Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 17 Dec 2012 08:27:52 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/17/t1355751115b2oxr2zuqgf5510.htm/, Retrieved Thu, 31 Oct 2024 22:59:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=200867, Retrieved Thu, 31 Oct 2024 22:59:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact135
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2012-12-17 13:27:52] [aa836f436cd2e1db8a325ec9b94d70ce] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	1	1	9	1	1
1	0	0	9	1	0
1	0	0	9	1	0
1	0	0	9	1	0
1	0	0	9	1	0
1	1	0	9	1	1
1	0	0	9	1	0
1	0	1	9	1	0
1	0	0	9	1	1
1	1	0	9	1	0
1	1	1	9	1	0
1	0	0	9	1	0
1	0	0	9	0	0
1	1	1	9	1	0
1	0	0	9	0	1
1	0	1	9	0	1
1	1	1	9	0	0
1	1	1	9	1	0
1	0	0	9	1	1
1	0	1	9	0	1
1	1	0	9	1	0
1	1	0	9	0	1
1	0	0	9	1	1
1	1	0	9	1	1
1	0	1	9	0	1
1	0	0	9	0	0
1	1	0	9	1	1
1	0	0	9	0	0
1	0	0	9	1	1
1	0	0	9	1	0
1	0	0	9	1	0
1	1	0	9	1	0
1	1	0	9	1	0
1	0	1	9	1	1
1	0	0	9	1	0
1	0	0	9	1	0
1	1	1	9	0	0
1	0	0	9	0	1
1	0	0	9	1	1
1	0	1	9	1	0
1	0	0	9	0	1
1	0	0	9	0	1
1	1	0	9	1	1
1	1	1	9	1	0
1	0	0	9	1	0
1	0	0	9	1	1
1	0	0	9	1	0
1	0	0	9	1	1
1	0	0	9	1	1
1	0	0	9	1	0
1	0	1	9	0	0
1	1	1	9	0	0
1	0	0	9	1	1
1	0	0	9	0	0
1	0	0	9	1	0
1	0	1	9	0	1
1	0	0	9	0	1
1	0	0	9	1	1
1	0	0	9	1	1
1	1	1	9	0	1
1	1	1	9	1	1
1	0	0	9	0	0
1	0	0	9	1	0
1	1	1	9	1	1
1	0	0	9	1	0
1	0	0	9	1	0
1	0	1	9	0	0
1	1	0	9	1	0
1	0	0	9	1	1
1	0	0	9	0	0
1	0	0	9	1	0
1	0	0	9	1	1
1	0	0	9	0	1
1	1	0	9	0	0
1	0	0	9	1	1
1	0	1	9	1	1
1	0	0	9	1	1
1	0	0	9	0	1
1	0	1	9	0	1
1	0	1	9	1	0
1	0	0	9	1	0
1	1	0	9	0	1
1	0	0	9	1	0
1	0	0	9	0	0
1	0	0	9	1	1
1	1	0	9	1	0
9	1	9	0	1	1
9	1	9	1	0	1
9	0	9	0	1	0
9	0	9	0	1	1
9	0	9	0	1	0
9	1	9	1	1	0
9	1	9	0	1	0
9	0	9	0	1	0
9	0	9	1	1	0
9	0	9	0	1	1
9	1	9	1	1	0
9	0	9	0	1	0
9	1	9	0	1	0
9	0	9	0	1	1
9	1	9	0	1	1
9	0	9	0	1	0
9	0	9	0	1	0
9	0	9	0	1	0
9	0	9	1	0	0
9	0	9	0	1	0
9	0	9	0	1	0
9	1	9	1	0	0
9	0	9	0	1	0
9	1	9	0	1	0
9	1	9	1	0	0
9	0	9	1	1	0
9	0	9	0	0	0
9	1	9	1	0	0
9	1	9	0	1	0
9	0	9	0	1	0
9	1	9	0	1	1
9	1	9	0	1	0
9	0	9	0	1	0
9	0	9	0	1	1
9	1	9	0	1	0
9	0	9	0	1	0
9	1	9	1	0	0
9	0	9	0	0	1
9	0	9	0	1	1
9	0	9	1	1	0
9	0	9	0	1	0
9	0	9	0	1	1
9	0	9	0	1	0
9	0	9	0	1	1
9	1	9	0	1	0
9	1	9	0	1	1
9	1	9	0	0	0
9	0	9	0	1	0
9	0	9	0	1	0
9	0	9	0	1	0
9	1	9	0	0	1
9	1	9	1	0	1
9	0	9	1	1	0
9	0	9	0	1	0
9	0	9	0	0	1
9	0	9	1	0	1
9	1	9	0	1	0
9	0	9	0	1	1
9	0	9	0	1	0
9	0	9	1	1	1
9	0	9	1	0	0
9	0	9	1	1	0
9	1	9	0	1	0
9	0	9	0	1	1
9	0	9	0	1	1
9	1	9	0	0	0
9	1	9	0	0	0
9	1	9	0	0	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Weeks[t] = + 5.68564084416077 -0.0337328052225663UseLimit[t] + 0.387489136821021T40[t] -0.525540405716677T20[t] -0.040629524793191Used[t] -0.0299438114201578Outcome[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Weeks[t] =  +  5.68564084416077 -0.0337328052225663UseLimit[t] +  0.387489136821021T40[t] -0.525540405716677T20[t] -0.040629524793191Used[t] -0.0299438114201578Outcome[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Weeks[t] =  +  5.68564084416077 -0.0337328052225663UseLimit[t] +  0.387489136821021T40[t] -0.525540405716677T20[t] -0.040629524793191Used[t] -0.0299438114201578Outcome[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Weeks[t] = + 5.68564084416077 -0.0337328052225663UseLimit[t] + 0.387489136821021T40[t] -0.525540405716677T20[t] -0.040629524793191Used[t] -0.0299438114201578Outcome[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)5.685640844160770.36756415.468500
UseLimit-0.03373280522256630.035585-0.94790.3447010.17235
T400.3874891368210210.0389879.93900
T20-0.5255404057166770.038925-13.501300
Used-0.0406295247931910.037326-1.08850.2781430.139071
Outcome-0.02994381142015780.033705-0.88840.3757690.187885

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 5.68564084416077 & 0.367564 & 15.4685 & 0 & 0 \tabularnewline
UseLimit & -0.0337328052225663 & 0.035585 & -0.9479 & 0.344701 & 0.17235 \tabularnewline
T40 & 0.387489136821021 & 0.038987 & 9.939 & 0 & 0 \tabularnewline
T20 & -0.525540405716677 & 0.038925 & -13.5013 & 0 & 0 \tabularnewline
Used & -0.040629524793191 & 0.037326 & -1.0885 & 0.278143 & 0.139071 \tabularnewline
Outcome & -0.0299438114201578 & 0.033705 & -0.8884 & 0.375769 & 0.187885 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]5.68564084416077[/C][C]0.367564[/C][C]15.4685[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]UseLimit[/C][C]-0.0337328052225663[/C][C]0.035585[/C][C]-0.9479[/C][C]0.344701[/C][C]0.17235[/C][/ROW]
[ROW][C]T40[/C][C]0.387489136821021[/C][C]0.038987[/C][C]9.939[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]T20[/C][C]-0.525540405716677[/C][C]0.038925[/C][C]-13.5013[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Used[/C][C]-0.040629524793191[/C][C]0.037326[/C][C]-1.0885[/C][C]0.278143[/C][C]0.139071[/C][/ROW]
[ROW][C]Outcome[/C][C]-0.0299438114201578[/C][C]0.033705[/C][C]-0.8884[/C][C]0.375769[/C][C]0.187885[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)5.685640844160770.36756415.468500
