]27[/C][C]-7.3[/C][C]-2.27477756286267[/C][C]-5.02522243713733[/C][/ROW]
[ROW][C]28[/C][C]-6.5[/C][C]-2.62023210831721[/C][C]-3.87976789168279[/C][/ROW]
[ROW][C]29[/C][C]-5.1[/C][C]-2.14750483558994[/C][C]-2.95249516441006[/C][/ROW]
[ROW][C]30[/C][C]-5.3[/C][C]-2.21114119922630[/C][C]-3.08885880077370[/C][/ROW]
[ROW][C]31[/C][C]-6.8[/C][C]-2.28386847195358[/C][C]-4.51613152804642[/C][/ROW]
[ROW][C]32[/C][C]-8.4[/C][C]-2.09295938104449[/C][C]-6.30704061895551[/C][/ROW]
[ROW][C]33[/C][C]-8.4[/C][C]-2.07477756286267[/C][C]-6.32522243713734[/C][/ROW]
[ROW][C]34[/C][C]-9.7[/C][C]-2.64750483558994[/C][C]-7.05249516441006[/C][/ROW]
[ROW][C]35[/C][C]-8.8[/C][C]-2.45659574468085[/C][C]-6.34340425531915[/C][/ROW]
[ROW][C]36[/C][C]-9.6[/C][C]-3.88019342359768[/C][C]-5.71980657640232[/C][/ROW]
[ROW][C]37[/C][C]-11.5[/C][C]-2.78015473887815[/C][C]-8.71984526112185[/C][/ROW]
[ROW][C]38[/C][C]-11[/C][C]-3.18015473887814[/C][C]-7.81984526112186[/C][/ROW]
[ROW][C]39[/C][C]-14.9[/C][C]-2.9347001934236[/C][C]-11.9652998065764[/C][/ROW]
[ROW][C]40[/C][C]-16.2[/C][C]-3.28015473887814[/C][C]-12.9198452611219[/C][/ROW]
[ROW][C]41[/C][C]-14.4[/C][C]-2.80742746615087[/C][C]-11.5925725338491[/C][/ROW]
[ROW][C]42[/C][C]-17.3[/C][C]-2.87106382978723[/C][C]-14.4289361702128[/C][/ROW]
[ROW][C]43[/C][C]-15.7[/C][C]-2.9437911025145[/C][C]-12.7562088974855[/C][/ROW]
[ROW][C]44[/C][C]-12.6[/C][C]-2.75288201160542[/C][C]-9.84711798839458[/C][/ROW]
[ROW][C]45[/C][C]-9.4[/C][C]-2.73470019342359[/C][C]-6.6652998065764[/C][/ROW]
[ROW][C]46[/C][C]-8.1[/C][C]-3.30742746615087[/C][C]-4.79257253384913[/C][/ROW]
[ROW][C]47[/C][C]-5.4[/C][C]-3.11651837524178[/C][C]-2.28348162475822[/C][/ROW]
[ROW][C]48[/C][C]-4.6[/C][C]-4.54011605415861[/C][C]-0.0598839458413878[/C][/ROW]
[ROW][C]49[/C][C]-4.9[/C][C]-3.44007736943908[/C][C]-1.45992263056092[/C][/ROW]
[ROW][C]50[/C][C]-4[/C][C]-3.84007736943907[/C][C]-0.159922630560931[/C][/ROW]
[ROW][C]51[/C][C]-3.1[/C][C]-3.59462282398453[/C][C]0.494622823984528[/C][/ROW]
[ROW][C]52[/C][C]-1.3[/C][C]-3.94007736943907[/C][C]2.64007736943907[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]-3.46735009671180[/C][C]3.46735009671180[/C][/ROW]
[ROW][C]54[/C][C]-0.4[/C][C]-3.53098646034816[/C][C]3.13098646034816[/C][/ROW]
[ROW][C]55[/C][C]3[/C][C]-3.60371373307544[/C][C]6.60371373307544[/C][/ROW]
[ROW][C]56[/C][C]0.4[/C][C]-3.41280464216634[/C][C]3.81280464216634[/C][/ROW]
[ROW][C]57[/C][C]1.2[/C][C]-3.39462282398452[/C][C]4.59462282398452[/C][/ROW]
[ROW][C]58[/C][C]0.6[/C][C]-3.9673500967118[/C][C]4.5673500967118[/C][/ROW]
[ROW][C]59[/C][C]-1.3[/C][C]-3.77644100580271[/C][C]2.47644100580271[/C][/ROW]
[ROW][C]60[/C][C]-3.2[/C][C]-5.20003868471954[/C][C]2.00003868471954[/C][/ROW]
[ROW][C]61[/C][C]-1.8[/C][C]-4.10000000000001[/C][C]2.30000000000001[/C][/ROW]
[ROW][C]62[/C][C]-3.6[/C][C]-4.5[/C][C]0.899999999999997[/C][/ROW]
[ROW][C]63[/C][C]-4.2[/C][C]-4.25454545454546[/C][C]0.0545454545454559[/C][/ROW]
[ROW][C]64[/C][C]-6.9[/C][C]-4.59999999999999[/C][C]-2.30000000000001[/C][/ROW]
[ROW][C]65[/C][C]-8[/C][C]-4.12727272727272[/C][C]-3.87272727272728[/C][/ROW]
[ROW][C]66[/C][C]-7.5[/C][C]-4.19090909090909[/C][C]-3.30909090909091[/C][/ROW]
[ROW][C]67[/C][C]-8.2[/C][C]-4.26363636363636[/C][C]-3.93636363636363[/C][/ROW]
[ROW][C]68[/C][C]-7.6[/C][C]-4.07272727272727[/C][C]-3.52727272727273[/C][/ROW]
[ROW][C]69[/C][C]-3.7[/C][C]-4.05454545454545[/C][C]0.354545454545453[/C][/ROW]
[ROW][C]70[/C][C]-1.7[/C][C]-4.62727272727273[/C][C]2.92727272727273[/C][/ROW]
[ROW][C]71[/C][C]-0.7[/C][C]-4.43636363636364[/C][C]3.73636363636364[/C][/ROW]
[ROW][C]72[/C][C]0.2[/C][C]-5.85996131528047[/C][C]6.05996131528047[/C][/ROW]
[ROW][C]73[/C][C]0.6[/C][C]-4.75992263056094[/C][C]5.35992263056094[/C][/ROW]
[ROW][C]74[/C][C]2.2[/C][C]-5.15992263056093[/C][C]7.35992263056093[/C][/ROW]
[ROW][C]75[/C][C]3.3[/C][C]-4.91446808510638[/C][C]8.21446808510638[/C][/ROW]
[ROW][C]76[/C][C]5.3[/C][C]-5.25992263056092[/C][C]10.5599226305609[/C][/ROW]
[ROW][C]77[/C][C]5.5[/C][C]-4.78719535783365[/C][C]10.2871953578336[/C][/ROW]
[ROW][C]78[/C][C]6.3[/C][C]-4.85083172147002[/C][C]11.1508317214700[/C][/ROW]
[ROW][C]79[/C][C]7.7[/C][C]-4.92355899419729[/C][C]12.6235589941973[/C][/ROW]
[ROW][C]80[/C][C]6.5[/C][C]-4.7326499032882[/C][C]11.2326499032882[/C][/ROW]
[ROW][C]81[/C][C]5.5[/C][C]-4.71446808510638[/C][C]10.2144680851064[/C][/ROW]
[ROW][C]82[/C][C]6.9[/C][C]-5.28719535783366[/C][C]12.1871953578337[/C][/ROW]
[ROW][C]83[/C][C]5.7[/C][C]-5.09628626692457[/C][C]10.7962862669246[/C][/ROW]
[ROW][C]84[/C][C]6.9[/C][C]-6.5198839458414[/C][C]13.4198839458414[/C][/ROW]
[ROW][C]85[/C][C]6.1[/C][C]-5.41984526112186[/C][C]11.5198452611219[/C][/ROW]
[ROW][C]86[/C][C]4.8[/C][C]-5.81984526112186[/C][C]10.6198452611219[/C][/ROW]
[ROW][C]87[/C][C]3.7[/C][C]-5.57439071566731[/C][C]9.27439071566731[/C][/ROW]
[ROW][C]88[/C][C]5.8[/C][C]-5.91984526112185[/C][C]11.7198452611219[/C][/ROW]
[ROW][C]89[/C][C]6.8[/C][C]-5.44711798839458[/C][C]12.2471179883946[/C][/ROW]
[ROW][C]90[/C][C]8.5[/C][C]-5.51075435203094[/C][C]14.0107543520309[/C][/ROW]
[ROW][C]91[/C][C]7.2[/C][C]-5.58348162475821[/C][C]12.7834816247582[/C][/ROW]
[ROW][C]92[/C][C]5[/C][C]-5.39257253384913[/C][C]10.3925725338491[/C][/ROW]
[ROW][C]93[/C][C]4.7[/C][C]-5.37439071566731[/C][C]10.0743907156673[/C][/ROW]
[ROW][C]94[/C][C]2.3[/C][C]-5.94711798839459[/C][C]8.24711798839459[/C][/ROW]
[ROW][C]95[/C][C]2.4[/C][C]-5.75620889748549[/C][C]8.1562088974855[/C][/ROW]
[ROW][C]96[/C][C]0.1[/C][C]-7.17980657640233[/C][C]7.27980657640233[/C][/ROW]
