Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 20 Nov 2012 17:42:50 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/20/t1353451427kt8hyrwy62fnovw.htm/, Retrieved Fri, 01 Nov 2024 00:16:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=191320, Retrieved Fri, 01 Nov 2024 00:16:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact122
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Decreasing Compet...] [2010-11-17 09:04:39] [b98453cac15ba1066b407e146608df68]
- R PD    [Multiple Regression] [Workshop 7 - maand] [2012-11-20 22:42:50] [ea3f368794e91aea24e3a61414fc1d16] [Current]
-   P       [Multiple Regression] [Workshop 7 - trend] [2012-11-20 22:57:30] [9c45c7d0f0ec5a92d53ae36c26891393]
Feedback Forum

Post a new message
Dataseries X:
1	476000	113000	363000
2	475000	110000	364000
3	470000	107000	363000
4	461000	103000	358000
5	455000	98000	357000
6	456000	98000	357000
7	517000	137000	380000
8	525000	148000	378000
9	523000	147000	376000
10	519000	139000	380000
11	509000	130000	379000
12	512000	128000	384000
1	519000	127000	392000
2	517000	123000	394000
3	510000	118000	392000
4	509000	114000	396000
5	501000	108000	392000
6	507000	111000	396000
7	569000	151000	419000
8	580000	159000	421000
9	578000	158000	420000
10	565000	148000	418000
11	547000	138000	410000
12	555000	137000	418000
1	562000	136000	426000
2	561000	133000	428000
3	555000	126000	430000
4	544000	120000	424000
5	537000	114000	423000
6	543000	116000	427000
7	594000	153000	441000
8	611000	162000	449000
9	613000	161000	452000
10	611000	149000	462000
11	594000	139000	455000
12	595000	135000	461000
1	591000	130000	461000
2	589000	127000	463000
3	584000	122000	462000
4	573000	117000	456000
5	567000	112000	455000
6	569000	113000	456000
7	621000	149000	472000
8	629000	157000	472000
9	628000	157000	471000
10	612000	147000	465000
11	595000	137000	459000
12	597000	132000	465000
1	593000	125000	468000
2	590000	123000	467000
3	580000	117000	463000
4	574000	114000	460000
5	573000	111000	462000
6	573000	112000	461000
7	620000	144000	476000
8	626000	150000	476000
9	620000	149000	471000
10	588000	134000	453000
11	566000	123000	443000
12	557000	116000	442000
1	561000	117000	444000
2	549000	111000	438000
3	532000	105000	427000
4	526000	102000	424000
5	511000	95000	416000
6	499000	93000	406000
7	555000	124000	431000
8	565000	130000	434000
9	542000	124000	418000
10	527000	115000	412000
11	510000	106000	404000
12	514000	105000	409000
1	517000	105000	412000
2	508000	101000	406000
3	493000	95000	398000
4	490000	93000	397000
5	469000	84000	385000
6	478000	87000	390000
7	528000	116000	413000
8	534000	120000	413000
9	518000	117000	401000
10	506000	109000	397000
11	502000	105000	397000
12	516000	107000	409000
1	528000	109000	419000
2	533000	109000	424000
3	536000	108000	428000
4	537000	107000	430000
5	524000	99000	424000
6	536000	103000	433000
7	587000	131000	456000
8	597000	137000	459000
9	581000	135000	446000
10	564000	124000	441000
11	558000	118000	439000
12	575000	121000	454000
1	580000	121000	460000
2	575000	118000	457000
3	563000	113000	451000
4	552000	107000	444000
5	537000	100000	437000
6	545000	102000	443000
7	601000	130000	471000
8	604000	136000	469000
9	586000	133000	454000
10	564000	120000	444000
11	549000	112000	436000
12	551000	109000	442000
1	556000	110000	446000
2	548000	106000	442000
3	540000	102000	438000
4	531000	98000	433000
5	521000	92000	428000
6	519000	92000	426000
7	572000	120000	452000
8	581000	127000	455000
9	563000	124000	439000
10	548000	114000	434000
11	539000	108000	431000
12	541000	106000	435000
1	562000	111000	450000
2	559000	110000	449000
3	546000	104000	442000
4	536000	100000	437000
5	528000	96000	431000
6	530000	98000	433000
7	582000	122000	460000
8	599000	134000	465000
9	584000	133000	451000
10	571000	125000	447000




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Totaal[t] = + 1347.68074713005 -1.43242186513971Maanden[t] + 0.992798185983571jongerdan25jaar[t] + 0.998845974898212vanaf25jaar[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Totaal[t] =  +  1347.68074713005 -1.43242186513971Maanden[t] +  0.992798185983571jongerdan25jaar[t] +  0.998845974898212vanaf25jaar[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Totaal[t] =  +  1347.68074713005 -1.43242186513971Maanden[t] +  0.992798185983571jongerdan25jaar[t] +  0.998845974898212vanaf25jaar[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Totaal[t] = + 1347.68074713005 -1.43242186513971Maanden[t] + 0.992798185983571jongerdan25jaar[t] + 0.998845974898212vanaf25jaar[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1347.68074713005676.0094291.99360.0483570.024179
Maanden-1.4324218651397114.373044-0.09970.9207720.460386
jongerdan25jaar0.9927981859835710.002972334.076500
vanaf25jaar0.9988459748982120.00166601.754700

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 1347.68074713005 & 676.009429 & 1.9936 & 0.048357 & 0.024179 \tabularnewline
Maanden & -1.43242186513971 & 14.373044 & -0.0997 & 0.920772 & 0.460386 \tabularnewline
jongerdan25jaar & 0.992798185983571 & 0.002972 & 334.0765 & 0 & 0 \tabularnewline
vanaf25jaar & 0.998845974898212 & 0.00166 & 601.7547 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]1347.68074713005[/C][C]676.009429[/C][C]1.9936[/C][C]0.048357[/C][C]0.024179[/C][/ROW]
[ROW][C]Maanden[/C][C]-1.43242186513971[/C][C]14.373044[/C][C]-0.0997[/C][C]0.920772[/C][C]0.460386[/C][/ROW]
[ROW][C]jongerdan25jaar[/C][C]0.992798185983571[/C][C]0.002972[/C][C]334.0765[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]vanaf25jaar[/C][C]0.998845974898212[/C][C]0.00166[/C][C]601.7547[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1347.68074713005676.0094291.99360.0483570.024179
Maanden-1.4324218651397114.373044-0.09970.9207720.460386
jongerdan25jaar0.9927981859835710.002972334.076500
vanaf25jaar0.9988459748982120.00166601.754700







Multiple Linear Regression - Regression Statistics
Multiple R0.999913571775203
R-squared0.999827151020244
Adjusted R-squared0.999823035568345
F-TEST (value)242944.681549068
F-TEST (DF numerator)3
F-TEST (DF denominator)126
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation521.308738033867
Sum Squared Residuals34242112.8441584

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.999913571775203 \tabularnewline
R-squared & 0.999827151020244 \tabularnewline
Adjusted R-squared & 0.999823035568345 \tabularnewline
F-TEST (value) & 242944.681549068 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 126 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 521.308738033867 \tabularnewline
Sum Squared Residuals & 34242112.8441584 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.999913571775203[/C][/ROW]
[ROW][C]R-squared[/C][C]0.999827151020244[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.999823035568345[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]242944.681549068[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]126[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]521.308738033867[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]34242112.8441584[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.999913571775203
R-squared0.999827151020244
Adjusted R-squared0.999823035568345
F-TEST (value)242944.681549068
F-TEST (DF numerator)3
F-TEST (DF denominator)126
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation521.308738033867
Sum Squared Residuals34242112.8441584







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1476000476113.53222946-113.532229459931
2475000474132.551224542867.448775458159
3470000470153.878269828-153.878269827748
4461000461187.023229537-187.023229537265
5455000455222.753902856-222.753902856063
6456000455221.321480991778.678519009065
7517000516912.47573514487.5242648560498
8525000525834.131409302-834.131409301663
9523000522842.208851657157.791148343476
10519000518893.774841516106.225158484323
11509000508958.312770941.6872290998307
12512000511965.51385155934.4861484410496
13519000518979.24010527820.7598947223696
14517000517004.306889275-4.30688927462231
15510000510041.191587695-41.1915876952033
16509000510063.950321489-1063.95032148863
17501000500110.344884129889.655115870785
18507000507082.690919808-82.6909198076233
19569000569766.643359944-766.643359944207
20580000579705.288375744294.711624255923
21578000577712.211792997287.788207002852
22565000565785.1055615-785.105561499872
23547000547864.923480613-864.923480613324
24555000554861.46067195138.539328049691
25562000561875.186925669124.813074331019
26561000560893.05189565106.948104350451
27555000555939.724121696-939.724121695836
28544000543988.4267345411.5732654600033
29537000537031.359221875-31.3592218752192
30543000543010.90707157-10.90707157007
31594000593726.851179672273.148820327974
32611000610651.370230845348.629769155266
33613000612653.677547691346.322452309343
34611000610727.126643005272.873356995202
35594000593805.790537016194.209462983553
36595000595826.241220606-826.241220606296
37591000590878.006931205121.99306879502
38589000589895.871901186-895.871901185555