UseLimit-0.03373280522256630.035585-0.94790.3447010.17235
T400.3874891368210210.0389879.93900
T20-0.5255404057166770.038925-13.501300
Used-0.0406295247931910.037326-1.08850.2781430.139071
Outcome-0.02994381142015780.033705-0.88840.3757690.187885







Multiple Linear Regression - Regression Statistics
Multiple R0.998772690544011
R-squared0.997546887376523
Adjusted R-squared0.997464011950054
F-TEST (value)12036.7029152109
F-TEST (DF numerator)5
F-TEST (DF denominator)148
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.200706387655927
Sum Squared Residuals5.96189199879188

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.998772690544011 \tabularnewline
R-squared & 0.997546887376523 \tabularnewline
Adjusted R-squared & 0.997464011950054 \tabularnewline
F-TEST (value) & 12036.7029152109 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 148 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.200706387655927 \tabularnewline
Sum Squared Residuals & 5.96189199879188 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.998772690544011[/C][/ROW]
[ROW][C]R-squared[/C][C]0.997546887376523[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.997464011950054[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]12036.7029152109[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]148[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.200706387655927[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]5.96189199879188[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.998772690544011
R-squared0.997546887376523
Adjusted R-squared0.997464011950054
F-TEST (value)12036.7029152109
F-TEST (DF numerator)5
F-TEST (DF denominator)148
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.200706387655927
Sum Squared Residuals5.96189199879188







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
111.23896018809579-0.238960188095789
210.9151476679174890.0848523320825115
310.9151476679174880.0848523320825124
410.9151476679174890.0848523320825113
510.9151476679174890.084852332082511
610.8514710512747650.148528948725235
710.9151476679174890.084852332082511
811.30263680473851-0.30263680473851
910.8852038564973310.114796143502669
1010.8814148626949230.118585137305077
1111.26890399951594-0.268903999515944
1210.9151476679174890.084852332082511
1310.955777192710680.04422280728932
1411.26890399951594-0.268903999515944
1510.9258333812905220.0741666187094778
1611.31332251811154-0.313322518111543
1711.30953352430914-0.309533524309135
1811.26890399951594-0.268903999515944
1910.8852038564973310.114796143502669
2011.31332251811154-0.313322518111543
2110.8814148626949230.118585137305077
2210.8921005760679560.107899423932044
2310.8852038564973310.114796143502669
2410.8514710512747650.148528948725235
2511.31332251811154-0.313322518111543
2610.955777192710680.04422280728932
2710.8514710512747650.148528948725235
2810.955777192710680.04422280728932
2910.8852038564973310.114796143502669
3010.9151476679174890.084852332082511
3110.9151476679174890.084852332082511
3210.8814148626949230.118585137305077
3310.8814148626949230.118585137305077
3411.27269299331835-0.272692993318352
3510.9151476679174890.084852332082511
3610.9151476679174890.084852332082511
3711.30953352430914-0.309533524309135
3810.9258333812905220.0741666187094778
3910.8852038564973310.114796143502669
4011.30263680473851-0.30263680473851
4110.9258333812905220.0741666187094778
4210.9258333812905220.0741666187094778
4310.8514710512747650.148528948725235
4411.26890399951594-0.268903999515944
4510.9151476679174890.084852332082511
4610.8852038564973310.114796143502669
4710.9151476679174890.084852332082511
4810.8852038564973310.114796143502669
4910.8852038564973310.114796143502669
5010.9151476679174890.084852332082511
5111.3432663295317-0.343266329531701
5211.30953352430914-0.309533524309135
5310.8852038564973310.114796143502669
5410.955777192710680.04422280728932
5510.9151476679174890.084852332082511
5611.31332251811154-0.313322518111543
5710.9258333812905220.0741666187094778
5810.8852038564973310.114796143502669
5910.8852038564973310.114796143502669
6011.27958971288898-0.279589712888977
6111.23896018809579-0.238960188095786
6210.955777192710680.04422280728932
6310.9151476679174890.084852332082511
6411.23896018809579-0.238960188095786
6510.9151476679174890.084852332082511
6610.9151476679174890.084852332082511
6711.3432663295317-0.343266329531701
6810.8814148626949230.118585137305077
6910.8852038564973310.114796143502669
7010.955777192710680.04422280728932
7110.9151476679174890.084852332082511
7210.8852038564973310.114796143502669
7310.9258333812905220.0741666187094778
7410.9220443874881140.0779556125118863
7510.8852038564973310.114796143502669
7611.27269299331835-0.272692993318352
7710.8852038564973310.114796143502669
7810.9258333812905220.0741666187094778
7911.31332251811154-0.313322518111543
8011.30263680473851-0.30263680473851