[ROW][C]97[/C][C]1.9[/C][C]-6.07976789168279[/C][C]7.97976789168279[/C][/ROW]
[ROW][C]98[/C][C]1.7[/C][C]-6.47976789168278[/C][C]8.17976789168278[/C][/ROW]
[ROW][C]99[/C][C]2[/C][C]-6.23431334622824[/C][C]8.23431334622824[/C][/ROW]
[ROW][C]100[/C][C]-1.9[/C][C]-6.57976789168278[/C][C]4.67976789168278[/C][/ROW]
[ROW][C]101[/C][C]0.5[/C][C]-6.10704061895551[/C][C]6.60704061895551[/C][/ROW]
[ROW][C]102[/C][C]-1.3[/C][C]-6.17067698259187[/C][C]4.87067698259187[/C][/ROW]
[ROW][C]103[/C][C]-3.3[/C][C]-6.24340425531915[/C][C]2.94340425531915[/C][/ROW]
[ROW][C]104[/C][C]-2.8[/C][C]-6.05249516441006[/C][C]3.25249516441006[/C][/ROW]
[ROW][C]105[/C][C]-8[/C][C]-6.03431334622824[/C][C]-1.96568665377176[/C][/ROW]
[ROW][C]106[/C][C]-13.9[/C][C]-6.60704061895551[/C][C]-7.29295938104449[/C][/ROW]
[ROW][C]107[/C][C]-21.9[/C][C]-6.41613152804642[/C][C]-15.4838684719536[/C][/ROW]
[ROW][C]108[/C][C]-28.8[/C][C]-7.83972920696325[/C][C]-20.9602707930367[/C][/ROW]
[ROW][C]109[/C][C]-27.6[/C][C]-6.73969052224371[/C][C]-20.8603094777563[/C][/ROW]
[ROW][C]110[/C][C]-31.4[/C][C]-7.1396905222437[/C][C]-24.2603094777563[/C][/ROW]
[ROW][C]111[/C][C]-31.8[/C][C]-6.89423597678917[/C][C]-24.9057640232108[/C][/ROW]
[ROW][C]112[/C][C]-29.4[/C][C]-7.2396905222437[/C][C]-22.1603094777563[/C][/ROW]
[ROW][C]113[/C][C]-27.6[/C][C]-6.76696324951644[/C][C]-20.8330367504836[/C][/ROW]
[ROW][C]114[/C][C]-23.6[/C][C]-6.83059961315279[/C][C]-16.7694003868472[/C][/ROW]
[ROW][C]115[/C][C]-22.8[/C][C]-6.90332688588007[/C][C]-15.8966731141199[/C][/ROW]
[ROW][C]116[/C][C]-18.2[/C][C]-6.71241779497098[/C][C]-11.4875822050290[/C][/ROW]
[ROW][C]117[/C][C]-17.8[/C][C]-6.69423597678916[/C][C]-11.1057640232108[/C][/ROW]
[ROW][C]118[/C][C]-14.2[/C][C]-7.26696324951644[/C][C]-6.93303675048356[/C][/ROW]
[ROW][C]119[/C][C]-8.8[/C][C]-7.07605415860735[/C][C]-1.72394584139265[/C][/ROW]
[ROW][C]120[/C][C]-7.9[/C][C]-8.49965183752418[/C][C]0.599651837524182[/C][/ROW]
[ROW][C]121[/C][C]-7[/C][C]-7.39961315280465[/C][C]0.399613152804649[/C][/ROW]
[ROW][C]122[/C][C]-7[/C][C]-7.79961315280464[/C][C]0.79961315280464[/C][/ROW]
[ROW][C]123[/C][C]-3.6[/C][C]-7.5541586073501[/C][C]3.9541586073501[/C][/ROW]
[ROW][C]124[/C][C]-2.4[/C][C]-7.89961315280464[/C][C]5.49961315280464[/C][/ROW]
[ROW][C]125[/C][C]-4.9[/C][C]-7.42688588007737[/C][C]2.52688588007736[/C][/ROW]
[ROW][C]126[/C][C]-7.7[/C][C]-7.49052224371373[/C][C]-0.209477756286270[/C][/ROW]
[ROW][C]127[/C][C]-6.5[/C][C]-7.563249516441[/C][C]1.06324951644101[/C][/ROW]
[ROW][C]128[/C][C]-5.1[/C][C]-7.37234042553192[/C][C]2.27234042553192[/C][/ROW]
[ROW][C]129[/C][C]-3.4[/C][C]-7.3541586073501[/C][C]3.9541586073501[/C][/ROW]
[ROW][C]130[/C][C]-2.8[/C][C]-7.92688588007737[/C][C]5.12688588007737[/C][/ROW]
[ROW][C]131[/C][C]0.8[/C][C]-7.73597678916828[/C][C]8.53597678916828[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
16.4-0.800386847195377.20038684719537
27.7-1.200386847195348.90038684719534
39.2-0.9549323017408210.1549323017408
48.6-1.300386847195349.90038684719534
57.4-0.8276595744680978.2276595744681
68.6-0.891295938104459.49129593810445
76.2-0.9640232108317247.16402321083172
86-0.773114119922646.77311411992264
96.6-0.7549323017408157.35493230174081
105.1-1.327659574468096.42765957446809
114.7-1.1367504835595.836750483559
125-2.560348162475837.56034816247583
133.6-1.460309477756295.06030947775629
141.9-1.860309477756293.76030947775629
15-0.1-1.614854932301741.51485493230174
16-5.7-1.96030947775628-3.73969052224372
17-5.6-1.48758220502901-4.11241779497099
18-6.4-1.55121856866538-4.84878143133462
19-7.7-1.62394584139265-6.07605415860735
20-8-1.43303675048356-6.56696324951644
21-11.9-1.41485493230174-10.4851450676983
22-15.4-1.98758220502901-13.4124177949710
23-15.5-1.79667311411992-13.7033268858801
24-13.4-3.22027079303675-10.1797292069632
25-10.9-2.12023210831722-8.77976789168278
26-10.8-2.52023210831721-8.27976789168279
27-7.3-2.27477756286267-5.02522243713733
28-6.5-2.62023210831721-3.87976789168279
29-5.1-2.14750483558994-2.95249516441006
30-5.3-2.21114119922630-3.08885880077370
31-6.8-2.28386847195358-4.51613152804642
32-8.4-2.09295938104449-6.30704061895551
33-8.4-2.07477756286267-6.32522243713734
34-9.7-2.64750483558994-7.05249516441006
35-8.8-2.45659574468085-6.34340425531915
36-9.6-3.88019342359768-5.71980657640232
37-11.5-2.78015473887815-8.71984526112185
38-11-3.18015473887814-7.81984526112186
39-14.9-2.9347001934236-11.9652998065764
40-16.2-3.28015473887814-12.9198452611219
41-14.4-2.80742746615087-11.5925725338491
42-17.3-2.87106382978723-14.4289361702128
43-15.7-2.9437911025145-12.7562088974855
44-12.6-2.75288201160542-9.84711798839458
45-9.4-2.73470019342359-6.6652998065764
46-8.1-3.30742746615087-4.79257253384913
47-5.4-3.11651837524178-2.28348162475822
48-4.6-4.54011605415861-0.0598839458413878
49-4.9-3.44007736943908-1.45992263056092
50-4-3.84007736943907-0.159922630560931
51-3.1-3.594622823984530.494622823984528
52-1.3-3.940077369439072.64007736943907
530-3.467350096711803.46735009671180
54-0.4-3.530986460348163.13098646034816
553-3.603713733075446.60371373307544
560.4-3.412804642166343.81280464216634
571.2-3.394622823984524.59462282398452
580.6-3.96735009671184.5673500967118
59-1.3-3.776441005802712.47644100580271
60-3.2-5.200038684719542.00003868471954
61-1.8-4.100000000000012.30000000000001
62-3.6-4.50.899999999999997
63-4.2-4.254545454545460.0545454545454559
64-6.9-4.59999999999999-2.30000000000001
65-8-4.12727272727272-3.87272727272728
66-7.5-4.19090909090909-3.30909090909091
67-8.2-4.26363636363636-3.93636363636363