39584000583931.60257450468.3974254956526
40573000572973.10337333226.8966266679246
41567000567008.834046651-8.83404665086795
42569000568999.0457856670.954214332485697
43621000620719.883657582280.116342417662
44629000628660.836723586339.163276414246
45628000627660.558326822339.441673177595
46612000611738.068195732261.93180426771
47595000595815.578064642-815.578064642157
48597000596843.230562248156.76943775157
49593000592905.93782557594.0621744253929
50590000589920.06305684479.9369431558771
51580000579966.45761948533.5423805152911
52574000573990.0927149749.9072850257942
53573000573007.957684955-7.95768495478473
54573000573000.477474175-0.477474175010752
55620000619751.276627257248.723372742667
56626000625706.633321294293.36667870639
57620000619718.172838954281.827161046157
58588000586845.5400791671154.4599208327
59566000565934.86786250165.1321374992416
60557000557985.002163852-985.002163852409
61561000560991.2489401498.75105985105
62549000549039.951552993-39.951552993107
63532000532094.424291346-94.4242913462088
64526000526118.059386836-118.059386835721
65511000511176.2718639-176.271863899885
66499000499200.783321086-200.783321085474
67555000554947.24403716652.755962833654
68565000563899.1386558971100.86134410273
69542000541959.38151975940.6184802406926
70527000527029.689574653-29.6895746527567
71510000510102.30567975-102.305679749774
72514000514102.304946392-102.304946392125
73517000517114.599511603-114.599511603304
74508000507148.898496415851.101503585394
75493000493199.909159462-199.909159462343
76490000490214.034390732-214.034390731844
77469000469291.266596236-291.266596236028
78478000477262.458606813737.54139318733
79528000529025.63100113-1025.63100112996
80534000532995.3913231991004.6086768009
81518000518029.412644605-29.4126446046986
82506000506090.210835278-90.2108352781367
83502000502117.585669479-117.585669478714
84516000516087.901318359-87.9013183592683
85528000528077.714079825-77.7140798250737
86533000533070.511532451-70.511532450995
87536000536071.664824195-71.664824195132
88537000537075.126166143-75.1261661428465
89524000523138.23240702861.767592980135
90536000536097.606503173-97.6065031729217
91587000586867.980711507132.019288493353
92597000595819.8753302381180.12466976242
93581000580847.848862729152.15113727147
94564000564931.406520553-931.406520553048
95558000556975.493032991024.50696700994
96575000574935.14479254964.8552074511854
97580000580943.977282455-943.977282454627
98575000574967.61237794432.3876220558672
99563000564009.113176772-1009.11317677187
100552000551058.969814718941.030185282183
101537000537116.02826668-116.028266680196
102545000545093.268066171-93.268066171474
103601000600857.872148996142.127851003739
104604000604815.536893236-815.53689323613
105586000586853.020289947-853.020289947085
106564000563956.75170131343.2482986865999
107549000548022.165992394977.834007606004
108551000551035.414861967-35.4148619674113
109556000556039.35358806-39.3535880603753
110548000548071.344522668-71.3445226680975
111540000540103.335457276-103.335457275831
112531000531136.480416985-136.480416985346
113521000520184.029004728815.970995272278
114519000518184.904633066815.095366933845
115572000571951.81676609548.1832339054785
116581000581896.509570809-896.50957080901
117563000562935.14699262264.8530073782343
118548000548011.50283643-11.5028364298513
119539000539056.743373969-56.7433739686518
120541000541065.098479729-65.0984797292191
121562000561027.535673637972.464326363205
122559000559034.45909089-34.4590908898687
123546000546084.315728836-84.315728835817
124536000537117.460688545-1117.46068854534
125528000527151.759673357848.240326643359
126530000531133.615573255-1133.61557325507
127582000581928.18093724771.8190627526435
128599000598834.556621676165.443378323864
129584000583856.482365252143.517634747552
130571000571917.280555926-917.280555925892

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 476000 & 476113.53222946 & -113.532229459931 \tabularnewline
2 & 475000 & 474132.551224542 & 867.448775458159 \tabularnewline
3 & 470000 & 470153.878269828 & -153.878269827748 \tabularnewline
4 & 461000 & 461187.023229537 & -187.023229537265 \tabularnewline
5 & 455000 & 455222.753902856 & -222.753902856063 \tabularnewline
6 & 456000 & 455221.321480991 & 778.678519009065 \tabularnewline
7 & 517000 & 516912.475735144 & 87.5242648560498 \tabularnewline
8 & 525000 & 525834.131409302 & -834.131409301663 \tabularnewline
9 & 523000 & 522842.208851657 & 157.791148343476 \tabularnewline
10 & 519000 & 518893.774841516 & 106.225158484323 \tabularnewline
11 & 509000 & 508958.3127709 & 41.6872290998307 \tabularnewline
12 & 512000 & 511965.513851559 & 34.4861484410496 \tabularnewline
13 & 519000 & 518979.240105278 & 20.7598947223696 \tabularnewline
14 & 517000 & 517004.306889275 & -4.30688927462231 \tabularnewline
15 & 510000 & 510041.191587695 & -41.1915876952033 \tabularnewline
16 & 509000 & 510063.950321489 & -1063.95032148863 \tabularnewline
17 & 501000 & 500110.344884129 & 889.655115870785 \tabularnewline
18 & 507000 & 507082.690919808 & -82.6909198076233 \tabularnewline
19 & 569000 & 569766.643359944 & -766.643359944207 \tabularnewline
20 & 580000 & 579705.288375744 & 294.711624255923 \tabularnewline
21 & 578000 & 577712.211792997 & 287.788207002852 \tabularnewline
22 & 565000 & 565785.1055615 & -785.105561499872 \tabularnewline
23 & 547000 & 547864.923480613 & -864.923480613324 \tabularnewline
24 & 555000 & 554861.46067195 & 138.539328049691 \tabularnewline
25 & 562000 & 561875.186925669 & 124.813074331019 \tabularnewline
26 & 561000 & 560893.05189565 & 106.948104350451 \tabularnewline
27 & 555000 & 555939.724121696 & -939.724121695836 \tabularnewline
28 & 544000 & 543988.42673454 & 11.5732654600033 \tabularnewline
29 & 537000 & 537031.359221875 & -31.3592218752192 \tabularnewline
30 & 543000 & 543010.90707157 & -10.90707157007 \tabularnewline
31 & 594000 & 593726.851179672 & 273.148820327974 \tabularnewline
32 & 611000 & 610651.370230845 & 348.629769155266 \tabularnewline
33 & 613000 & 612653.677547691 & 346.322452309343 \tabularnewline
34 & 611000 & 610727.126643005 & 272.873356995202 \tabularnewline
35 & 594000 & 593805.790537016 & 194.209462983553 \tabularnewline
36 & 595000 & 595826.241220606 & -826.241220606296 \tabularnewline
37 & 591000 & 590878.006931205 & 121.99306879502 \tabularnewline
38 & 589000 & 589895.871901186 & -895.871901185555 \tabularnewline
39 & 584000 & 583931.602574504 & 68.3974254956526 \tabularnewline
40 & 573000 & 572973.103373332 & 26.8966266679246 \tabularnewline
41 & 567000 & 567008.834046651 & -8.83404665086795 \tabularnewline
42 & 569000 & 568999.045785667 & 0.954214332485697 \tabularnewline
43 & 621000 & 620719.883657582 & 280.116342417662 \tabularnewline
44 & 629000 & 628660.836723586 & 339.163276414246 \tabularnewline
45 & 628000 & 627660.558326822 & 339.441673177595 \tabularnewline
46 & 612000 & 611738.068195732 & 261.93180426771 \tabularnewline
47 & 595000 & 595815.578064642 & -815.578064642157 \tabularnewline
48 & 597000 & 596843.230562248 & 156.76943775157 \tabularnewline
49 & 593000 & 592905.937825575 & 94.0621744253929 \tabularnewline
50 & 590000 & 589920.063056844 & 79.9369431558771 \tabularnewline
51 & 580000 & 579966.457619485 & 33.5423805152911 \tabularnewline
52 & 574000 & 573990.092714974 & 9.9072850257942 \tabularnewline
53 & 573000 & 573007.957684955 & -7.95768495478473 \tabularnewline
54 & 573000 & 573000.477474175 & -0.477474175010752 \tabularnewline
55 & 620000 & 619751.276627257 & 248.723372742667 \tabularnewline
56 & 626000 & 625706.633321294 & 293.36667870639 \tabularnewline
57 & 620000 & 619718.172838954 & 281.827161046157 \tabularnewline
58 & 588000 & 586845.540079167 & 1154.4599208327 \tabularnewline
59 & 566000 & 565934.867862501 & 65.1321374992416 \tabularnewline
60 & 557000 & 557985.002163852 & -985.002163852409 \tabularnewline
61 & 561000 & 560991.248940149 & 8.75105985105 \tabularnewline
62 & 549000 & 549039.951552993 & -39.951552993107 \tabularnewline
63 & 532000 & 532094.424291346 & -94.4242913462088 \tabularnewline
64 & 526000 & 526118.059386836 & -118.059386835721 \tabularnewline
65 & 511000 & 511176.2718639 & -176.271863899885 \tabularnewline
66 & 499000 & 499200.783321086 & -200.783321085474 \tabularnewline
67 & 555000 & 554947.244037166 & 52.755962833654 \tabularnewline
68 & 565000 & 563899.138655897 & 1100.86134410273 \tabularnewline
69 & 542000 & 541959.381519759 & 40.6184802406926 \tabularnewline
70 & 527000 & 527029.689574653 & -29.6895746527567 \tabularnewline
71 & 510000 & 510102.30567975 & -102.305679749774 \tabularnewline
72 & 514000 & 514102.304946392 & -102.304946392125 \tabularnewline
73 & 517000 & 517114.599511603 & -114.599511603304 \tabularnewline
74 & 508000 & 507148.898496415 & 851.101503585394 \tabularnewline
75 & 493000 & 493199.909159462 & -199.909159462343 \tabularnewline
76 & 490000 & 490214.034390732 & -214.034390731844 \tabularnewline
77 & 469000 & 469291.266596236 & -291.266596236028 \tabularnewline