8110.9151476679174890.084852332082511
8210.8921005760679560.107899423932044
8310.9151476679174890.084852332082511
8410.955777192710680.04422280728932
8510.8852038564973310.114796143502669
8610.8814148626949230.118585137305077
8799.06873693411405-0.0687369341140451
8898.583826053190560.41617394680944
8999.13241355075677-0.132413550756769
9099.10246973933661-0.102469739336611
9199.13241355075677-0.132413550756769
9298.573140339817530.426859660182474
9399.0986807455342-0.0986807455342029
9499.13241355075677-0.132413550756769
9598.606873145040090.393126854959907
9699.10246973933661-0.102469739336611
9798.573140339817530.426859660182474
9899.13241355075677-0.132413550756769
9999.0986807455342-0.0986807455342029
10099.10246973933661-0.102469739336611
10199.06873693411405-0.0687369341140451
10299.13241355075677-0.132413550756769
10399.13241355075677-0.132413550756769
10499.13241355075677-0.132413550756769
10598.647502669833280.352497330166716
10699.13241355075677-0.132413550756769
10799.13241355075677-0.132413550756769
10898.613769864610720.386230135389283
10999.13241355075677-0.132413550756769
11099.0986807455342-0.0986807455342029
11198.613769864610720.386230135389283
11298.606873145040090.393126854959907
11399.17304307554996-0.17304307554996
11498.613769864610720.386230135389283
11599.0986807455342-0.0986807455342029
11699.13241355075677-0.132413550756769
11799.06873693411405-0.0687369341140451
11899.0986807455342-0.0986807455342029
11999.13241355075677-0.132413550756769
12099.10246973933661-0.102469739336611
12199.0986807455342-0.0986807455342029
12299.13241355075677-0.132413550756769
12398.613769864610720.386230135389283
12499.1430992641298-0.143099264129802
12599.10246973933661-0.102469739336611
12698.606873145040090.393126854959907
12799.13241355075677-0.132413550756769
12899.10246973933661-0.102469739336611
12999.13241355075677-0.132413550756769
13099.10246973933661-0.102469739336611
13199.0986807455342-0.0986807455342029
13299.06873693411405-0.0687369341140451
13399.13931027032739-0.139310270327394
13499.13241355075677-0.132413550756769
13599.13241355075677-0.132413550756769
13699.13241355075677-0.132413550756769
13799.10936645890724-0.109366458907236
13898.583826053190560.41617394680944
13998.606873145040090.393126854959907
14099.13241355075677-0.132413550756769
14199.1430992641298-0.143099264129802
14298.617558858413130.382441141586874
14399.0986807455342-0.0986807455342029
14499.10246973933661-0.102469739336611
14599.13241355075677-0.132413550756769
14698.576929333619940.423070666380065
14798.647502669833280.352497330166716
14898.606873145040090.393126854959907
14999.0986807455342-0.0986807455342029
15099.10246973933661-0.102469739336611
15199.10246973933661-0.102469739336611
15299.13931027032739-0.139310270327394
15399.13931027032739-0.139310270327394
15499.13931027032739-0.139310270327394

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1 & 1.23896018809579 & -0.238960188095789 \tabularnewline
2 & 1 & 0.915147667917489 & 0.0848523320825115 \tabularnewline
3 & 1 & 0.915147667917488 & 0.0848523320825124 \tabularnewline
4 & 1 & 0.915147667917489 & 0.0848523320825113 \tabularnewline
5 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
6 & 1 & 0.851471051274765 & 0.148528948725235 \tabularnewline
7 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
8 & 1 & 1.30263680473851 & -0.30263680473851 \tabularnewline
9 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
10 & 1 & 0.881414862694923 & 0.118585137305077 \tabularnewline
11 & 1 & 1.26890399951594 & -0.268903999515944 \tabularnewline
12 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
13 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
14 & 1 & 1.26890399951594 & -0.268903999515944 \tabularnewline
15 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
16 & 1 & 1.31332251811154 & -0.313322518111543 \tabularnewline
17 & 1 & 1.30953352430914 & -0.309533524309135 \tabularnewline
18 & 1 & 1.26890399951594 & -0.268903999515944 \tabularnewline
19 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
20 & 1 & 1.31332251811154 & -0.313322518111543 \tabularnewline
21 & 1 & 0.881414862694923 & 0.118585137305077 \tabularnewline
22 & 1 & 0.892100576067956 & 0.107899423932044 \tabularnewline
23 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
24 & 1 & 0.851471051274765 & 0.148528948725235 \tabularnewline
25 & 1 & 1.31332251811154 & -0.313322518111543 \tabularnewline
26 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
27 & 1 & 0.851471051274765 & 0.148528948725235 \tabularnewline
28 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
29 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
30 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
31 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
32 & 1 & 0.881414862694923 & 0.118585137305077 \tabularnewline
33 & 1 & 0.881414862694923 & 0.118585137305077 \tabularnewline