68-7.6-4.07272727272727-3.52727272727273
69-3.7-4.054545454545450.354545454545453
70-1.7-4.627272727272732.92727272727273
71-0.7-4.436363636363643.73636363636364
720.2-5.859961315280476.05996131528047
730.6-4.759922630560945.35992263056094
742.2-5.159922630560937.35992263056093
753.3-4.914468085106388.21446808510638
765.3-5.2599226305609210.5599226305609
775.5-4.7871953578336510.2871953578336
786.3-4.8508317214700211.1508317214700
797.7-4.9235589941972912.6235589941973
806.5-4.732649903288211.2326499032882
815.5-4.7144680851063810.2144680851064
826.9-5.2871953578336612.1871953578337
835.7-5.0962862669245710.7962862669246
846.9-6.519883945841413.4198839458414
856.1-5.4198452611218611.5198452611219
864.8-5.8198452611218610.6198452611219
873.7-5.574390715667319.27439071566731
885.8-5.9198452611218511.7198452611219
896.8-5.4471179883945812.2471179883946
908.5-5.5107543520309414.0107543520309
917.2-5.5834816247582112.7834816247582
925-5.3925725338491310.3925725338491
934.7-5.3743907156673110.0743907156673
942.3-5.947117988394598.24711798839459
952.4-5.756208897485498.1562088974855
960.1-7.179806576402337.27980657640233
971.9-6.079767891682797.97976789168279
981.7-6.479767891682788.17976789168278
992-6.234313346228248.23431334622824
100-1.9-6.579767891682784.67976789168278
1010.5-6.107040618955516.60704061895551
102-1.3-6.170676982591874.87067698259187
103-3.3-6.243404255319152.94340425531915
104-2.8-6.052495164410063.25249516441006
105-8-6.03431334622824-1.96568665377176
106-13.9-6.60704061895551-7.29295938104449
107-21.9-6.41613152804642-15.4838684719536
108-28.8-7.83972920696325-20.9602707930367
109-27.6-6.73969052224371-20.8603094777563
110-31.4-7.1396905222437-24.2603094777563
111-31.8-6.89423597678917-24.9057640232108
112-29.4-7.2396905222437-22.1603094777563
113-27.6-6.76696324951644-20.8330367504836
114-23.6-6.83059961315279-16.7694003868472
115-22.8-6.90332688588007-15.8966731141199
116-18.2-6.71241779497098-11.4875822050290
117-17.8-6.69423597678916-11.1057640232108
118-14.2-7.26696324951644-6.93303675048356
119-8.8-7.07605415860735-1.72394584139265
120-7.9-8.499651837524180.599651837524182
121-7-7.399613152804650.399613152804649
122-7-7.799613152804640.79961315280464
123-3.6-7.55415860735013.9541586073501
124-2.4-7.899613152804645.49961315280464
125-4.9-7.426885880077372.52688588007736
126-7.7-7.49052224371373-0.209477756286270
127-6.5-7.5632495164411.06324951644101
128-5.1-7.372340425531922.27234042553192
129-3.4-7.35415860735013.9541586073501
130-2.8-7.926885880077375.12688588007737
1310.8-7.735976789168288.53597678916828







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.05965661121700210.1193132224340040.940343388782998
170.02685850919982570.05371701839965130.973141490800174
180.01493571157479150.02987142314958300.985064288425209
190.006094738574025560.01218947714805110.993905261425974
200.002336637439881510.004673274879763010.997663362560119
210.002044829234715160.004089658469430320.997955170765285
220.002256822746976730.004513645493953470.997743177253023
230.001840224036679830.003680448073359670.99815977596332
240.0009874776165694850.001974955233138970.99901252238343
250.0005359711716005210.001071942343201040.9994640288284
260.0002676731038139420.0005353462076278850.999732326896186
270.0002315463935890260.0004630927871780520.999768453606411
280.000386909156743470.000773818313486940.999613090843257
290.0006490884819758270.001298176963951650.999350911518024
300.0006985851278813720.001397170255762740.999301414872119
310.0006662167538042960.001332433507608590.999333783246196
320.0004741527061436250.000948305412287250.999525847293856
330.0003927376866380340.0007854753732760690.999607262313362
340.0003603253119489030.0007206506238978050.999639674688051
350.0003542197880609190.0007084395761218380.99964578021194
360.000247184781282030.000494369562564060.999752815218718
370.0001469708381181860.0002939416762363720.999853029161882
388.70151699533093e-050.0001740303399066190.999912984830047
394.99813704800139e-059.99627409600278e-050.99995001862952
403.03320884092612e-056.06641768185225e-050.99996966791159
411.81017860096253e-053.62035720192507e-050.99998189821399
421.31947446267686e-052.63894892535373e-050.999986805255373
439.4291395230195e-061.8858279046039e-050.999990570860477
448.36173193937206e-061.67234638787441e-050.99999163826806
451.31329145278071e-052.62658290556142e-050.999986867085472
463.5284912989641e-057.0569825979282e-050.99996471508701
470.0001144502299613780.0002289004599227550.999885549770039
480.0002524392309790550.000504878461958110.99974756076902
490.0004370190004029910.0008740380008059820.999562980999597
500.0006717615114536720.001343523022907340.999328238488546
510.001002640400392830.002005280800785660.998997359599607
520.001968968930718390.003937937861436780.998031031069282
530.003338992515648120.006677985031296240.996661007484352
540.004911841760664480.009823683521328970.995088158239335
550.009568408006057920.01913681601211580.990431591993942
560.01198672759416460.02397345518832920.988013272405835
570.01457738753543280.02915477507086560.985422612464567
580.01729990213853880.03459980427707760.982700097861461
590.01698596571484540.03397193142969090.983014034285155
600.01425192836967230.02850385673934460.985748071630328
610.01182279600307850.02364559200615710.988177203996921
620.009135886086232530.01827177217246510.990864113913767
630.00703691938543550.0140738387708710.992963080614565
640.005733670235654420.01146734047130880.994266329764346
650.004976618868375590.009953237736751180.995023381131624