78 & 478000 & 477262.458606813 & 737.54139318733 \tabularnewline
79 & 528000 & 529025.63100113 & -1025.63100112996 \tabularnewline
80 & 534000 & 532995.391323199 & 1004.6086768009 \tabularnewline
81 & 518000 & 518029.412644605 & -29.4126446046986 \tabularnewline
82 & 506000 & 506090.210835278 & -90.2108352781367 \tabularnewline
83 & 502000 & 502117.585669479 & -117.585669478714 \tabularnewline
84 & 516000 & 516087.901318359 & -87.9013183592683 \tabularnewline
85 & 528000 & 528077.714079825 & -77.7140798250737 \tabularnewline
86 & 533000 & 533070.511532451 & -70.511532450995 \tabularnewline
87 & 536000 & 536071.664824195 & -71.664824195132 \tabularnewline
88 & 537000 & 537075.126166143 & -75.1261661428465 \tabularnewline
89 & 524000 & 523138.23240702 & 861.767592980135 \tabularnewline
90 & 536000 & 536097.606503173 & -97.6065031729217 \tabularnewline
91 & 587000 & 586867.980711507 & 132.019288493353 \tabularnewline
92 & 597000 & 595819.875330238 & 1180.12466976242 \tabularnewline
93 & 581000 & 580847.848862729 & 152.15113727147 \tabularnewline
94 & 564000 & 564931.406520553 & -931.406520553048 \tabularnewline
95 & 558000 & 556975.49303299 & 1024.50696700994 \tabularnewline
96 & 575000 & 574935.144792549 & 64.8552074511854 \tabularnewline
97 & 580000 & 580943.977282455 & -943.977282454627 \tabularnewline
98 & 575000 & 574967.612377944 & 32.3876220558672 \tabularnewline
99 & 563000 & 564009.113176772 & -1009.11317677187 \tabularnewline
100 & 552000 & 551058.969814718 & 941.030185282183 \tabularnewline
101 & 537000 & 537116.02826668 & -116.028266680196 \tabularnewline
102 & 545000 & 545093.268066171 & -93.268066171474 \tabularnewline
103 & 601000 & 600857.872148996 & 142.127851003739 \tabularnewline
104 & 604000 & 604815.536893236 & -815.53689323613 \tabularnewline
105 & 586000 & 586853.020289947 & -853.020289947085 \tabularnewline
106 & 564000 & 563956.751701313 & 43.2482986865999 \tabularnewline
107 & 549000 & 548022.165992394 & 977.834007606004 \tabularnewline
108 & 551000 & 551035.414861967 & -35.4148619674113 \tabularnewline
109 & 556000 & 556039.35358806 & -39.3535880603753 \tabularnewline
110 & 548000 & 548071.344522668 & -71.3445226680975 \tabularnewline
111 & 540000 & 540103.335457276 & -103.335457275831 \tabularnewline
112 & 531000 & 531136.480416985 & -136.480416985346 \tabularnewline
113 & 521000 & 520184.029004728 & 815.970995272278 \tabularnewline
114 & 519000 & 518184.904633066 & 815.095366933845 \tabularnewline
115 & 572000 & 571951.816766095 & 48.1832339054785 \tabularnewline
116 & 581000 & 581896.509570809 & -896.50957080901 \tabularnewline
117 & 563000 & 562935.146992622 & 64.8530073782343 \tabularnewline
118 & 548000 & 548011.50283643 & -11.5028364298513 \tabularnewline
119 & 539000 & 539056.743373969 & -56.7433739686518 \tabularnewline
120 & 541000 & 541065.098479729 & -65.0984797292191 \tabularnewline
121 & 562000 & 561027.535673637 & 972.464326363205 \tabularnewline
122 & 559000 & 559034.45909089 & -34.4590908898687 \tabularnewline
123 & 546000 & 546084.315728836 & -84.315728835817 \tabularnewline
124 & 536000 & 537117.460688545 & -1117.46068854534 \tabularnewline
125 & 528000 & 527151.759673357 & 848.240326643359 \tabularnewline
126 & 530000 & 531133.615573255 & -1133.61557325507 \tabularnewline
127 & 582000 & 581928.180937247 & 71.8190627526435 \tabularnewline
128 & 599000 & 598834.556621676 & 165.443378323864 \tabularnewline
129 & 584000 & 583856.482365252 & 143.517634747552 \tabularnewline
130 & 571000 & 571917.280555926 & -917.280555925892 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]476000[/C][C]476113.53222946[/C][C]-113.532229459931[/C][/ROW]
[ROW][C]2[/C][C]475000[/C][C]474132.551224542[/C][C]867.448775458159[/C][/ROW]
[ROW][C]3[/C][C]470000[/C][C]470153.878269828[/C][C]-153.878269827748[/C][/ROW]
[ROW][C]4[/C][C]461000[/C][C]461187.023229537[/C][C]-187.023229537265[/C][/ROW]
[ROW][C]5[/C][C]455000[/C][C]455222.753902856[/C][C]-222.753902856063[/C][/ROW]
[ROW][C]6[/C][C]456000[/C][C]455221.321480991[/C][C]778.678519009065[/C][/ROW]
[ROW][C]7[/C][C]517000[/C][C]516912.475735144[/C][C]87.5242648560498[/C][/ROW]
[ROW][C]8[/C][C]525000[/C][C]525834.131409302[/C][C]-834.131409301663[/C][/ROW]
[ROW][C]9[/C][C]523000[/C][C]522842.208851657[/C][C]157.791148343476[/C][/ROW]
[ROW][C]10[/C][C]519000[/C][C]518893.774841516[/C][C]106.225158484323[/C][/ROW]
[ROW][C]11[/C][C]509000[/C][C]508958.3127709[/C][C]41.6872290998307[/C][/ROW]
[ROW][C]12[/C][C]512000[/C][C]511965.513851559[/C][C]34.4861484410496[/C][/ROW]
[ROW][C]13[/C][C]519000[/C][C]518979.240105278[/C][C]20.7598947223696[/C][/ROW]
[ROW][C]14[/C][C]517000[/C][C]517004.306889275[/C][C]-4.30688927462231[/C][/ROW]
[ROW][C]15[/C][C]510000[/C][C]510041.191587695[/C][C]-41.1915876952033[/C][/ROW]
[ROW][C]16[/C][C]509000[/C][C]510063.950321489[/C][C]-1063.95032148863[/C][/ROW]
[ROW][C]17[/C][C]501000[/C][C]500110.344884129[/C][C]889.655115870785[/C][/ROW]
[ROW][C]18[/C][C]507000[/C][C]507082.690919808[/C][C]-82.6909198076233[/C][/ROW]
[ROW][C]19[/C][C]569000[/C][C]569766.643359944[/C][C]-766.643359944207[/C][/ROW]
[ROW][C]20[/C][C]580000[/C][C]579705.288375744[/C][C]294.711624255923[/C][/ROW]
[ROW][C]21[/C][C]578000[/C][C]577712.211792997[/C][C]287.788207002852[/C][/ROW]
[ROW][C]22[/C][C]565000[/C][C]565785.1055615[/C][C]-785.105561499872[/C][/ROW]
[ROW][C]23[/C][C]547000[/C][C]547864.923480613[/C][C]-864.923480613324[/C][/ROW]
[ROW][C]24[/C][C]555000[/C][C]554861.46067195[/C][C]138.539328049691[/C][/ROW]
[ROW][C]25[/C][C]562000[/C][C]561875.186925669[/C][C]124.813074331019[/C][/ROW]
[ROW][C]26[/C][C]561000[/C][C]560893.05189565[/C][C]106.948104350451[/C][/ROW]
[ROW][C]27[/C][C]555000[/C][C]555939.724121696[/C][C]-939.724121695836[/C][/ROW]
[ROW][C]28[/C][C]544000[/C][C]543988.42673454[/C][C]11.5732654600033[/C][/ROW]
[ROW][C]29[/C][C]537000[/C][C]537031.359221875[/C][C]-31.3592218752192[/C][/ROW]
[ROW][C]30[/C][C]543000[/C][C]543010.90707157[/C][C]-10.90707157007[/C][/ROW]
[ROW][C]31[/C][C]594000[/C][C]593726.851179672[/C][C]273.148820327974[/C][/ROW]
[ROW][C]32[/C][C]611000[/C][C]610651.370230845[/C][C]348.629769155266[/C][/ROW]
[ROW][C]33[/C][C]613000[/C][C]612653.677547691[/C][C]346.322452309343[/C][/ROW]
[ROW][C]34[/C][C]611000[/C][C]610727.126643005[/C][C]272.873356995202[/C][/ROW]
[ROW][C]35[/C][C]594000[/C][C]593805.790537016[/C][C]194.209462983553[/C][/ROW]
[ROW][C]36[/C][C]595000[/C][C]595826.241220606[/C][C]-826.241220606296[/C][/ROW]
[ROW][C]37[/C][C]591000[/C][C]590878.006931205[/C][C]121.99306879502[/C][/ROW]
[ROW][C]38[/C][C]589000[/C][C]589895.871901186[/C][C]-895.871901185555[/C][/ROW]
[ROW][C]39[/C][C]584000[/C][C]583931.602574504[/C][C]68.3974254956526[/C][/ROW]
[ROW][C]40[/C][C]573000[/C][C]572973.103373332[/C][C]26.8966266679246[/C][/ROW]
[ROW][C]41[/C][C]567000[/C][C]567008.834046651[/C][C]-8.83404665086795[/C][/ROW]
[ROW][C]42[/C][C]569000[/C][C]568999.045785667[/C][C]0.954214332485697[/C][/ROW]
[ROW][C]43[/C][C]621000[/C][C]620719.883657582[/C][C]280.116342417662[/C][/ROW]
[ROW][C]44[/C][C]629000[/C][C]628660.836723586[/C][C]339.163276414246[/C][/ROW]
[ROW][C]45[/C][C]628000[/C][C]627660.558326822[/C][C]339.441673177595[/C][/ROW]
[ROW][C]46[/C][C]612000[/C][C]611738.068195732[/C][C]261.93180426771[/C][/ROW]
[ROW][C]47[/C][C]595000[/C][C]595815.578064642[/C][C]-815.578064642157[/C][/ROW]
[ROW][C]48[/C][C]597000[/C][C]596843.230562248[/C][C]156.76943775157[/C][/ROW]
[ROW][C]49[/C][C]593000[/C][C]592905.937825575[/C][C]94.0621744253929[/C][/ROW]
[ROW][C]50[/C][C]590000[/C][C]589920.063056844[/C][C]79.9369431558771[/C][/ROW]
[ROW][C]51[/C][C]580000[/C][C]579966.457619485[/C][C]33.5423805152911[/C][/ROW]
[ROW][C]52[/C][C]574000[/C][C]573990.092714974[/C][C]9.9072850257942[/C][/ROW]
[ROW][C]53[/C][C]573000[/C][C]573007.957684955[/C][C]-7.95768495478473[/C][/ROW]
[ROW][C]54[/C][C]573000[/C][C]573000.477474175[/C][C]-0.477474175010752[/C][/ROW]
[ROW][C]55[/C][C]620000[/C][C]619751.276627257[/C][C]248.723372742667[/C][/ROW]
[ROW][C]56[/C][C]626000[/C][C]625706.633321294[/C][C]293.36667870639[/C][/ROW]
[ROW][C]57[/C][C]620000[/C][C]619718.172838954[/C][C]281.827161046157[/C][/ROW]
[ROW][C]58[/C][C]588000[/C][C]586845.540079167[/C][C]1154.4599208327[/C][/ROW]
[ROW][C]59[/C][C]566000[/C][C]565934.867862501[/C][C]65.1321374992416[/C][/ROW]
[ROW][C]60[/C][C]557000[/C][C]557985.002163852[/C][C]-985.002163852409[/C][/ROW]
[ROW][C]61[/C][C]561000[/C][C]560991.248940149[/C][C]8.75105985105[/C][/ROW]
[ROW][C]62[/C][C]549000[/C][C]549039.951552993[/C][C]-39.951552993107[/C][/ROW]
[ROW][C]63[/C][C]532000[/C][C]532094.424291346[/C][C]-94.4242913462088[/C][/ROW]
[ROW][C]64[/C][C]526000[/C][C]526118.059386836[/C][C]-118.059386835721[/C][/ROW]
[ROW][C]65[/C][C]511000[/C][C]511176.2718639[/C][C]-176.271863899885[/C][/ROW]
[ROW][C]66[/C][C]499000[/C][C]499200.783321086[/C][C]-200.783321085474[/C][/ROW]
[ROW][C]67[/C][C]555000[/C][C]554947.244037166[/C][C]52.755962833654[/C][/ROW]
[ROW][C]68[/C][C]565000[/C][C]563899.138655897[/C][C]1100.86134410273[/C][/ROW]