34 & 1 & 1.27269299331835 & -0.272692993318352 \tabularnewline
35 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
36 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
37 & 1 & 1.30953352430914 & -0.309533524309135 \tabularnewline
38 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
39 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
40 & 1 & 1.30263680473851 & -0.30263680473851 \tabularnewline
41 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
42 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
43 & 1 & 0.851471051274765 & 0.148528948725235 \tabularnewline
44 & 1 & 1.26890399951594 & -0.268903999515944 \tabularnewline
45 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
46 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
47 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
48 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
49 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
50 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
51 & 1 & 1.3432663295317 & -0.343266329531701 \tabularnewline
52 & 1 & 1.30953352430914 & -0.309533524309135 \tabularnewline
53 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
54 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
55 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
56 & 1 & 1.31332251811154 & -0.313322518111543 \tabularnewline
57 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
58 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
59 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
60 & 1 & 1.27958971288898 & -0.279589712888977 \tabularnewline
61 & 1 & 1.23896018809579 & -0.238960188095786 \tabularnewline
62 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
63 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
64 & 1 & 1.23896018809579 & -0.238960188095786 \tabularnewline
65 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
66 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
67 & 1 & 1.3432663295317 & -0.343266329531701 \tabularnewline
68 & 1 & 0.881414862694923 & 0.118585137305077 \tabularnewline
69 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
70 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
71 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
72 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
73 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
74 & 1 & 0.922044387488114 & 0.0779556125118863 \tabularnewline
75 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
76 & 1 & 1.27269299331835 & -0.272692993318352 \tabularnewline
77 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
78 & 1 & 0.925833381290522 & 0.0741666187094778 \tabularnewline
79 & 1 & 1.31332251811154 & -0.313322518111543 \tabularnewline
80 & 1 & 1.30263680473851 & -0.30263680473851 \tabularnewline
81 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
82 & 1 & 0.892100576067956 & 0.107899423932044 \tabularnewline
83 & 1 & 0.915147667917489 & 0.084852332082511 \tabularnewline
84 & 1 & 0.95577719271068 & 0.04422280728932 \tabularnewline
85 & 1 & 0.885203856497331 & 0.114796143502669 \tabularnewline
86 & 1 & 0.881414862694923 & 0.118585137305077 \tabularnewline
87 & 9 & 9.06873693411405 & -0.0687369341140451 \tabularnewline
88 & 9 & 8.58382605319056 & 0.41617394680944 \tabularnewline
89 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
90 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
91 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
92 & 9 & 8.57314033981753 & 0.426859660182474 \tabularnewline
93 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
94 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
95 & 9 & 8.60687314504009 & 0.393126854959907 \tabularnewline
96 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
97 & 9 & 8.57314033981753 & 0.426859660182474 \tabularnewline
98 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
99 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
100 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
101 & 9 & 9.06873693411405 & -0.0687369341140451 \tabularnewline
102 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
103 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
104 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
105 & 9 & 8.64750266983328 & 0.352497330166716 \tabularnewline
106 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
107 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
108 & 9 & 8.61376986461072 & 0.386230135389283 \tabularnewline
109 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
110 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
111 & 9 & 8.61376986461072 & 0.386230135389283 \tabularnewline
112 & 9 & 8.60687314504009 & 0.393126854959907 \tabularnewline
113 & 9 & 9.17304307554996 & -0.17304307554996 \tabularnewline
114 & 9 & 8.61376986461072 & 0.386230135389283 \tabularnewline