660.004474853105924250.00894970621184850.995525146894076
670.004317443468308160.008634886936616310.995682556531692
680.004450659495774750.00890131899154950.995549340504225
690.004168974510550840.008337949021101690.99583102548945
700.004095877820480310.008191755640960630.99590412217952
710.004056502971323960.008113005942647930.995943497028676
720.003522407150354240.007044814300708490.996477592849646
730.002886286654233090.005772573308466190.997113713345767
740.002423762778851440.004847525557702890.997576237221149
750.002100078958209950.004200157916419910.99789992104179
760.002145439163101640.004290878326203280.997854560836898
770.002055368614889160.004110737229778330.99794463138511
780.002035447520506110.004070895041012220.997964552479494
790.002133758671134280.004267517342268560.997866241328866
800.00198350932108410.00396701864216820.998016490678916
810.001618785822611120.003237571645222250.998381214177389
820.001427129296369850.00285425859273970.99857287070363
830.001121164976549410.002242329953098810.99887883502345
840.001051401235220580.002102802470441160.99894859876478
850.0008260307239899830.001652061447979970.99917396927601
860.0006177502247958560.001235500449591710.999382249775204
870.0004200346451560190.0008400692903120390.999579965354844
880.0003320816969870660.0006641633939741310.999667918303013
890.0002761446367266560.0005522892734533120.999723855363273
900.0002803162603957270.0005606325207914540.999719683739604
910.0002612093072650770.0005224186145301550.999738790692735
920.0001922571216961830.0003845142433923660.999807742878304
930.0001476110848504080.0002952221697008160.99985238891515
940.0001042606269590230.0002085212539180470.99989573937304
957.64331816434637e-050.0001528663632869270.999923566818357
968.87338526142692e-050.0001774677052285380.999911266147386
970.0001286081440016710.0002572162880033420.999871391855998
980.0002822014383220410.0005644028766440830.999717798561678
990.0007294909205988330.001458981841197670.999270509079401
1000.001319310457922360.002638620915844730.998680689542078
1010.004636646051479140.009273292102958270.99536335394852
1020.01834690150395090.03669380300790180.98165309849605
1030.07500676527697890.1500135305539580.92499323472302
1040.3094063111996940.6188126223993880.690593688800306
1050.730880373788860.5382392524222810.269119626211140
1060.9582996733037770.08340065339244670.0417003266962233
1070.978281329286960.04343734142608130.0217186707130407
1080.9750168957033920.04996620859321510.0249831042966076
1090.967735336401510.06452932719698140.0322646635984907
1100.968324100476150.06335179904769980.0316758995238499
1110.9853528595413770.02929428091724560.0146471404586228
1120.9964296689668040.007140662066391570.00357033103319579
1130.9993029870188340.001394025962332660.000697012981166328
1140.9976948458045960.00461030839080810.00230515419540405
1150.9956139166096430.008772166780714580.00438608339035729

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.0596566112170021 & 0.119313222434004 & 0.940343388782998 \tabularnewline
17 & 0.0268585091998257 & 0.0537170183996513 & 0.973141490800174 \tabularnewline
18 & 0.0149357115747915 & 0.0298714231495830 & 0.985064288425209 \tabularnewline
19 & 0.00609473857402556 & 0.0121894771480511 & 0.993905261425974 \tabularnewline
20 & 0.00233663743988151 & 0.00467327487976301 & 0.997663362560119 \tabularnewline
21 & 0.00204482923471516 & 0.00408965846943032 & 0.997955170765285 \tabularnewline
22 & 0.00225682274697673 & 0.00451364549395347 & 0.997743177253023 \tabularnewline
23 & 0.00184022403667983 & 0.00368044807335967 & 0.99815977596332 \tabularnewline
24 & 0.000987477616569485 & 0.00197495523313897 & 0.99901252238343 \tabularnewline
25 & 0.000535971171600521 & 0.00107194234320104 & 0.9994640288284 \tabularnewline
26 & 0.000267673103813942 & 0.000535346207627885 & 0.999732326896186 \tabularnewline
27 & 0.000231546393589026 & 0.000463092787178052 & 0.999768453606411 \tabularnewline
28 & 0.00038690915674347 & 0.00077381831348694 & 0.999613090843257 \tabularnewline
29 & 0.000649088481975827 & 0.00129817696395165 & 0.999350911518024 \tabularnewline
30 & 0.000698585127881372 & 0.00139717025576274 & 0.999301414872119 \tabularnewline
31 & 0.000666216753804296 & 0.00133243350760859 & 0.999333783246196 \tabularnewline
32 & 0.000474152706143625 & 0.00094830541228725 & 0.999525847293856 \tabularnewline
33 & 0.000392737686638034 & 0.000785475373276069 & 0.999607262313362 \tabularnewline
34 & 0.000360325311948903 & 0.000720650623897805 & 0.999639674688051 \tabularnewline
35 & 0.000354219788060919 & 0.000708439576121838 & 0.99964578021194 \tabularnewline
36 & 0.00024718478128203 & 0.00049436956256406 & 0.999752815218718 \tabularnewline
37 & 0.000146970838118186 & 0.000293941676236372 & 0.999853029161882 \tabularnewline
38 & 8.70151699533093e-05 & 0.000174030339906619 & 0.999912984830047 \tabularnewline
39 & 4.99813704800139e-05 & 9.99627409600278e-05 & 0.99995001862952 \tabularnewline
40 & 3.03320884092612e-05 & 6.06641768185225e-05 & 0.99996966791159 \tabularnewline
41 & 1.81017860096253e-05 & 3.62035720192507e-05 & 0.99998189821399 \tabularnewline
42 & 1.31947446267686e-05 & 2.63894892535373e-05 & 0.999986805255373 \tabularnewline
43 & 9.4291395230195e-06 & 1.8858279046039e-05 & 0.999990570860477 \tabularnewline
44 & 8.36173193937206e-06 & 1.67234638787441e-05 & 0.99999163826806 \tabularnewline
45 & 1.31329145278071e-05 & 2.62658290556142e-05 & 0.999986867085472 \tabularnewline
46 & 3.5284912989641e-05 & 7.0569825979282e-05 & 0.99996471508701 \tabularnewline