[ROW][C]69[/C][C]542000[/C][C]541959.381519759[/C][C]40.6184802406926[/C][/ROW]
[ROW][C]70[/C][C]527000[/C][C]527029.689574653[/C][C]-29.6895746527567[/C][/ROW]
[ROW][C]71[/C][C]510000[/C][C]510102.30567975[/C][C]-102.305679749774[/C][/ROW]
[ROW][C]72[/C][C]514000[/C][C]514102.304946392[/C][C]-102.304946392125[/C][/ROW]
[ROW][C]73[/C][C]517000[/C][C]517114.599511603[/C][C]-114.599511603304[/C][/ROW]
[ROW][C]74[/C][C]508000[/C][C]507148.898496415[/C][C]851.101503585394[/C][/ROW]
[ROW][C]75[/C][C]493000[/C][C]493199.909159462[/C][C]-199.909159462343[/C][/ROW]
[ROW][C]76[/C][C]490000[/C][C]490214.034390732[/C][C]-214.034390731844[/C][/ROW]
[ROW][C]77[/C][C]469000[/C][C]469291.266596236[/C][C]-291.266596236028[/C][/ROW]
[ROW][C]78[/C][C]478000[/C][C]477262.458606813[/C][C]737.54139318733[/C][/ROW]
[ROW][C]79[/C][C]528000[/C][C]529025.63100113[/C][C]-1025.63100112996[/C][/ROW]
[ROW][C]80[/C][C]534000[/C][C]532995.391323199[/C][C]1004.6086768009[/C][/ROW]
[ROW][C]81[/C][C]518000[/C][C]518029.412644605[/C][C]-29.4126446046986[/C][/ROW]
[ROW][C]82[/C][C]506000[/C][C]506090.210835278[/C][C]-90.2108352781367[/C][/ROW]
[ROW][C]83[/C][C]502000[/C][C]502117.585669479[/C][C]-117.585669478714[/C][/ROW]
[ROW][C]84[/C][C]516000[/C][C]516087.901318359[/C][C]-87.9013183592683[/C][/ROW]
[ROW][C]85[/C][C]528000[/C][C]528077.714079825[/C][C]-77.7140798250737[/C][/ROW]
[ROW][C]86[/C][C]533000[/C][C]533070.511532451[/C][C]-70.511532450995[/C][/ROW]
[ROW][C]87[/C][C]536000[/C][C]536071.664824195[/C][C]-71.664824195132[/C][/ROW]
[ROW][C]88[/C][C]537000[/C][C]537075.126166143[/C][C]-75.1261661428465[/C][/ROW]
[ROW][C]89[/C][C]524000[/C][C]523138.23240702[/C][C]861.767592980135[/C][/ROW]
[ROW][C]90[/C][C]536000[/C][C]536097.606503173[/C][C]-97.6065031729217[/C][/ROW]
[ROW][C]91[/C][C]587000[/C][C]586867.980711507[/C][C]132.019288493353[/C][/ROW]
[ROW][C]92[/C][C]597000[/C][C]595819.875330238[/C][C]1180.12466976242[/C][/ROW]
[ROW][C]93[/C][C]581000[/C][C]580847.848862729[/C][C]152.15113727147[/C][/ROW]
[ROW][C]94[/C][C]564000[/C][C]564931.406520553[/C][C]-931.406520553048[/C][/ROW]
[ROW][C]95[/C][C]558000[/C][C]556975.49303299[/C][C]1024.50696700994[/C][/ROW]
[ROW][C]96[/C][C]575000[/C][C]574935.144792549[/C][C]64.8552074511854[/C][/ROW]
[ROW][C]97[/C][C]580000[/C][C]580943.977282455[/C][C]-943.977282454627[/C][/ROW]
[ROW][C]98[/C][C]575000[/C][C]574967.612377944[/C][C]32.3876220558672[/C][/ROW]
[ROW][C]99[/C][C]563000[/C][C]564009.113176772[/C][C]-1009.11317677187[/C][/ROW]
[ROW][C]100[/C][C]552000[/C][C]551058.969814718[/C][C]941.030185282183[/C][/ROW]
[ROW][C]101[/C][C]537000[/C][C]537116.02826668[/C][C]-116.028266680196[/C][/ROW]
[ROW][C]102[/C][C]545000[/C][C]545093.268066171[/C][C]-93.268066171474[/C][/ROW]
[ROW][C]103[/C][C]601000[/C][C]600857.872148996[/C][C]142.127851003739[/C][/ROW]
[ROW][C]104[/C][C]604000[/C][C]604815.536893236[/C][C]-815.53689323613[/C][/ROW]
[ROW][C]105[/C][C]586000[/C][C]586853.020289947[/C][C]-853.020289947085[/C][/ROW]
[ROW][C]106[/C][C]564000[/C][C]563956.751701313[/C][C]43.2482986865999[/C][/ROW]
[ROW][C]107[/C][C]549000[/C][C]548022.165992394[/C][C]977.834007606004[/C][/ROW]
[ROW][C]108[/C][C]551000[/C][C]551035.414861967[/C][C]-35.4148619674113[/C][/ROW]
[ROW][C]109[/C][C]556000[/C][C]556039.35358806[/C][C]-39.3535880603753[/C][/ROW]
[ROW][C]110[/C][C]548000[/C][C]548071.344522668[/C][C]-71.3445226680975[/C][/ROW]
[ROW][C]111[/C][C]540000[/C][C]540103.335457276[/C][C]-103.335457275831[/C][/ROW]
[ROW][C]112[/C][C]531000[/C][C]531136.480416985[/C][C]-136.480416985346[/C][/ROW]
[ROW][C]113[/C][C]521000[/C][C]520184.029004728[/C][C]815.970995272278[/C][/ROW]
[ROW][C]114[/C][C]519000[/C][C]518184.904633066[/C][C]815.095366933845[/C][/ROW]
[ROW][C]115[/C][C]572000[/C][C]571951.816766095[/C][C]48.1832339054785[/C][/ROW]
[ROW][C]116[/C][C]581000[/C][C]581896.509570809[/C][C]-896.50957080901[/C][/ROW]
[ROW][C]117[/C][C]563000[/C][C]562935.146992622[/C][C]64.8530073782343[/C][/ROW]
[ROW][C]118[/C][C]548000[/C][C]548011.50283643[/C][C]-11.5028364298513[/C][/ROW]
[ROW][C]119[/C][C]539000[/C][C]539056.743373969[/C][C]-56.7433739686518[/C][/ROW]
[ROW][C]120[/C][C]541000[/C][C]541065.098479729[/C][C]-65.0984797292191[/C][/ROW]
[ROW][C]121[/C][C]562000[/C][C]561027.535673637[/C][C]972.464326363205[/C][/ROW]
[ROW][C]122[/C][C]559000[/C][C]559034.45909089[/C][C]-34.4590908898687[/C][/ROW]
[ROW][C]123[/C][C]546000[/C][C]546084.315728836[/C][C]-84.315728835817[/C][/ROW]
[ROW][C]124[/C][C]536000[/C][C]537117.460688545[/C][C]-1117.46068854534[/C][/ROW]
[ROW][C]125[/C][C]528000[/C][C]527151.759673357[/C][C]848.240326643359[/C][/ROW]
[ROW][C]126[/C][C]530000[/C][C]531133.615573255[/C][C]-1133.61557325507[/C][/ROW]
[ROW][C]127[/C][C]582000[/C][C]581928.180937247[/C][C]71.8190627526435[/C][/ROW]
[ROW][C]128[/C][C]599000[/C][C]598834.556621676[/C][C]165.443378323864[/C][/ROW]
[ROW][C]129[/C][C]584000[/C][C]583856.482365252[/C][C]143.517634747552[/C][/ROW]
[ROW][C]130[/C][C]571000[/C][C]571917.280555926[/C][C]-917.280555925892[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1476000476113.53222946-113.532229459931
2475000474132.551224542867.448775458159
3470000470153.878269828-153.878269827748
4461000461187.023229537-187.023229537265
5455000455222.753902856-222.753902856063
6456000455221.321480991778.678519009065
7517000516912.47573514487.5242648560498
8525000525834.131409302-834.131409301663
9523000522842.208851657157.791148343476
10519000518893.774841516106.225158484323
11509000508958.312770941.6872290998307
12512000511965.51385155934.4861484410496
13519000518979.24010527820.7598947223696
14517000517004.306889275-4.30688927462231
15510000510041.191587695-41.1915876952033
16509000510063.950321489-1063.95032148863
17501000500110.344884129889.655115870785
18507000507082.690919808-82.6909198076233
19569000569766.643359944-766.643359944207
20580000579705.288375744294.711624255923
21578000577712.211792997287.788207002852
22565000565785.1055615-785.105561499872
23547000547864.923480613-864.923480613324
24555000554861.46067195138.539328049691
25562000561875.186925669124.813074331019
26561000560893.05189565106.948104350451
27555000555939.724121696-939.724121695836
28544000543988.4267345411.5732654600033
29537000537031.359221875-31.3592218752192
30543000543010.90707157-10.90707157007
31594000593726.851179672273.148820327974
32611000610651.370230845348.629769155266
33613000612653.677547691346.322452309343
34611000610727.126643005272.873356995202
35594000593805.790537016194.209462983553
36595000595826.241220606-826.241220606296
37591000590878.006931205121.99306879502
38589000589895.871901186-895.871901185555
39584000583931.60257450468.3974254956526
40573000572973.10337333226.8966266679246
41567000567008.834046651-8.83404665086795
42569000568999.0457856670.954214332485697
43621000620719.883657582280.116342417662
44629000628660.836723586339.163276414246
45628000627660.558326822339.441673177595
46612000611738.068195732261.93180426771
47595000595815.578064642-815.578064642157
48597000596843.230562248156.76943775157
49593000592905.93782557594.0621744253929
50590000589920.06305684479.9369431558771
51580000579966.45761948533.5423805152911
52574000573990.0927149749.9072850257942
53573000573007.957684955-7.95768495478473
54573000573000.477474175-0.477474175010752
55620000619751.276627257248.723372742667
56626000625706.633321294293.36667870639
57620000619718.172838954281.827161046157
58588000586845.5400791671154.4599208327
59566000565934.86786250165.1321374992416
60557000557985.002163852-985.002163852409
61561000560991.2489401498.75105985105
62549000549039.951552993-39.951552993107
63532000532094.424291346-94.4242913462088
64526000526118.059386836-118.059386835721
65511000511176.2718639-176.271863899885
66499000499200.783321086-200.783321085474
67555000554947.24403716652.755962833654
68565000563899.1386558971100.86134410273
69542000541959.38151975940.6184802406926
70527000527029.689574653-29.6895746527567
71510000510102.30567975-102.305679749774
72514000514102.304946392-102.304946392125
73517000517114.599511603-114.599511603304
74508000507148.898496415851.101503585394
75493000493199.909159462-199.909159462343
76490000490214.034390732-214.034390731844
77469000469291.266596236-291.266596236028
78478000477262.458606813737.54139318733
79528000529025.63100113-1025.63100112996
80534000532995.3913231991004.6086768009
81518000518029.412644605-29.4126446046986
82506000506090.210835278-90.2108352781367
83502000502117.585669479-117.585669478714
84516000516087.901318359-87.9013183592683
85528000528077.714079825-77.7140798250737
86533000533070.511532451-70.511532450995
87536000536071.664824195-71.664824195132
88537000537075.126166143-75.1261661428465
89524000523138.23240702861.767592980135
90536000536097.606503173-97.6065031729217
91587000586867.980711507132.019288493353
92597000595819.8753302381180.12466976242
93581000580847.848862729152.15113727147
94564000564931.406520553-931.406520553048
95558000556975.493032991024.50696700994
96575000574935.14479254964.8552074511854