115 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
116 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
117 & 9 & 9.06873693411405 & -0.0687369341140451 \tabularnewline
118 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
119 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
120 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
121 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
122 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
123 & 9 & 8.61376986461072 & 0.386230135389283 \tabularnewline
124 & 9 & 9.1430992641298 & -0.143099264129802 \tabularnewline
125 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
126 & 9 & 8.60687314504009 & 0.393126854959907 \tabularnewline
127 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
128 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
129 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
130 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
131 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
132 & 9 & 9.06873693411405 & -0.0687369341140451 \tabularnewline
133 & 9 & 9.13931027032739 & -0.139310270327394 \tabularnewline
134 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
135 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
136 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
137 & 9 & 9.10936645890724 & -0.109366458907236 \tabularnewline
138 & 9 & 8.58382605319056 & 0.41617394680944 \tabularnewline
139 & 9 & 8.60687314504009 & 0.393126854959907 \tabularnewline
140 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
141 & 9 & 9.1430992641298 & -0.143099264129802 \tabularnewline
142 & 9 & 8.61755885841313 & 0.382441141586874 \tabularnewline
143 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
144 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
145 & 9 & 9.13241355075677 & -0.132413550756769 \tabularnewline
146 & 9 & 8.57692933361994 & 0.423070666380065 \tabularnewline
147 & 9 & 8.64750266983328 & 0.352497330166716 \tabularnewline
148 & 9 & 8.60687314504009 & 0.393126854959907 \tabularnewline
149 & 9 & 9.0986807455342 & -0.0986807455342029 \tabularnewline
150 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
151 & 9 & 9.10246973933661 & -0.102469739336611 \tabularnewline
152 & 9 & 9.13931027032739 & -0.139310270327394 \tabularnewline
153 & 9 & 9.13931027032739 & -0.139310270327394 \tabularnewline
154 & 9 & 9.13931027032739 & -0.139310270327394 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1[/C][C]1.23896018809579[/C][C]-0.238960188095789[/C][/ROW]
[ROW][C]2[/C][C]1[/C][C]0.915147667917489[/C][C]0.0848523320825115[/C][/ROW]
[ROW][C]3[/C][C]1[/C][C]0.915147667917488[/C][C]0.0848523320825124[/C][/ROW]
[ROW][C]4[/C][C]1[/C][C]0.915147667917489[/C][C]0.0848523320825113[/C][/ROW]
[ROW][C]5[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]6[/C][C]1[/C][C]0.851471051274765[/C][C]0.148528948725235[/C][/ROW]
[ROW][C]7[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]8[/C][C]1[/C][C]1.30263680473851[/C][C]-0.30263680473851[/C][/ROW]
[ROW][C]9[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]10[/C][C]1[/C][C]0.881414862694923[/C][C]0.118585137305077[/C][/ROW]
[ROW][C]11[/C][C]1[/C][C]1.26890399951594[/C][C]-0.268903999515944[/C][/ROW]
[ROW][C]12[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]13[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]14[/C][C]1[/C][C]1.26890399951594[/C][C]-0.268903999515944[/C][/ROW]
[ROW][C]15[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]16[/C][C]1[/C][C]1.31332251811154[/C][C]-0.313322518111543[/C][/ROW]
[ROW][C]17[/C][C]1[/C][C]1.30953352430914[/C][C]-0.309533524309135[/C][/ROW]
[ROW][C]18[/C][C]1[/C][C]1.26890399951594[/C][C]-0.268903999515944[/C][/ROW]
[ROW][C]19[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]20[/C][C]1[/C][C]1.31332251811154[/C][C]-0.313322518111543[/C][/ROW]
[ROW][C]21[/C][C]1[/C][C]0.881414862694923[/C][C]0.118585137305077[/C][/ROW]
[ROW][C]22[/C][C]1[/C][C]0.892100576067956[/C][C]0.107899423932044[/C][/ROW]
[ROW][C]23[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]24[/C][C]1[/C][C]0.851471051274765[/C][C]0.148528948725235[/C][/ROW]
[ROW][C]25[/C][C]1[/C][C]1.31332251811154[/C][C]-0.313322518111543[/C][/ROW]
[ROW][C]26[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]27[/C][C]1[/C][C]0.851471051274765[/C][C]0.148528948725235[/C][/ROW]
[ROW][C]28[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]29[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]30[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]31[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]32[/C][C]1[/C][C]0.881414862694923[/C][C]0.118585137305077[/C][/ROW]
[ROW][C]33[/C][C]1[/C][C]0.881414862694923[/C][C]0.118585137305077[/C][/ROW]
[ROW][C]34[/C][C]1[/C][C]1.27269299331835[/C][C]-0.272692993318352[/C][/ROW]