47 & 0.000114450229961378 & 0.000228900459922755 & 0.999885549770039 \tabularnewline
48 & 0.000252439230979055 & 0.00050487846195811 & 0.99974756076902 \tabularnewline
49 & 0.000437019000402991 & 0.000874038000805982 & 0.999562980999597 \tabularnewline
50 & 0.000671761511453672 & 0.00134352302290734 & 0.999328238488546 \tabularnewline
51 & 0.00100264040039283 & 0.00200528080078566 & 0.998997359599607 \tabularnewline
52 & 0.00196896893071839 & 0.00393793786143678 & 0.998031031069282 \tabularnewline
53 & 0.00333899251564812 & 0.00667798503129624 & 0.996661007484352 \tabularnewline
54 & 0.00491184176066448 & 0.00982368352132897 & 0.995088158239335 \tabularnewline
55 & 0.00956840800605792 & 0.0191368160121158 & 0.990431591993942 \tabularnewline
56 & 0.0119867275941646 & 0.0239734551883292 & 0.988013272405835 \tabularnewline
57 & 0.0145773875354328 & 0.0291547750708656 & 0.985422612464567 \tabularnewline
58 & 0.0172999021385388 & 0.0345998042770776 & 0.982700097861461 \tabularnewline
59 & 0.0169859657148454 & 0.0339719314296909 & 0.983014034285155 \tabularnewline
60 & 0.0142519283696723 & 0.0285038567393446 & 0.985748071630328 \tabularnewline
61 & 0.0118227960030785 & 0.0236455920061571 & 0.988177203996921 \tabularnewline
62 & 0.00913588608623253 & 0.0182717721724651 & 0.990864113913767 \tabularnewline
63 & 0.0070369193854355 & 0.014073838770871 & 0.992963080614565 \tabularnewline
64 & 0.00573367023565442 & 0.0114673404713088 & 0.994266329764346 \tabularnewline
65 & 0.00497661886837559 & 0.00995323773675118 & 0.995023381131624 \tabularnewline
66 & 0.00447485310592425 & 0.0089497062118485 & 0.995525146894076 \tabularnewline
67 & 0.00431744346830816 & 0.00863488693661631 & 0.995682556531692 \tabularnewline
68 & 0.00445065949577475 & 0.0089013189915495 & 0.995549340504225 \tabularnewline
69 & 0.00416897451055084 & 0.00833794902110169 & 0.99583102548945 \tabularnewline
70 & 0.00409587782048031 & 0.00819175564096063 & 0.99590412217952 \tabularnewline
71 & 0.00405650297132396 & 0.00811300594264793 & 0.995943497028676 \tabularnewline
72 & 0.00352240715035424 & 0.00704481430070849 & 0.996477592849646 \tabularnewline
73 & 0.00288628665423309 & 0.00577257330846619 & 0.997113713345767 \tabularnewline
74 & 0.00242376277885144 & 0.00484752555770289 & 0.997576237221149 \tabularnewline
75 & 0.00210007895820995 & 0.00420015791641991 & 0.99789992104179 \tabularnewline
76 & 0.00214543916310164 & 0.00429087832620328 & 0.997854560836898 \tabularnewline
77 & 0.00205536861488916 & 0.00411073722977833 & 0.99794463138511 \tabularnewline
78 & 0.00203544752050611 & 0.00407089504101222 & 0.997964552479494 \tabularnewline
79 & 0.00213375867113428 & 0.00426751734226856 & 0.997866241328866 \tabularnewline
80 & 0.0019835093210841 & 0.0039670186421682 & 0.998016490678916 \tabularnewline
81 & 0.00161878582261112 & 0.00323757164522225 & 0.998381214177389 \tabularnewline
82 & 0.00142712929636985 & 0.0028542585927397 & 0.99857287070363 \tabularnewline
83 & 0.00112116497654941 & 0.00224232995309881 & 0.99887883502345 \tabularnewline
84 & 0.00105140123522058 & 0.00210280247044116 & 0.99894859876478 \tabularnewline
85 & 0.000826030723989983 & 0.00165206144797997 & 0.99917396927601 \tabularnewline
86 & 0.000617750224795856 & 0.00123550044959171 & 0.999382249775204 \tabularnewline
87 & 0.000420034645156019 & 0.000840069290312039 & 0.999579965354844 \tabularnewline
88 & 0.000332081696987066 & 0.000664163393974131 & 0.999667918303013 \tabularnewline
89 & 0.000276144636726656 & 0.000552289273453312 & 0.999723855363273 \tabularnewline
90 & 0.000280316260395727 & 0.000560632520791454 & 0.999719683739604 \tabularnewline
91 & 0.000261209307265077 & 0.000522418614530155 & 0.999738790692735 \tabularnewline
92 & 0.000192257121696183 & 0.000384514243392366 & 0.999807742878304 \tabularnewline
93 & 0.000147611084850408 & 0.000295222169700816 & 0.99985238891515 \tabularnewline
94 & 0.000104260626959023 & 0.000208521253918047 & 0.99989573937304 \tabularnewline
95 & 7.64331816434637e-05 & 0.000152866363286927 & 0.999923566818357 \tabularnewline
96 & 8.87338526142692e-05 & 0.000177467705228538 & 0.999911266147386 \tabularnewline
97 & 0.000128608144001671 & 0.000257216288003342 & 0.999871391855998 \tabularnewline
98 & 0.000282201438322041 & 0.000564402876644083 & 0.999717798561678 \tabularnewline
99 & 0.000729490920598833 & 0.00145898184119767 & 0.999270509079401 \tabularnewline
100 & 0.00131931045792236 & 0.00263862091584473 & 0.998680689542078 \tabularnewline
101 & 0.00463664605147914 & 0.00927329210295827 & 0.99536335394852 \tabularnewline
102 & 0.0183469015039509 & 0.0366938030079018 & 0.98165309849605 \tabularnewline
103 & 0.0750067652769789 & 0.150013530553958 & 0.92499323472302 \tabularnewline
104 & 0.309406311199694 & 0.618812622399388 & 0.690593688800306 \tabularnewline
105 & 0.73088037378886 & 0.538239252422281 & 0.269119626211140 \tabularnewline
106 & 0.958299673303777 & 0.0834006533924467 & 0.0417003266962233 \tabularnewline
107 & 0.97828132928696 & 0.0434373414260813 & 0.0217186707130407 \tabularnewline
108 & 0.975016895703392 & 0.0499662085932151 & 0.0249831042966076 \tabularnewline
109 & 0.96773533640151 & 0.0645293271969814 & 0.0322646635984907 \tabularnewline
110 & 0.96832410047615 & 0.0633517990476998 & 0.0316758995238499 \tabularnewline
111 & 0.985352859541377 & 0.0292942809172456 & 0.0146471404586228 \tabularnewline
112 & 0.996429668966804 & 0.00714066206639157 & 0.00357033103319579 \tabularnewline
113 & 0.999302987018834 & 0.00139402596233266 & 0.000697012981166328 \tabularnewline