97580000580943.977282455-943.977282454627
98575000574967.61237794432.3876220558672
99563000564009.113176772-1009.11317677187
100552000551058.969814718941.030185282183
101537000537116.02826668-116.028266680196
102545000545093.268066171-93.268066171474
103601000600857.872148996142.127851003739
104604000604815.536893236-815.53689323613
105586000586853.020289947-853.020289947085
106564000563956.75170131343.2482986865999
107549000548022.165992394977.834007606004
108551000551035.414861967-35.4148619674113
109556000556039.35358806-39.3535880603753
110548000548071.344522668-71.3445226680975
111540000540103.335457276-103.335457275831
112531000531136.480416985-136.480416985346
113521000520184.029004728815.970995272278
114519000518184.904633066815.095366933845
115572000571951.81676609548.1832339054785
116581000581896.509570809-896.50957080901
117563000562935.14699262264.8530073782343
118548000548011.50283643-11.5028364298513
119539000539056.743373969-56.7433739686518
120541000541065.098479729-65.0984797292191
121562000561027.535673637972.464326363205
122559000559034.45909089-34.4590908898687
123546000546084.315728836-84.315728835817
124536000537117.460688545-1117.46068854534
125528000527151.759673357848.240326643359
126530000531133.615573255-1133.61557325507
127582000581928.18093724771.8190627526435
128599000598834.556621676165.443378323864
129584000583856.482365252143.517634747552
130571000571917.280555926-917.280555925892







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.762914144935270.4741717101294610.23708585506473
80.6351564356678530.7296871286642940.364843564332147
90.7328401867529660.5343196264940680.267159813247034
100.6199909919701870.7600180160596250.380009008029813
110.5215755756473750.9568488487052510.478424424352625
120.4304021968368940.8608043936737880.569597803163106
130.3341970659350650.668394131870130.665802934064935
140.250139646612110.500279293224220.74986035338789
150.1838701421374070.3677402842748150.816129857862593
160.4052547951877850.810509590375570.594745204812215
170.5907697452770120.8184605094459760.409230254722988
180.5137005844354730.9725988311290540.486299415564527
190.479037101919750.95807420383950.52096289808025
200.5361975967337740.9276048065324530.463802403266226
210.5216512565568710.9566974868862590.478348743443129
220.5647054994844830.8705890010310330.435294500515517
230.6224164211745750.7551671576508490.377583578825425
240.5871387985304840.8257224029390320.412861201469516
250.5409315360662570.9181369278674860.459068463933743
260.4831141351932760.9662282703865520.516885864806724
270.5799997072621090.8400005854757830.420000292737891
280.5242274581909590.9515450836180820.475772541809041
290.4630781737899790.9261563475799580.536921826210021
300.4042160033253460.8084320066506930.595783996674654
310.400202548790870.8004050975817410.59979745120913
320.4008372487507860.8016744975015710.599162751249214
330.3848147011204490.7696294022408990.615185298879551
340.3488054817099560.6976109634199120.651194518290044
350.301396619488550.6027932389770990.69860338051145
360.3679332685398240.7358665370796480.632066731460176
370.3175472106186980.6350944212373960.682452789381302
380.3996798907569360.7993597815138730.600320109243064
390.3533861611466720.7067723222933430.646613838853328
400.3054495538397710.6108991076795420.694550446160229
410.2591640791394940.5183281582789870.740835920860506
420.2170389486990130.4340778973980260.782961051300987
430.1954253309964780.3908506619929560.804574669003522
440.1775520037801480.3551040075602960.822447996219852
450.1587737216345180.3175474432690370.841226278365482
460.1359224502108650.271844900421730.864077549789135
470.1769038308862190.3538076617724370.823096169113781
480.1506109340905260.3012218681810510.849389065909474
490.1221391541964040.2442783083928080.877860845803596
500.09758267182194130.1951653436438830.902417328178059
510.07655201229471040.1531040245894210.92344798770529
520.05912025961517340.1182405192303470.940879740384827
530.04498717543222240.08997435086444480.955012824567778
540.03377547537792460.06755095075584920.966224524622075
550.02685247104245980.05370494208491970.97314752895754
560.02166872210754580.04333744421509160.978331277892454
570.01728253711090940.03456507422181870.982717462889091
580.05875001069899160.1175000213979830.941249989301008
590.04516912276122090.09033824552244180.954830877238779
600.08240719581780180.1648143916356040.917592804182198
610.06444101576372520.128882031527450.935558984236275
620.04964927941569840.09929855883139670.950350720584302
630.03789472422607350.0757894484521470.962105275773926
640.02864201384982850.0572840276996570.971357986150172
650.02171838627601930.04343677255203850.978281613723981
660.016511587487030.033023174974060.98348841251297
670.01196705777467580.02393411554935150.988032942225324
680.03858746830171340.07717493660342670.961412531698287
690.02921645926856220.05843291853712430.970783540731438
700.0216515557164030.0433031114328060.978348444283597
710.01604691198831180.03209382397662360.983953088011688
720.01182129744409180.02364259488818370.988178702555908
730.008471621104072440.01694324220814490.991528378895928
740.01545643274074930.03091286548149850.984543567259251
750.01157568815802580.02315137631605150.988424311841974
760.008746566148751640.01749313229750330.991253433851248
770.007348524815169530.01469704963033910.99265147518483
780.009733381245958810.01946676249191760.990266618754041
790.02384329315812130.04768658631624260.976156706841879
800.05072468000929040.1014493600185810.94927531999071
810.03842678800984970.07685357601969940.96157321199015
820.02906345544395490.05812691088790980.970936544556045
830.02256800579144370.04513601158288740.977431994208556
840.01763521994948610.03527043989897220.982364780050514
850.01288452948751420.02576905897502840.987115470512486
860.009314526555796010.0186290531115920.990685473444204
870.006676862120788010.0133537242415760.993323137879212
880.004755224759531140.009510449519062290.995244775240469
890.006996436004849990.01399287200970.99300356399515
900.004907106811737250.009814213623474490.995092893188263
910.003485006318068670.006970012636137350.996514993681931
920.0212674697510180.04253493950203610.978732530248982
930.01773097957851450.03546195915702910.982269020421485
940.02997920552960630.05995841105921270.970020794470394
950.06462199855306550.1292439971061310.935378001446935
960.04929758453189270.09859516906378540.950702415468107
970.06989284763590830.1397856952718170.930107152364092
980.05339326183256410.1067865236651280.946606738167436
990.09826242388196540.1965248477639310.901737576118035
1000.1547384299076840.3094768598153690.845261570092316
1010.1248385719115250.249677143823050.875161428088475
1020.09786505437414640.1957301087482930.902134945625854
1030.08704000348530740.1740800069706150.912959996514693
1040.0868003937618460.1736007875236920.913199606238154
1050.1025842659790570.2051685319581130.897415734020943
1060.0765790520097970.1531581040195940.923420947990203
1070.1495187529518380.2990375059036750.850481247048162
1080.1151097170394910.2302194340789830.884890282960509
1090.08630560275493520.172611205509870.913694397245065
1100.06418222926290190.1283644585258040.935817770737098
1110.04752932201074880.09505864402149750.952470677989251
1120.03555943930628620.07111887861257240.964440560693714
1130.04286548624501920.08573097249003830.957134513754981
1140.07124921898707840.1424984379741570.928750781012922
1150.04863518052685850.0972703610537170.951364819473141
1160.07598601910806040.1519720382161210.92401398089194
1170.0490213020487240.09804260409744790.950978697951276
1180.03186865667917530.06373731335835060.968131343320825
1190.02346139295383110.04692278590766220.976538607046169
1200.03692683598018730.07385367196037460.963073164019813
1210.03304864095819190.06609728191638390.966951359041808
1220.01749588507217580.03499177014435160.982504114927824
1230.007573143856475270.01514628771295050.992426856143525

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 & 0.76291414493527 & 0.474171710129461 & 0.23708585506473 \tabularnewline
8 & 0.635156435667853 & 0.729687128664294 & 0.364843564332147 \tabularnewline
9 & 0.732840186752966 & 0.534319626494068 & 0.267159813247034 \tabularnewline
10 & 0.619990991970187 & 0.760018016059625 & 0.380009008029813 \tabularnewline
11 & 0.521575575647375 & 0.956848848705251 & 0.478424424352625 \tabularnewline
12 & 0.430402196836894 & 0.860804393673788 & 0.569597803163106 \tabularnewline
13 & 0.334197065935065 & 0.66839413187013 & 0.665802934064935 \tabularnewline
14 & 0.25013964661211 & 0.50027929322422 & 0.74986035338789 \tabularnewline
15 & 0.183870142137407 & 0.367740284274815 & 0.816129857862593 \tabularnewline
16 & 0.405254795187785 & 0.81050959037557 & 0.594745204812215 \tabularnewline
17 & 0.590769745277012 & 0.818460509445976 & 0.409230254722988 \tabularnewline
18 & 0.513700584435473 & 0.972598831129054 & 0.486299415564527 \tabularnewline
19 & 0.47903710191975 & 0.9580742038395 & 0.52096289808025 \tabularnewline