[ROW][C]35[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]36[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]37[/C][C]1[/C][C]1.30953352430914[/C][C]-0.309533524309135[/C][/ROW]
[ROW][C]38[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]39[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]40[/C][C]1[/C][C]1.30263680473851[/C][C]-0.30263680473851[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]42[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]43[/C][C]1[/C][C]0.851471051274765[/C][C]0.148528948725235[/C][/ROW]
[ROW][C]44[/C][C]1[/C][C]1.26890399951594[/C][C]-0.268903999515944[/C][/ROW]
[ROW][C]45[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]46[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]47[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]48[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]49[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]50[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]51[/C][C]1[/C][C]1.3432663295317[/C][C]-0.343266329531701[/C][/ROW]
[ROW][C]52[/C][C]1[/C][C]1.30953352430914[/C][C]-0.309533524309135[/C][/ROW]
[ROW][C]53[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]54[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]55[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]56[/C][C]1[/C][C]1.31332251811154[/C][C]-0.313322518111543[/C][/ROW]
[ROW][C]57[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]58[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]59[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]60[/C][C]1[/C][C]1.27958971288898[/C][C]-0.279589712888977[/C][/ROW]
[ROW][C]61[/C][C]1[/C][C]1.23896018809579[/C][C]-0.238960188095786[/C][/ROW]
[ROW][C]62[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]63[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]64[/C][C]1[/C][C]1.23896018809579[/C][C]-0.238960188095786[/C][/ROW]
[ROW][C]65[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]66[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]67[/C][C]1[/C][C]1.3432663295317[/C][C]-0.343266329531701[/C][/ROW]
[ROW][C]68[/C][C]1[/C][C]0.881414862694923[/C][C]0.118585137305077[/C][/ROW]
[ROW][C]69[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]70[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]71[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]72[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]73[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]74[/C][C]1[/C][C]0.922044387488114[/C][C]0.0779556125118863[/C][/ROW]
[ROW][C]75[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]76[/C][C]1[/C][C]1.27269299331835[/C][C]-0.272692993318352[/C][/ROW]
[ROW][C]77[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]78[/C][C]1[/C][C]0.925833381290522[/C][C]0.0741666187094778[/C][/ROW]
[ROW][C]79[/C][C]1[/C][C]1.31332251811154[/C][C]-0.313322518111543[/C][/ROW]
[ROW][C]80[/C][C]1[/C][C]1.30263680473851[/C][C]-0.30263680473851[/C][/ROW]
[ROW][C]81[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]82[/C][C]1[/C][C]0.892100576067956[/C][C]0.107899423932044[/C][/ROW]
[ROW][C]83[/C][C]1[/C][C]0.915147667917489[/C][C]0.084852332082511[/C][/ROW]
[ROW][C]84[/C][C]1[/C][C]0.95577719271068[/C][C]0.04422280728932[/C][/ROW]
[ROW][C]85[/C][C]1[/C][C]0.885203856497331[/C][C]0.114796143502669[/C][/ROW]
[ROW][C]86[/C][C]1[/C][C]0.881414862694923[/C][C]0.118585137305077[/C][/ROW]
[ROW][C]87[/C][C]9[/C][C]9.06873693411405[/C][C]-0.0687369341140451[/C][/ROW]
[ROW][C]88[/C][C]9[/C][C]8.58382605319056[/C][C]0.41617394680944[/C][/ROW]
[ROW][C]89[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]90[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]91[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]92[/C][C]9[/C][C]8.57314033981753[/C][C]0.426859660182474[/C][/ROW]
[ROW][C]93[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]94[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]95[/C][C]9[/C][C]8.60687314504009[/C][C]0.393126854959907[/C][/ROW]
[ROW][C]96[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]97[/C][C]9[/C][C]8.57314033981753[/C][C]0.426859660182474[/C][/ROW]
[ROW][C]98[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]99[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]100[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]101[/C][C]9[/C][C]9.06873693411405[/C][C]-0.0687369341140451[/C][/ROW]
[ROW][C]102[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]103[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]104[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]105[/C][C]9[/C][C]8.64750266983328[/C][C]0.352497330166716[/C][/ROW]
[ROW][C]106[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]107[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]108[/C][C]9[/C][C]8.61376986461072[/C][C]0.386230135389283[/C][/ROW]
[ROW][C]109[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]110[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]111[/C][C]9[/C][C]8.61376986461072[/C][C]0.386230135389283[/C][/ROW]