114 & 0.997694845804596 & 0.0046103083908081 & 0.00230515419540405 \tabularnewline
115 & 0.995613916609643 & 0.00877216678071458 & 0.00438608339035729 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.0596566112170021[/C][C]0.119313222434004[/C][C]0.940343388782998[/C][/ROW]
[ROW][C]17[/C][C]0.0268585091998257[/C][C]0.0537170183996513[/C][C]0.973141490800174[/C][/ROW]
[ROW][C]18[/C][C]0.0149357115747915[/C][C]0.0298714231495830[/C][C]0.985064288425209[/C][/ROW]
[ROW][C]19[/C][C]0.00609473857402556[/C][C]0.0121894771480511[/C][C]0.993905261425974[/C][/ROW]
[ROW][C]20[/C][C]0.00233663743988151[/C][C]0.00467327487976301[/C][C]0.997663362560119[/C][/ROW]
[ROW][C]21[/C][C]0.00204482923471516[/C][C]0.00408965846943032[/C][C]0.997955170765285[/C][/ROW]
[ROW][C]22[/C][C]0.00225682274697673[/C][C]0.00451364549395347[/C][C]0.997743177253023[/C][/ROW]
[ROW][C]23[/C][C]0.00184022403667983[/C][C]0.00368044807335967[/C][C]0.99815977596332[/C][/ROW]
[ROW][C]24[/C][C]0.000987477616569485[/C][C]0.00197495523313897[/C][C]0.99901252238343[/C][/ROW]
[ROW][C]25[/C][C]0.000535971171600521[/C][C]0.00107194234320104[/C][C]0.9994640288284[/C][/ROW]
[ROW][C]26[/C][C]0.000267673103813942[/C][C]0.000535346207627885[/C][C]0.999732326896186[/C][/ROW]
[ROW][C]27[/C][C]0.000231546393589026[/C][C]0.000463092787178052[/C][C]0.999768453606411[/C][/ROW]
[ROW][C]28[/C][C]0.00038690915674347[/C][C]0.00077381831348694[/C][C]0.999613090843257[/C][/ROW]
[ROW][C]29[/C][C]0.000649088481975827[/C][C]0.00129817696395165[/C][C]0.999350911518024[/C][/ROW]
[ROW][C]30[/C][C]0.000698585127881372[/C][C]0.00139717025576274[/C][C]0.999301414872119[/C][/ROW]
[ROW][C]31[/C][C]0.000666216753804296[/C][C]0.00133243350760859[/C][C]0.999333783246196[/C][/ROW]
[ROW][C]32[/C][C]0.000474152706143625[/C][C]0.00094830541228725[/C][C]0.999525847293856[/C][/ROW]
[ROW][C]33[/C][C]0.000392737686638034[/C][C]0.000785475373276069[/C][C]0.999607262313362[/C][/ROW]
[ROW][C]34[/C][C]0.000360325311948903[/C][C]0.000720650623897805[/C][C]0.999639674688051[/C][/ROW]
[ROW][C]35[/C][C]0.000354219788060919[/C][C]0.000708439576121838[/C][C]0.99964578021194[/C][/ROW]
[ROW][C]36[/C][C]0.00024718478128203[/C][C]0.00049436956256406[/C][C]0.999752815218718[/C][/ROW]
[ROW][C]37[/C][C]0.000146970838118186[/C][C]0.000293941676236372[/C][C]0.999853029161882[/C][/ROW]
[ROW][C]38[/C][C]8.70151699533093e-05[/C][C]0.000174030339906619[/C][C]0.999912984830047[/C][/ROW]
[ROW][C]39[/C][C]4.99813704800139e-05[/C][C]9.99627409600278e-05[/C][C]0.99995001862952[/C][/ROW]
[ROW][C]40[/C][C]3.03320884092612e-05[/C][C]6.06641768185225e-05[/C][C]0.99996966791159[/C][/ROW]
[ROW][C]41[/C][C]1.81017860096253e-05[/C][C]3.62035720192507e-05[/C][C]0.99998189821399[/C][/ROW]
[ROW][C]42[/C][C]1.31947446267686e-05[/C][C]2.63894892535373e-05[/C][C]0.999986805255373[/C][/ROW]
[ROW][C]43[/C][C]9.4291395230195e-06[/C][C]1.8858279046039e-05[/C][C]0.999990570860477[/C][/ROW]
[ROW][C]44[/C][C]8.36173193937206e-06[/C][C]1.67234638787441e-05[/C][C]0.99999163826806[/C][/ROW]
[ROW][C]45[/C][C]1.31329145278071e-05[/C][C]2.62658290556142e-05[/C][C]0.999986867085472[/C][/ROW]
[ROW][C]46[/C][C]3.5284912989641e-05[/C][C]7.0569825979282e-05[/C][C]0.99996471508701[/C][/ROW]
[ROW][C]47[/C][C]0.000114450229961378[/C][C]0.000228900459922755[/C][C]0.999885549770039[/C][/ROW]
[ROW][C]48[/C][C]0.000252439230979055[/C][C]0.00050487846195811[/C][C]0.99974756076902[/C][/ROW]
[ROW][C]49[/C][C]0.000437019000402991[/C][C]0.000874038000805982[/C][C]0.999562980999597[/C][/ROW]
[ROW][C]50[/C][C]0.000671761511453672[/C][C]0.00134352302290734[/C][C]0.999328238488546[/C][/ROW]
[ROW][C]51[/C][C]0.00100264040039283[/C][C]0.00200528080078566[/C][C]0.998997359599607[/C][/ROW]
[ROW][C]52[/C][C]0.00196896893071839[/C][C]0.00393793786143678[/C][C]0.998031031069282[/C][/ROW]
[ROW][C]53[/C][C]0.00333899251564812[/C][C]0.00667798503129624[/C][C]0.996661007484352[/C][/ROW]
[ROW][C]54[/C][C]0.00491184176066448[/C][C]0.00982368352132897[/C][C]0.995088158239335[/C][/ROW]
[ROW][C]55[/C][C]0.00956840800605792[/C][C]0.0191368160121158[/C][C]0.990431591993942[/C][/ROW]
[ROW][C]56[/C][C]0.0119867275941646[/C][C]0.0239734551883292[/C][C]0.988013272405835[/C][/ROW]
[ROW][C]57[/C][C]0.0145773875354328[/C][C]0.0291547750708656[/C][C]0.985422612464567[/C][/ROW]
[ROW][C]58[/C][C]0.0172999021385388[/C][C]0.0345998042770776[/C][C]0.982700097861461[/C][/ROW]
[ROW][C]59[/C][C]0.0169859657148454[/C][C]0.0339719314296909[/C][C]0.983014034285155[/C][/ROW]
[ROW][C]60[/C][C]0.0142519283696723[/C][C]0.0285038567393446[/C][C]0.985748071630328[/C][/ROW]
[ROW][C]61[/C][C]0.0118227960030785[/C][C]0.0236455920061571[/C][C]0.988177203996921[/C][/ROW]
[ROW][C]62[/C][C]0.00913588608623253[/C][C]0.0182717721724651[/C][C]0.990864113913767[/C][/ROW]
[ROW][C]63[/C][C]0.0070369193854355[/C][C]0.014073838770871[/C][C]0.992963080614565[/C][/ROW]
[ROW][C]64[/C][C]0.00573367023565442[/C][C]0.0114673404713088[/C][C]0.994266329764346[/C][/ROW]
[ROW][C]65[/C][C]0.00497661886837559[/C][C]0.00995323773675118[/C][C]0.995023381131624[/C][/ROW]
[ROW][C]66[/C][C]0.00447485310592425[/C][C]0.0089497062118485[/C][C]0.995525146894076[/C][/ROW]
[ROW][C]67[/C][C]0.00431744346830816[/C][C]0.00863488693661631[/C][C]0.995682556531692[/C][/ROW]
[ROW][C]68[/C][C]0.00445065949577475[/C][C]0.0089013189915495[/C][C]0.995549340504225[/C][/ROW]
[ROW][C]69[/C][C]0.00416897451055084[/C][C]0.00833794902110169[/C][C]0.99583102548945[/C][/ROW]
[ROW][C]70[/C][C]0.00409587782048031[/C][C]0.00819175564096063[/C][C]0.99590412217952[/C][/ROW]