20 & 0.536197596733774 & 0.927604806532453 & 0.463802403266226 \tabularnewline
21 & 0.521651256556871 & 0.956697486886259 & 0.478348743443129 \tabularnewline
22 & 0.564705499484483 & 0.870589001031033 & 0.435294500515517 \tabularnewline
23 & 0.622416421174575 & 0.755167157650849 & 0.377583578825425 \tabularnewline
24 & 0.587138798530484 & 0.825722402939032 & 0.412861201469516 \tabularnewline
25 & 0.540931536066257 & 0.918136927867486 & 0.459068463933743 \tabularnewline
26 & 0.483114135193276 & 0.966228270386552 & 0.516885864806724 \tabularnewline
27 & 0.579999707262109 & 0.840000585475783 & 0.420000292737891 \tabularnewline
28 & 0.524227458190959 & 0.951545083618082 & 0.475772541809041 \tabularnewline
29 & 0.463078173789979 & 0.926156347579958 & 0.536921826210021 \tabularnewline
30 & 0.404216003325346 & 0.808432006650693 & 0.595783996674654 \tabularnewline
31 & 0.40020254879087 & 0.800405097581741 & 0.59979745120913 \tabularnewline
32 & 0.400837248750786 & 0.801674497501571 & 0.599162751249214 \tabularnewline
33 & 0.384814701120449 & 0.769629402240899 & 0.615185298879551 \tabularnewline
34 & 0.348805481709956 & 0.697610963419912 & 0.651194518290044 \tabularnewline
35 & 0.30139661948855 & 0.602793238977099 & 0.69860338051145 \tabularnewline
36 & 0.367933268539824 & 0.735866537079648 & 0.632066731460176 \tabularnewline
37 & 0.317547210618698 & 0.635094421237396 & 0.682452789381302 \tabularnewline
38 & 0.399679890756936 & 0.799359781513873 & 0.600320109243064 \tabularnewline
39 & 0.353386161146672 & 0.706772322293343 & 0.646613838853328 \tabularnewline
40 & 0.305449553839771 & 0.610899107679542 & 0.694550446160229 \tabularnewline
41 & 0.259164079139494 & 0.518328158278987 & 0.740835920860506 \tabularnewline
42 & 0.217038948699013 & 0.434077897398026 & 0.782961051300987 \tabularnewline
43 & 0.195425330996478 & 0.390850661992956 & 0.804574669003522 \tabularnewline
44 & 0.177552003780148 & 0.355104007560296 & 0.822447996219852 \tabularnewline
45 & 0.158773721634518 & 0.317547443269037 & 0.841226278365482 \tabularnewline
46 & 0.135922450210865 & 0.27184490042173 & 0.864077549789135 \tabularnewline
47 & 0.176903830886219 & 0.353807661772437 & 0.823096169113781 \tabularnewline
48 & 0.150610934090526 & 0.301221868181051 & 0.849389065909474 \tabularnewline
49 & 0.122139154196404 & 0.244278308392808 & 0.877860845803596 \tabularnewline
50 & 0.0975826718219413 & 0.195165343643883 & 0.902417328178059 \tabularnewline
51 & 0.0765520122947104 & 0.153104024589421 & 0.92344798770529 \tabularnewline
52 & 0.0591202596151734 & 0.118240519230347 & 0.940879740384827 \tabularnewline
53 & 0.0449871754322224 & 0.0899743508644448 & 0.955012824567778 \tabularnewline
54 & 0.0337754753779246 & 0.0675509507558492 & 0.966224524622075 \tabularnewline
55 & 0.0268524710424598 & 0.0537049420849197 & 0.97314752895754 \tabularnewline
56 & 0.0216687221075458 & 0.0433374442150916 & 0.978331277892454 \tabularnewline
57 & 0.0172825371109094 & 0.0345650742218187 & 0.982717462889091 \tabularnewline
58 & 0.0587500106989916 & 0.117500021397983 & 0.941249989301008 \tabularnewline
59 & 0.0451691227612209 & 0.0903382455224418 & 0.954830877238779 \tabularnewline
60 & 0.0824071958178018 & 0.164814391635604 & 0.917592804182198 \tabularnewline
61 & 0.0644410157637252 & 0.12888203152745 & 0.935558984236275 \tabularnewline
62 & 0.0496492794156984 & 0.0992985588313967 & 0.950350720584302 \tabularnewline
63 & 0.0378947242260735 & 0.075789448452147 & 0.962105275773926 \tabularnewline
64 & 0.0286420138498285 & 0.057284027699657 & 0.971357986150172 \tabularnewline
65 & 0.0217183862760193 & 0.0434367725520385 & 0.978281613723981 \tabularnewline
66 & 0.01651158748703 & 0.03302317497406 & 0.98348841251297 \tabularnewline
67 & 0.0119670577746758 & 0.0239341155493515 & 0.988032942225324 \tabularnewline
68 & 0.0385874683017134 & 0.0771749366034267 & 0.961412531698287 \tabularnewline
69 & 0.0292164592685622 & 0.0584329185371243 & 0.970783540731438 \tabularnewline
70 & 0.021651555716403 & 0.043303111432806 & 0.978348444283597 \tabularnewline
71 & 0.0160469119883118 & 0.0320938239766236 & 0.983953088011688 \tabularnewline
72 & 0.0118212974440918 & 0.0236425948881837 & 0.988178702555908 \tabularnewline
73 & 0.00847162110407244 & 0.0169432422081449 & 0.991528378895928 \tabularnewline
74 & 0.0154564327407493 & 0.0309128654814985 & 0.984543567259251 \tabularnewline
75 & 0.0115756881580258 & 0.0231513763160515 & 0.988424311841974 \tabularnewline
76 & 0.00874656614875164 & 0.0174931322975033 & 0.991253433851248 \tabularnewline
77 & 0.00734852481516953 & 0.0146970496303391 & 0.99265147518483 \tabularnewline
78 & 0.00973338124595881 & 0.0194667624919176 & 0.990266618754041 \tabularnewline
79 & 0.0238432931581213 & 0.0476865863162426 & 0.976156706841879 \tabularnewline
80 & 0.0507246800092904 & 0.101449360018581 & 0.94927531999071 \tabularnewline
81 & 0.0384267880098497 & 0.0768535760196994 & 0.96157321199015 \tabularnewline
82 & 0.0290634554439549 & 0.0581269108879098 & 0.970936544556045 \tabularnewline
83 & 0.0225680057914437 & 0.0451360115828874 & 0.977431994208556 \tabularnewline
84 & 0.0176352199494861 & 0.0352704398989722 & 0.982364780050514 \tabularnewline
85 & 0.0128845294875142 & 0.0257690589750284 & 0.987115470512486 \tabularnewline
86 & 0.00931452655579601 & 0.018629053111592 & 0.990685473444204 \tabularnewline
87 & 0.00667686212078801 & 0.013353724241576 & 0.993323137879212 \tabularnewline
88 & 0.00475522475953114 & 0.00951044951906229 & 0.995244775240469 \tabularnewline
89 & 0.00699643600484999 & 0.0139928720097 & 0.99300356399515 \tabularnewline
90 & 0.00490710681173725 & 0.00981421362347449 & 0.995092893188263 \tabularnewline
91 & 0.00348500631806867 & 0.00697001263613735 & 0.996514993681931 \tabularnewline
92 & 0.021267469751018 & 0.0425349395020361 & 0.978732530248982 \tabularnewline
93 & 0.0177309795785145 & 0.0354619591570291 & 0.982269020421485 \tabularnewline
94 & 0.0299792055296063 & 0.0599584110592127 & 0.970020794470394 \tabularnewline
95 & 0.0646219985530655 & 0.129243997106131 & 0.935378001446935 \tabularnewline
96 & 0.0492975845318927 & 0.0985951690637854 & 0.950702415468107 \tabularnewline
97 & 0.0698928476359083 & 0.139785695271817 & 0.930107152364092 \tabularnewline
98 & 0.0533932618325641 & 0.106786523665128 & 0.946606738167436 \tabularnewline
99 & 0.0982624238819654 & 0.196524847763931 & 0.901737576118035 \tabularnewline
100 & 0.154738429907684 & 0.309476859815369 & 0.845261570092316 \tabularnewline
101 & 0.124838571911525 & 0.24967714382305 & 0.875161428088475 \tabularnewline
102 & 0.0978650543741464 & 0.195730108748293 & 0.902134945625854 \tabularnewline
103 & 0.0870400034853074 & 0.174080006970615 & 0.912959996514693 \tabularnewline
104 & 0.086800393761846 & 0.173600787523692 & 0.913199606238154 \tabularnewline
105 & 0.102584265979057 & 0.205168531958113 & 0.897415734020943 \tabularnewline
106 & 0.076579052009797 & 0.153158104019594 & 0.923420947990203 \tabularnewline
107 & 0.149518752951838 & 0.299037505903675 & 0.850481247048162 \tabularnewline
108 & 0.115109717039491 & 0.230219434078983 & 0.884890282960509 \tabularnewline
109 & 0.0863056027549352 & 0.17261120550987 & 0.913694397245065 \tabularnewline
110 & 0.0641822292629019 & 0.128364458525804 & 0.935817770737098 \tabularnewline
111 & 0.0475293220107488 & 0.0950586440214975 & 0.952470677989251 \tabularnewline
112 & 0.0355594393062862 & 0.0711188786125724 & 0.964440560693714 \tabularnewline
113 & 0.0428654862450192 & 0.0857309724900383 & 0.957134513754981 \tabularnewline
114 & 0.0712492189870784 & 0.142498437974157 & 0.928750781012922 \tabularnewline
115 & 0.0486351805268585 & 0.097270361053717 & 0.951364819473141 \tabularnewline
116 & 0.0759860191080604 & 0.151972038216121 & 0.92401398089194 \tabularnewline
117 & 0.049021302048724 & 0.0980426040974479 & 0.950978697951276 \tabularnewline
118 & 0.0318686566791753 & 0.0637373133583506 & 0.968131343320825 \tabularnewline
119 & 0.0234613929538311 & 0.0469227859076622 & 0.976538607046169 \tabularnewline
120 & 0.0369268359801873 & 0.0738536719603746 & 0.963073164019813 \tabularnewline
121 & 0.0330486409581919 & 0.0660972819163839 & 0.966951359041808 \tabularnewline
122 & 0.0174958850721758 & 0.0349917701443516 & 0.982504114927824 \tabularnewline
123 & 0.00757314385647527 & 0.0151462877129505 & 0.992426856143525 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C]0.76291414493527[/C][C]0.474171710129461[/C][C]0.23708585506473[/C][/ROW]
[ROW][C]8[/C][C]0.635156435667853[/C][C]0.729687128664294[/C][C]0.364843564332147[/C][/ROW]
[ROW][C]9[/C][C]0.732840186752966[/C][C]0.534319626494068[/C][C]0.267159813247034[/C][/ROW]
[ROW][C]10[/C][C]0.619990991970187[/C][C]0.760018016059625[/C][C]0.380009008029813[/C][/ROW]
[ROW][C]11[/C][C]0.521575575647375[/C][C]0.956848848705251[/C][C]0.478424424352625[/C][/ROW]
[ROW][C]12[/C][C]0.430402196836894[/C][C]0.860804393673788[/C][C]0.569597803163106[/C][/ROW]
[ROW][C]13[/C][C]0.334197065935065[/C][C]0.66839413187013[/C][C]0.665802934064935[/C][/ROW]