[ROW][C]112[/C][C]9[/C][C]8.60687314504009[/C][C]0.393126854959907[/C][/ROW]
[ROW][C]113[/C][C]9[/C][C]9.17304307554996[/C][C]-0.17304307554996[/C][/ROW]
[ROW][C]114[/C][C]9[/C][C]8.61376986461072[/C][C]0.386230135389283[/C][/ROW]
[ROW][C]115[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]116[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]117[/C][C]9[/C][C]9.06873693411405[/C][C]-0.0687369341140451[/C][/ROW]
[ROW][C]118[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]119[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]120[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]121[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]122[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]123[/C][C]9[/C][C]8.61376986461072[/C][C]0.386230135389283[/C][/ROW]
[ROW][C]124[/C][C]9[/C][C]9.1430992641298[/C][C]-0.143099264129802[/C][/ROW]
[ROW][C]125[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]126[/C][C]9[/C][C]8.60687314504009[/C][C]0.393126854959907[/C][/ROW]
[ROW][C]127[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]128[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]129[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]130[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]131[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]132[/C][C]9[/C][C]9.06873693411405[/C][C]-0.0687369341140451[/C][/ROW]
[ROW][C]133[/C][C]9[/C][C]9.13931027032739[/C][C]-0.139310270327394[/C][/ROW]
[ROW][C]134[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]135[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]136[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]137[/C][C]9[/C][C]9.10936645890724[/C][C]-0.109366458907236[/C][/ROW]
[ROW][C]138[/C][C]9[/C][C]8.58382605319056[/C][C]0.41617394680944[/C][/ROW]
[ROW][C]139[/C][C]9[/C][C]8.60687314504009[/C][C]0.393126854959907[/C][/ROW]
[ROW][C]140[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]141[/C][C]9[/C][C]9.1430992641298[/C][C]-0.143099264129802[/C][/ROW]
[ROW][C]142[/C][C]9[/C][C]8.61755885841313[/C][C]0.382441141586874[/C][/ROW]
[ROW][C]143[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]144[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]145[/C][C]9[/C][C]9.13241355075677[/C][C]-0.132413550756769[/C][/ROW]
[ROW][C]146[/C][C]9[/C][C]8.57692933361994[/C][C]0.423070666380065[/C][/ROW]
[ROW][C]147[/C][C]9[/C][C]8.64750266983328[/C][C]0.352497330166716[/C][/ROW]
[ROW][C]148[/C][C]9[/C][C]8.60687314504009[/C][C]0.393126854959907[/C][/ROW]
[ROW][C]149[/C][C]9[/C][C]9.0986807455342[/C][C]-0.0986807455342029[/C][/ROW]
[ROW][C]150[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]151[/C][C]9[/C][C]9.10246973933661[/C][C]-0.102469739336611[/C][/ROW]
[ROW][C]152[/C][C]9[/C][C]9.13931027032739[/C][C]-0.139310270327394[/C][/ROW]
[ROW][C]153[/C][C]9[/C][C]9.13931027032739[/C][C]-0.139310270327394[/C][/ROW]
[ROW][C]154[/C][C]9[/C][C]9.13931027032739[/C][C]-0.139310270327394[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
111.23896018809579-0.238960188095789
210.9151476679174890.0848523320825115
310.9151476679174880.0848523320825124
410.9151476679174890.0848523320825113
510.9151476679174890.084852332082511
610.8514710512747650.148528948725235
710.9151476679174890.084852332082511
811.30263680473851-0.30263680473851
910.8852038564973310.114796143502669
1010.8814148626949230.118585137305077
1111.26890399951594-0.268903999515944
1210.9151476679174890.084852332082511
1310.955777192710680.04422280728932
1411.26890399951594-0.268903999515944
1510.9258333812905220.0741666187094778
1611.31332251811154-0.313322518111543
1711.30953352430914-0.309533524309135
1811.26890399951594-0.268903999515944
1910.8852038564973310.114796143502669
2011.31332251811154-0.313322518111543
2110.8814148626949230.118585137305077
2210.8921005760679560.107899423932044
2310.8852038564973310.114796143502669
2410.8514710512747650.148528948725235
2511.31332251811154-0.313322518111543
2610.955777192710680.04422280728932
2710.8514710512747650.148528948725235
2810.955777192710680.04422280728932
2910.8852038564973310.114796143502669
3010.9151476679174890.084852332082511
3110.9151476679174890.084852332082511
3210.8814148626949230.118585137305077
3310.8814148626949230.118585137305077
3411.27269299331835-0.272692993318352
3510.9151476679174890.084852332082511
3610.9151476679174890.084852332082511
3711.30953352430914-0.309533524309135
3810.9258333812905220.0741666187094778
3910.8852038564973310.114796143502669
4011.30263680473851-0.30263680473851
4110.9258333812905220.0741666187094778
4210.9258333812905220.0741666187094778
4310.8514710512747650.148528948725235
4411.26890399951594-0.268903999515944
4510.9151476679174890.084852332082511
4610.8852038564973310.114796143502669
4710.9151476679174890.084852332082511
4810.8852038564973310.114796143502669