[ROW][C]71[/C][C]0.00405650297132396[/C][C]0.00811300594264793[/C][C]0.995943497028676[/C][/ROW]
[ROW][C]72[/C][C]0.00352240715035424[/C][C]0.00704481430070849[/C][C]0.996477592849646[/C][/ROW]
[ROW][C]73[/C][C]0.00288628665423309[/C][C]0.00577257330846619[/C][C]0.997113713345767[/C][/ROW]
[ROW][C]74[/C][C]0.00242376277885144[/C][C]0.00484752555770289[/C][C]0.997576237221149[/C][/ROW]
[ROW][C]75[/C][C]0.00210007895820995[/C][C]0.00420015791641991[/C][C]0.99789992104179[/C][/ROW]
[ROW][C]76[/C][C]0.00214543916310164[/C][C]0.00429087832620328[/C][C]0.997854560836898[/C][/ROW]
[ROW][C]77[/C][C]0.00205536861488916[/C][C]0.00411073722977833[/C][C]0.99794463138511[/C][/ROW]
[ROW][C]78[/C][C]0.00203544752050611[/C][C]0.00407089504101222[/C][C]0.997964552479494[/C][/ROW]
[ROW][C]79[/C][C]0.00213375867113428[/C][C]0.00426751734226856[/C][C]0.997866241328866[/C][/ROW]
[ROW][C]80[/C][C]0.0019835093210841[/C][C]0.0039670186421682[/C][C]0.998016490678916[/C][/ROW]
[ROW][C]81[/C][C]0.00161878582261112[/C][C]0.00323757164522225[/C][C]0.998381214177389[/C][/ROW]
[ROW][C]82[/C][C]0.00142712929636985[/C][C]0.0028542585927397[/C][C]0.99857287070363[/C][/ROW]
[ROW][C]83[/C][C]0.00112116497654941[/C][C]0.00224232995309881[/C][C]0.99887883502345[/C][/ROW]
[ROW][C]84[/C][C]0.00105140123522058[/C][C]0.00210280247044116[/C][C]0.99894859876478[/C][/ROW]
[ROW][C]85[/C][C]0.000826030723989983[/C][C]0.00165206144797997[/C][C]0.99917396927601[/C][/ROW]
[ROW][C]86[/C][C]0.000617750224795856[/C][C]0.00123550044959171[/C][C]0.999382249775204[/C][/ROW]
[ROW][C]87[/C][C]0.000420034645156019[/C][C]0.000840069290312039[/C][C]0.999579965354844[/C][/ROW]
[ROW][C]88[/C][C]0.000332081696987066[/C][C]0.000664163393974131[/C][C]0.999667918303013[/C][/ROW]
[ROW][C]89[/C][C]0.000276144636726656[/C][C]0.000552289273453312[/C][C]0.999723855363273[/C][/ROW]
[ROW][C]90[/C][C]0.000280316260395727[/C][C]0.000560632520791454[/C][C]0.999719683739604[/C][/ROW]
[ROW][C]91[/C][C]0.000261209307265077[/C][C]0.000522418614530155[/C][C]0.999738790692735[/C][/ROW]
[ROW][C]92[/C][C]0.000192257121696183[/C][C]0.000384514243392366[/C][C]0.999807742878304[/C][/ROW]
[ROW][C]93[/C][C]0.000147611084850408[/C][C]0.000295222169700816[/C][C]0.99985238891515[/C][/ROW]
[ROW][C]94[/C][C]0.000104260626959023[/C][C]0.000208521253918047[/C][C]0.99989573937304[/C][/ROW]
[ROW][C]95[/C][C]7.64331816434637e-05[/C][C]0.000152866363286927[/C][C]0.999923566818357[/C][/ROW]
[ROW][C]96[/C][C]8.87338526142692e-05[/C][C]0.000177467705228538[/C][C]0.999911266147386[/C][/ROW]
[ROW][C]97[/C][C]0.000128608144001671[/C][C]0.000257216288003342[/C][C]0.999871391855998[/C][/ROW]
[ROW][C]98[/C][C]0.000282201438322041[/C][C]0.000564402876644083[/C][C]0.999717798561678[/C][/ROW]
[ROW][C]99[/C][C]0.000729490920598833[/C][C]0.00145898184119767[/C][C]0.999270509079401[/C][/ROW]
[ROW][C]100[/C][C]0.00131931045792236[/C][C]0.00263862091584473[/C][C]0.998680689542078[/C][/ROW]
[ROW][C]101[/C][C]0.00463664605147914[/C][C]0.00927329210295827[/C][C]0.99536335394852[/C][/ROW]
[ROW][C]102[/C][C]0.0183469015039509[/C][C]0.0366938030079018[/C][C]0.98165309849605[/C][/ROW]
[ROW][C]103[/C][C]0.0750067652769789[/C][C]0.150013530553958[/C][C]0.92499323472302[/C][/ROW]
[ROW][C]104[/C][C]0.309406311199694[/C][C]0.618812622399388[/C][C]0.690593688800306[/C][/ROW]
[ROW][C]105[/C][C]0.73088037378886[/C][C]0.538239252422281[/C][C]0.269119626211140[/C][/ROW]
[ROW][C]106[/C][C]0.958299673303777[/C][C]0.0834006533924467[/C][C]0.0417003266962233[/C][/ROW]
[ROW][C]107[/C][C]0.97828132928696[/C][C]0.0434373414260813[/C][C]0.0217186707130407[/C][/ROW]
[ROW][C]108[/C][C]0.975016895703392[/C][C]0.0499662085932151[/C][C]0.0249831042966076[/C][/ROW]
[ROW][C]109[/C][C]0.96773533640151[/C][C]0.0645293271969814[/C][C]0.0322646635984907[/C][/ROW]
[ROW][C]110[/C][C]0.96832410047615[/C][C]0.0633517990476998[/C][C]0.0316758995238499[/C][/ROW]
[ROW][C]111[/C][C]0.985352859541377[/C][C]0.0292942809172456[/C][C]0.0146471404586228[/C][/ROW]
[ROW][C]112[/C][C]0.996429668966804[/C][C]0.00714066206639157[/C][C]0.00357033103319579[/C][/ROW]
[ROW][C]113[/C][C]0.999302987018834[/C][C]0.00139402596233266[/C][C]0.000697012981166328[/C][/ROW]
[ROW][C]114[/C][C]0.997694845804596[/C][C]0.0046103083908081[/C][C]0.00230515419540405[/C][/ROW]
[ROW][C]115[/C][C]0.995613916609643[/C][C]0.00877216678071458[/C][C]0.00438608339035729[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.05965661121700210.1193132224340040.940343388782998
170.02685850919982570.05371701839965130.973141490800174
180.01493571157479150.02987142314958300.985064288425209
190.006094738574025560.01218947714805110.993905261425974
200.002336637439881510.004673274879763010.997663362560119
210.002044829234715160.004089658469430320.997955170765285
220.002256822746976730.004513645493953470.997743177253023
230.001840224036679830.003680448073359670.99815977596332
240.0009874776165694850.001974955233138970.99901252238343
250.0005359711716005210.001071942343201040.9994640288284
260.0002676731038139420.0005353462076278850.999732326896186
270.0002315463935890260.0004630927871780520.999768453606411
280.000386909156743470.000773818313486940.999613090843257
290.0006490884819758270.001298176963951650.999350911518024
300.0006985851278813720.001397170255762740.999301414872119
310.0006662167538042960.001332433507608590.999333783246196
320.0004741527061436250.000948305412287250.999525847293856
330.0003927376866380340.0007854753732760690.999607262313362
340.0003603253119489030.0007206506238978050.999639674688051
350.0003542197880609190.0007084395761218380.99964578021194