[ROW][C]14[/C][C]0.25013964661211[/C][C]0.50027929322422[/C][C]0.74986035338789[/C][/ROW]
[ROW][C]15[/C][C]0.183870142137407[/C][C]0.367740284274815[/C][C]0.816129857862593[/C][/ROW]
[ROW][C]16[/C][C]0.405254795187785[/C][C]0.81050959037557[/C][C]0.594745204812215[/C][/ROW]
[ROW][C]17[/C][C]0.590769745277012[/C][C]0.818460509445976[/C][C]0.409230254722988[/C][/ROW]
[ROW][C]18[/C][C]0.513700584435473[/C][C]0.972598831129054[/C][C]0.486299415564527[/C][/ROW]
[ROW][C]19[/C][C]0.47903710191975[/C][C]0.9580742038395[/C][C]0.52096289808025[/C][/ROW]
[ROW][C]20[/C][C]0.536197596733774[/C][C]0.927604806532453[/C][C]0.463802403266226[/C][/ROW]
[ROW][C]21[/C][C]0.521651256556871[/C][C]0.956697486886259[/C][C]0.478348743443129[/C][/ROW]
[ROW][C]22[/C][C]0.564705499484483[/C][C]0.870589001031033[/C][C]0.435294500515517[/C][/ROW]
[ROW][C]23[/C][C]0.622416421174575[/C][C]0.755167157650849[/C][C]0.377583578825425[/C][/ROW]
[ROW][C]24[/C][C]0.587138798530484[/C][C]0.825722402939032[/C][C]0.412861201469516[/C][/ROW]
[ROW][C]25[/C][C]0.540931536066257[/C][C]0.918136927867486[/C][C]0.459068463933743[/C][/ROW]
[ROW][C]26[/C][C]0.483114135193276[/C][C]0.966228270386552[/C][C]0.516885864806724[/C][/ROW]
[ROW][C]27[/C][C]0.579999707262109[/C][C]0.840000585475783[/C][C]0.420000292737891[/C][/ROW]
[ROW][C]28[/C][C]0.524227458190959[/C][C]0.951545083618082[/C][C]0.475772541809041[/C][/ROW]
[ROW][C]29[/C][C]0.463078173789979[/C][C]0.926156347579958[/C][C]0.536921826210021[/C][/ROW]
[ROW][C]30[/C][C]0.404216003325346[/C][C]0.808432006650693[/C][C]0.595783996674654[/C][/ROW]
[ROW][C]31[/C][C]0.40020254879087[/C][C]0.800405097581741[/C][C]0.59979745120913[/C][/ROW]
[ROW][C]32[/C][C]0.400837248750786[/C][C]0.801674497501571[/C][C]0.599162751249214[/C][/ROW]
[ROW][C]33[/C][C]0.384814701120449[/C][C]0.769629402240899[/C][C]0.615185298879551[/C][/ROW]
[ROW][C]34[/C][C]0.348805481709956[/C][C]0.697610963419912[/C][C]0.651194518290044[/C][/ROW]
[ROW][C]35[/C][C]0.30139661948855[/C][C]0.602793238977099[/C][C]0.69860338051145[/C][/ROW]
[ROW][C]36[/C][C]0.367933268539824[/C][C]0.735866537079648[/C][C]0.632066731460176[/C][/ROW]
[ROW][C]37[/C][C]0.317547210618698[/C][C]0.635094421237396[/C][C]0.682452789381302[/C][/ROW]
[ROW][C]38[/C][C]0.399679890756936[/C][C]0.799359781513873[/C][C]0.600320109243064[/C][/ROW]
[ROW][C]39[/C][C]0.353386161146672[/C][C]0.706772322293343[/C][C]0.646613838853328[/C][/ROW]
[ROW][C]40[/C][C]0.305449553839771[/C][C]0.610899107679542[/C][C]0.694550446160229[/C][/ROW]
[ROW][C]41[/C][C]0.259164079139494[/C][C]0.518328158278987[/C][C]0.740835920860506[/C][/ROW]
[ROW][C]42[/C][C]0.217038948699013[/C][C]0.434077897398026[/C][C]0.782961051300987[/C][/ROW]
[ROW][C]43[/C][C]0.195425330996478[/C][C]0.390850661992956[/C][C]0.804574669003522[/C][/ROW]
[ROW][C]44[/C][C]0.177552003780148[/C][C]0.355104007560296[/C][C]0.822447996219852[/C][/ROW]
[ROW][C]45[/C][C]0.158773721634518[/C][C]0.317547443269037[/C][C]0.841226278365482[/C][/ROW]
[ROW][C]46[/C][C]0.135922450210865[/C][C]0.27184490042173[/C][C]0.864077549789135[/C][/ROW]
[ROW][C]47[/C][C]0.176903830886219[/C][C]0.353807661772437[/C][C]0.823096169113781[/C][/ROW]
[ROW][C]48[/C][C]0.150610934090526[/C][C]0.301221868181051[/C][C]0.849389065909474[/C][/ROW]
[ROW][C]49[/C][C]0.122139154196404[/C][C]0.244278308392808[/C][C]0.877860845803596[/C][/ROW]
[ROW][C]50[/C][C]0.0975826718219413[/C][C]0.195165343643883[/C][C]0.902417328178059[/C][/ROW]
[ROW][C]51[/C][C]0.0765520122947104[/C][C]0.153104024589421[/C][C]0.92344798770529[/C][/ROW]
[ROW][C]52[/C][C]0.0591202596151734[/C][C]0.118240519230347[/C][C]0.940879740384827[/C][/ROW]
[ROW][C]53[/C][C]0.0449871754322224[/C][C]0.0899743508644448[/C][C]0.955012824567778[/C][/ROW]
[ROW][C]54[/C][C]0.0337754753779246[/C][C]0.0675509507558492[/C][C]0.966224524622075[/C][/ROW]
[ROW][C]55[/C][C]0.0268524710424598[/C][C]0.0537049420849197[/C][C]0.97314752895754[/C][/ROW]
[ROW][C]56[/C][C]0.0216687221075458[/C][C]0.0433374442150916[/C][C]0.978331277892454[/C][/ROW]
[ROW][C]57[/C][C]0.0172825371109094[/C][C]0.0345650742218187[/C][C]0.982717462889091[/C][/ROW]
[ROW][C]58[/C][C]0.0587500106989916[/C][C]0.117500021397983[/C][C]0.941249989301008[/C][/ROW]
[ROW][C]59[/C][C]0.0451691227612209[/C][C]0.0903382455224418[/C][C]0.954830877238779[/C][/ROW]
[ROW][C]60[/C][C]0.0824071958178018[/C][C]0.164814391635604[/C][C]0.917592804182198[/C][/ROW]
[ROW][C]61[/C][C]0.0644410157637252[/C][C]0.12888203152745[/C][C]0.935558984236275[/C][/ROW]
[ROW][C]62[/C][C]0.0496492794156984[/C][C]0.0992985588313967[/C][C]0.950350720584302[/C][/ROW]
[ROW][C]63[/C][C]0.0378947242260735[/C][C]0.075789448452147[/C][C]0.962105275773926[/C][/ROW]
[ROW][C]64[/C][C]0.0286420138498285[/C][C]0.057284027699657[/C][C]0.971357986150172[/C][/ROW]
[ROW][C]65[/C][C]0.0217183862760193[/C][C]0.0434367725520385[/C][C]0.978281613723981[/C][/ROW]
[ROW][C]66[/C][C]0.01651158748703[/C][C]0.03302317497406[/C][C]0.98348841251297[/C][/ROW]
[ROW][C]67[/C][C]0.0119670577746758[/C][C]0.0239341155493515[/C][C]0.988032942225324[/C][/ROW]
[ROW][C]68[/C][C]0.0385874683017134[/C][C]0.0771749366034267[/C][C]0.961412531698287[/C][/ROW]
[ROW][C]69[/C][C]0.0292164592685622[/C][C]0.0584329185371243[/C][C]0.970783540731438[/C][/ROW]
[ROW][C]70[/C][C]0.021651555716403[/C][C]0.043303111432806[/C][C]0.978348444283597[/C][/ROW]
[ROW][C]71[/C][C]0.0160469119883118[/C][C]0.0320938239766236[/C][C]0.983953088011688[/C][/ROW]
[ROW][C]72[/C][C]0.0118212974440918[/C][C]0.0236425948881837[/C][C]0.988178702555908[/C][/ROW]
[ROW][C]73[/C][C]0.00847162110407244[/C][C]0.0169432422081449[/C][C]0.991528378895928[/C][/ROW]
[ROW][C]74[/C][C]0.0154564327407493[/C][C]0.0309128654814985[/C][C]0.984543567259251[/C][/ROW]
[ROW][C]75[/C][C]0.0115756881580258[/C][C]0.0231513763160515[/C][C]0.988424311841974[/C][/ROW]
[ROW][C]76[/C][C]0.00874656614875164[/C][C]0.0174931322975033[/C][C]0.991253433851248[/C][/ROW]
[ROW][C]77[/C][C]0.00734852481516953[/C][C]0.0146970496303391[/C][C]0.99265147518483[/C][/ROW]
[ROW][C]78[/C][C]0.00973338124595881[/C][C]0.0194667624919176[/C][C]0.990266618754041[/C][/ROW]
[ROW][C]79[/C][C]0.0238432931581213[/C][C]0.0476865863162426[/C][C]0.976156706841879[/C][/ROW]
[ROW][C]80[/C][C]0.0507246800092904[/C][C]0.101449360018581[/C][C]0.94927531999071[/C][/ROW]
[ROW][C]81[/C][C]0.0384267880098497[/C][C]0.0768535760196994[/C][C]0.96157321199015[/C][/ROW]
[ROW][C]82[/C][C]0.0290634554439549[/C][C]0.0581269108879098[/C][C]0.970936544556045[/C][/ROW]
[ROW][C]83[/C][C]0.0225680057914437[/C][C]0.0451360115828874[/C][C]0.977431994208556[/C][/ROW]
[ROW][C]84[/C][C]0.0176352199494861[/C][C]0.0352704398989722[/C][C]0.982364780050514[/C][/ROW]
[ROW][C]85[/C][C]0.0128845294875142[/C][C]0.0257690589750284[/C][C]0.987115470512486[/C][/ROW]
[ROW][C]86[/C][C]0.00931452655579601[/C][C]0.018629053111592[/C][C]0.990685473444204[/C][/ROW]
[ROW][C]87[/C][C]0.00667686212078801[/C][C]0.013353724241576[/C][C]0.993323137879212[/C][/ROW]
[ROW][C]88[/C][C]0.00475522475953114[/C][C]0.00951044951906229[/C][C]0.995244775240469[/C][/ROW]
[ROW][C]89[/C][C]0.00699643600484999[/C][C]0.0139928720097[/C][C]0.99300356399515[/C][/ROW]
[ROW][C]90[/C][C]0.00490710681173725[/C][C]0.00981421362347449[/C][C]0.995092893188263[/C][/ROW]
[ROW][C]91[/C][C]0.00348500631806867[/C][C]0.00697001263613735[/C][C]0.996514993681931[/C][/ROW]
[ROW][C]92[/C][C]0.021267469751018[/C][C]0.0425349395020361[/C][C]0.978732530248982[/C][/ROW]
[ROW][C]93[/C][C]0.0177309795785145[/C][C]0.0354619591570291[/C][C]0.982269020421485[/C][/ROW]
[ROW][C]94[/C][C]0.0299792055296063[/C][C]0.0599584110592127[/C][C]0.970020794470394[/C][/ROW]
[ROW][C]95[/C][C]0.0646219985530655[/C][C]0.129243997106131[/C][C]0.935378001446935[/C][/ROW]
[ROW][C]96[/C][C]0.0492975845318927[/C][C]0.0985951690637854[/C][C]0.950702415468107[/C][/ROW]
[ROW][C]97[/C][C]0.0698928476359083[/C][C]0.139785695271817[/C][C]0.930107152364092[/C][/ROW]
[ROW][C]98[/C][C]0.0533932618325641[/C][C]0.106786523665128[/C][C]0.946606738167436[/C][/ROW]
[ROW][C]99[/C][C]0.0982624238819654[/C][C]0.196524847763931[/C][C]0.901737576118035[/C][/ROW]
[ROW][C]100[/C][C]0.154738429907684[/C][C]0.309476859815369[/C][C]0.845261570092316[/C][/ROW]
[ROW][C]101[/C][C]0.124838571911525[/C][C]0.24967714382305[/C][C]0.875161428088475[/C][/ROW]
[ROW][C]102[/C][C]0.0978650543741464[/C][C]0.195730108748293[/C][C]0.902134945625854[/C][/ROW]
[ROW][C]103[/C][C]0.0870400034853074[/C][C]0.174080006970615[/C][C]0.912959996514693[/C][/ROW]
[ROW][C]104[/C][C]0.086800393761846[/C][C]0.173600787523692[/C][C]0.913199606238154[/C][/ROW]
[ROW][C]105[/C][C]0.102584265979057[/C][C]0.205168531958113[/C][C]0.897415734020943[/C][/ROW]
[ROW][C]106[/C][C]0.076579052009797[/C][C]0.153158104019594[/C][C]0.923420947990203[/C][/ROW]
[ROW][C]107[/C][C]0.149518752951838[/C][C]0.299037505903675[/C][C]0.850481247048162[/C][/ROW]
[ROW][C]108[/C][C]0.115109717039491[/C][C]0.230219434078983[/C][C]0.884890282960509[/C][/ROW]