360.000247184781282030.000494369562564060.999752815218718
370.0001469708381181860.0002939416762363720.999853029161882
388.70151699533093e-050.0001740303399066190.999912984830047
394.99813704800139e-059.99627409600278e-050.99995001862952
403.03320884092612e-056.06641768185225e-050.99996966791159
411.81017860096253e-053.62035720192507e-050.99998189821399
421.31947446267686e-052.63894892535373e-050.999986805255373
439.4291395230195e-061.8858279046039e-050.999990570860477
448.36173193937206e-061.67234638787441e-050.99999163826806
451.31329145278071e-052.62658290556142e-050.999986867085472
463.5284912989641e-057.0569825979282e-050.99996471508701
470.0001144502299613780.0002289004599227550.999885549770039
480.0002524392309790550.000504878461958110.99974756076902
490.0004370190004029910.0008740380008059820.999562980999597
500.0006717615114536720.001343523022907340.999328238488546
510.001002640400392830.002005280800785660.998997359599607
520.001968968930718390.003937937861436780.998031031069282
530.003338992515648120.006677985031296240.996661007484352
540.004911841760664480.009823683521328970.995088158239335
550.009568408006057920.01913681601211580.990431591993942
560.01198672759416460.02397345518832920.988013272405835
570.01457738753543280.02915477507086560.985422612464567
580.01729990213853880.03459980427707760.982700097861461
590.01698596571484540.03397193142969090.983014034285155
600.01425192836967230.02850385673934460.985748071630328
610.01182279600307850.02364559200615710.988177203996921
620.009135886086232530.01827177217246510.990864113913767
630.00703691938543550.0140738387708710.992963080614565
640.005733670235654420.01146734047130880.994266329764346
650.004976618868375590.009953237736751180.995023381131624
660.004474853105924250.00894970621184850.995525146894076
670.004317443468308160.008634886936616310.995682556531692
680.004450659495774750.00890131899154950.995549340504225
690.004168974510550840.008337949021101690.99583102548945
700.004095877820480310.008191755640960630.99590412217952
710.004056502971323960.008113005942647930.995943497028676
720.003522407150354240.007044814300708490.996477592849646
730.002886286654233090.005772573308466190.997113713345767
740.002423762778851440.004847525557702890.997576237221149
750.002100078958209950.004200157916419910.99789992104179
760.002145439163101640.004290878326203280.997854560836898
770.002055368614889160.004110737229778330.99794463138511
780.002035447520506110.004070895041012220.997964552479494
790.002133758671134280.004267517342268560.997866241328866
800.00198350932108410.00396701864216820.998016490678916
810.001618785822611120.003237571645222250.998381214177389
820.001427129296369850.00285425859273970.99857287070363
830.001121164976549410.002242329953098810.99887883502345
840.001051401235220580.002102802470441160.99894859876478
850.0008260307239899830.001652061447979970.99917396927601
860.0006177502247958560.001235500449591710.999382249775204
870.0004200346451560190.0008400692903120390.999579965354844
880.0003320816969870660.0006641633939741310.999667918303013
890.0002761446367266560.0005522892734533120.999723855363273
900.0002803162603957270.0005606325207914540.999719683739604
910.0002612093072650770.0005224186145301550.999738790692735
920.0001922571216961830.0003845142433923660.999807742878304
930.0001476110848504080.0002952221697008160.99985238891515
940.0001042606269590230.0002085212539180470.99989573937304
957.64331816434637e-050.0001528663632869270.999923566818357
968.87338526142692e-050.0001774677052285380.999911266147386
970.0001286081440016710.0002572162880033420.999871391855998
980.0002822014383220410.0005644028766440830.999717798561678
990.0007294909205988330.001458981841197670.999270509079401
1000.001319310457922360.002638620915844730.998680689542078
1010.004636646051479140.009273292102958270.99536335394852
1020.01834690150395090.03669380300790180.98165309849605
1030.07500676527697890.1500135305539580.92499323472302
1040.3094063111996940.6188126223993880.690593688800306
1050.730880373788860.5382392524222810.269119626211140
1060.9582996733037770.08340065339244670.0417003266962233
1070.978281329286960.04343734142608130.0217186707130407
1080.9750168957033920.04996620859321510.0249831042966076
1090.967735336401510.06452932719698140.0322646635984907
1100.968324100476150.06335179904769980.0316758995238499
1110.9853528595413770.02929428091724560.0146471404586228
1120.9964296689668040.007140662066391570.00357033103319579
1130.9993029870188340.001394025962332660.000697012981166328
1140.9976948458045960.00461030839080810.00230515419540405
1150.9956139166096430.008772166780714580.00438608339035729







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level760.76NOK
5% type I error level920.92NOK
10% type I error level960.96NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 76 & 0.76 & NOK \tabularnewline
5% type I error level & 92 & 0.92 & NOK \tabularnewline
10% type I error level & 96 & 0.96 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114891&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]76[/C][C]0.76[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]92[/C][C]0.92[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]96[/C][C]0.96[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114891&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114891&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level760.76NOK
5% type I error level920.92NOK
10% type I error level960.96NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}