[ROW][C]109[/C][C]0.0863056027549352[/C][C]0.17261120550987[/C][C]0.913694397245065[/C][/ROW]
[ROW][C]110[/C][C]0.0641822292629019[/C][C]0.128364458525804[/C][C]0.935817770737098[/C][/ROW]
[ROW][C]111[/C][C]0.0475293220107488[/C][C]0.0950586440214975[/C][C]0.952470677989251[/C][/ROW]
[ROW][C]112[/C][C]0.0355594393062862[/C][C]0.0711188786125724[/C][C]0.964440560693714[/C][/ROW]
[ROW][C]113[/C][C]0.0428654862450192[/C][C]0.0857309724900383[/C][C]0.957134513754981[/C][/ROW]
[ROW][C]114[/C][C]0.0712492189870784[/C][C]0.142498437974157[/C][C]0.928750781012922[/C][/ROW]
[ROW][C]115[/C][C]0.0486351805268585[/C][C]0.097270361053717[/C][C]0.951364819473141[/C][/ROW]
[ROW][C]116[/C][C]0.0759860191080604[/C][C]0.151972038216121[/C][C]0.92401398089194[/C][/ROW]
[ROW][C]117[/C][C]0.049021302048724[/C][C]0.0980426040974479[/C][C]0.950978697951276[/C][/ROW]
[ROW][C]118[/C][C]0.0318686566791753[/C][C]0.0637373133583506[/C][C]0.968131343320825[/C][/ROW]
[ROW][C]119[/C][C]0.0234613929538311[/C][C]0.0469227859076622[/C][C]0.976538607046169[/C][/ROW]
[ROW][C]120[/C][C]0.0369268359801873[/C][C]0.0738536719603746[/C][C]0.963073164019813[/C][/ROW]
[ROW][C]121[/C][C]0.0330486409581919[/C][C]0.0660972819163839[/C][C]0.966951359041808[/C][/ROW]
[ROW][C]122[/C][C]0.0174958850721758[/C][C]0.0349917701443516[/C][C]0.982504114927824[/C][/ROW]
[ROW][C]123[/C][C]0.00757314385647527[/C][C]0.0151462877129505[/C][C]0.992426856143525[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.762914144935270.4741717101294610.23708585506473
80.6351564356678530.7296871286642940.364843564332147
90.7328401867529660.5343196264940680.267159813247034
100.6199909919701870.7600180160596250.380009008029813
110.5215755756473750.9568488487052510.478424424352625
120.4304021968368940.8608043936737880.569597803163106
130.3341970659350650.668394131870130.665802934064935
140.250139646612110.500279293224220.74986035338789
150.1838701421374070.3677402842748150.816129857862593
160.4052547951877850.810509590375570.594745204812215
170.5907697452770120.8184605094459760.409230254722988
180.5137005844354730.9725988311290540.486299415564527
190.479037101919750.95807420383950.52096289808025
200.5361975967337740.9276048065324530.463802403266226
210.5216512565568710.9566974868862590.478348743443129
220.5647054994844830.8705890010310330.435294500515517
230.6224164211745750.7551671576508490.377583578825425
240.5871387985304840.8257224029390320.412861201469516
250.5409315360662570.9181369278674860.459068463933743
260.4831141351932760.9662282703865520.516885864806724
270.5799997072621090.8400005854757830.420000292737891
280.5242274581909590.9515450836180820.475772541809041
290.4630781737899790.9261563475799580.536921826210021
300.4042160033253460.8084320066506930.595783996674654
310.400202548790870.8004050975817410.59979745120913
320.4008372487507860.8016744975015710.599162751249214
330.3848147011204490.7696294022408990.615185298879551
340.3488054817099560.6976109634199120.651194518290044
350.301396619488550.6027932389770990.69860338051145
360.3679332685398240.7358665370796480.632066731460176
370.3175472106186980.6350944212373960.682452789381302
380.3996798907569360.7993597815138730.600320109243064
390.3533861611466720.7067723222933430.646613838853328
400.3054495538397710.6108991076795420.694550446160229
410.2591640791394940.5183281582789870.740835920860506
420.2170389486990130.4340778973980260.782961051300987
430.1954253309964780.3908506619929560.804574669003522
440.1775520037801480.3551040075602960.822447996219852
450.1587737216345180.3175474432690370.841226278365482
460.1359224502108650.271844900421730.864077549789135
470.1769038308862190.3538076617724370.823096169113781
480.1506109340905260.3012218681810510.849389065909474
490.1221391541964040.2442783083928080.877860845803596
500.09758267182194130.1951653436438830.902417328178059
510.07655201229471040.1531040245894210.92344798770529
520.05912025961517340.1182405192303470.940879740384827
530.04498717543222240.08997435086444480.955012824567778
540.03377547537792460.06755095075584920.966224524622075
550.02685247104245980.05370494208491970.97314752895754
560.02166872210754580.04333744421509160.978331277892454
570.01728253711090940.03456507422181870.982717462889091
580.05875001069899160.1175000213979830.941249989301008
590.04516912276122090.09033824552244180.954830877238779
600.08240719581780180.1648143916356040.917592804182198
610.06444101576372520.128882031527450.935558984236275
620.04964927941569840.09929855883139670.950350720584302
630.03789472422607350.0757894484521470.962105275773926
640.02864201384982850.0572840276996570.971357986150172
650.02171838627601930.04343677255203850.978281613723981
660.016511587487030.033023174974060.98348841251297
670.01196705777467580.02393411554935150.988032942225324
680.03858746830171340.07717493660342670.961412531698287
690.02921645926856220.05843291853712430.970783540731438
700.0216515557164030.0433031114328060.978348444283597
710.01604691198831180.03209382397662360.983953088011688
720.01182129744409180.02364259488818370.988178702555908
730.008471621104072440.01694324220814490.991528378895928
740.01545643274074930.03091286548149850.984543567259251
750.01157568815802580.02315137631605150.988424311841974
760.008746566148751640.01749313229750330.991253433851248
770.007348524815169530.01469704963033910.99265147518483
780.009733381245958810.01946676249191760.990266618754041
790.02384329315812130.04768658631624260.976156706841879
800.05072468000929040.1014493600185810.94927531999071
810.03842678800984970.07685357601969940.96157321199015
820.02906345544395490.05812691088790980.970936544556045
830.02256800579144370.04513601158288740.977431994208556
840.01763521994948610.03527043989897220.982364780050514
850.01288452948751420.02576905897502840.987115470512486
860.009314526555796010.0186290531115920.990685473444204
870.006676862120788010.0133537242415760.993323137879212
880.004755224759531140.009510449519062290.995244775240469
890.006996436004849990.01399287200970.99300356399515
900.004907106811737250.009814213623474490.995092893188263
910.003485006318068670.006970012636137350.996514993681931
920.0212674697510180.04253493950203610.978732530248982
930.01773097957851450.03546195915702910.982269020421485
940.02997920552960630.05995841105921270.970020794470394
950.06462199855306550.1292439971061310.935378001446935
960.04929758453189270.09859516906378540.950702415468107
970.06989284763590830.1397856952718170.930107152364092
980.05339326183256410.1067865236651280.946606738167436
990.09826242388196540.1965248477639310.901737576118035
1000.1547384299076840.3094768598153690.845261570092316
1010.1248385719115250.249677143823050.875161428088475
1020.09786505437414640.1957301087482930.902134945625854
1030.08704000348530740.1740800069706150.912959996514693
1040.0868003937618460.1736007875236920.913199606238154
1050.1025842659790570.2051685319581130.897415734020943
1060.0765790520097970.1531581040195940.923420947990203
1070.1495187529518380.2990375059036750.850481247048162
1080.1151097170394910.2302194340789830.884890282960509
1090.08630560275493520.172611205509870.913694397245065
1100.06418222926290190.1283644585258040.935817770737098
1110.04752932201074880.09505864402149750.952470677989251
1120.03555943930628620.07111887861257240.964440560693714
1130.04286548624501920.08573097249003830.957134513754981
1140.07124921898707840.1424984379741570.928750781012922
1150.04863518052685850.0972703610537170.951364819473141
1160.07598601910806040.1519720382161210.92401398089194
1170.0490213020487240.09804260409744790.950978697951276
1180.03186865667917530.06373731335835060.968131343320825
1190.02346139295383110.04692278590766220.976538607046169
1200.03692683598018730.07385367196037460.963073164019813
1210.03304864095819190.06609728191638390.966951359041808
1220.01749588507217580.03499177014435160.982504114927824
1230.007573143856475270.01514628771295050.992426856143525







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level30.0256410256410256NOK
5% type I error level290.247863247863248NOK
10% type I error level500.427350427350427NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 3 & 0.0256410256410256 & NOK \tabularnewline
5% type I error level & 29 & 0.247863247863248 & NOK \tabularnewline
10% type I error level & 50 & 0.427350427350427 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=191320&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]3[/C][C]0.0256410256410256[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]29[/C][C]0.247863247863248[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]50[/C][C]0.427350427350427[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=191320&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=191320&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level30.0256410256410256NOK
5% type I error level290.247863247863248NOK
10% type I error level500.427350427350427NOK



Parameters (Session):
par1 = 2 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 2 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}