4910.8852038564973310.114796143502669
5010.9151476679174890.084852332082511
5111.3432663295317-0.343266329531701
5211.30953352430914-0.309533524309135
5310.8852038564973310.114796143502669
5410.955777192710680.04422280728932
5510.9151476679174890.084852332082511
5611.31332251811154-0.313322518111543
5710.9258333812905220.0741666187094778
5810.8852038564973310.114796143502669
5910.8852038564973310.114796143502669
6011.27958971288898-0.279589712888977
6111.23896018809579-0.238960188095786
6210.955777192710680.04422280728932
6310.9151476679174890.084852332082511
6411.23896018809579-0.238960188095786
6510.9151476679174890.084852332082511
6610.9151476679174890.084852332082511
6711.3432663295317-0.343266329531701
6810.8814148626949230.118585137305077
6910.8852038564973310.114796143502669
7010.955777192710680.04422280728932
7110.9151476679174890.084852332082511
7210.8852038564973310.114796143502669
7310.9258333812905220.0741666187094778
7410.9220443874881140.0779556125118863
7510.8852038564973310.114796143502669
7611.27269299331835-0.272692993318352
7710.8852038564973310.114796143502669
7810.9258333812905220.0741666187094778
7911.31332251811154-0.313322518111543
8011.30263680473851-0.30263680473851
8110.9151476679174890.084852332082511
8210.8921005760679560.107899423932044
8310.9151476679174890.084852332082511
8410.955777192710680.04422280728932
8510.8852038564973310.114796143502669
8610.8814148626949230.118585137305077
8799.06873693411405-0.0687369341140451
8898.583826053190560.41617394680944
8999.13241355075677-0.132413550756769
9099.10246973933661-0.102469739336611
9199.13241355075677-0.132413550756769
9298.573140339817530.426859660182474
9399.0986807455342-0.0986807455342029
9499.13241355075677-0.132413550756769
9598.606873145040090.393126854959907
9699.10246973933661-0.102469739336611
9798.573140339817530.426859660182474
9899.13241355075677-0.132413550756769
9999.0986807455342-0.0986807455342029
10099.10246973933661-0.102469739336611
10199.06873693411405-0.0687369341140451
10299.13241355075677-0.132413550756769
10399.13241355075677-0.132413550756769
10499.13241355075677-0.132413550756769
10598.647502669833280.352497330166716
10699.13241355075677-0.132413550756769
10799.13241355075677-0.132413550756769
10898.613769864610720.386230135389283
10999.13241355075677-0.132413550756769
11099.0986807455342-0.0986807455342029
11198.613769864610720.386230135389283
11298.606873145040090.393126854959907
11399.17304307554996-0.17304307554996
11498.613769864610720.386230135389283
11599.0986807455342-0.0986807455342029
11699.13241355075677-0.132413550756769
11799.06873693411405-0.0687369341140451
11899.0986807455342-0.0986807455342029
11999.13241355075677-0.132413550756769
12099.10246973933661-0.102469739336611
12199.0986807455342-0.0986807455342029
12299.13241355075677-0.132413550756769
12398.613769864610720.386230135389283
12499.1430992641298-0.143099264129802
12599.10246973933661-0.102469739336611
12698.606873145040090.393126854959907
12799.13241355075677-0.132413550756769
12899.10246973933661-0.102469739336611
12999.13241355075677-0.132413550756769
13099.10246973933661-0.102469739336611
13199.0986807455342-0.0986807455342029
13299.06873693411405-0.0687369341140451
13399.13931027032739-0.139310270327394
13499.13241355075677-0.132413550756769
13599.13241355075677-0.132413550756769
13699.13241355075677-0.132413550756769
13799.10936645890724-0.109366458907236
13898.583826053190560.41617394680944
13998.606873145040090.393126854959907
14099.13241355075677-0.132413550756769
14199.1430992641298-0.143099264129802
14298.617558858413130.382441141586874
14399.0986807455342-0.0986807455342029
14499.10246973933661-0.102469739336611
14599.13241355075677-0.132413550756769
14698.576929333619940.423070666380065
14798.647502669833280.352497330166716
14898.606873145040090.393126854959907
14999.0986807455342-0.0986807455342029
15099.10246973933661-0.102469739336611
15199.10246973933661-0.102469739336611
15299.13931027032739-0.139310270327394
15399.13931027032739-0.139310270327394
15499.13931027032739-0.139310270327394







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
92.57848000771605e-475.1569600154321e-471
107.44931664884029e-631.48986332976806e-621
118.52158604199791e-821.70431720839958e-811
121.29251298765192e-912.58502597530383e-911
132.50959634239427e-1215.01919268478854e-1211
145.74356440448428e-1211.14871288089686e-1201
154.89564046552559e-1369.79128093105117e-1361
16001
171.01576150258641e-1782.03152300517283e-1781
181.33264272039276e-1822.66528544078552e-1821
192.28305408402311e-1964.56610816804622e-1961
201.18058331616943e-2212.36116663233886e-2211
211.22488021550532e-2562.44976043101064e-2561
226.5721751380763e-2451.31443502761526e-2441
237.41734804018213e-2561.48346960803643e-2551
243.61528558182342e-2747.23057116364684e-2741
257.18936413319469e-2931.43787282663894e-2921
26001
277.2133584292822e-3221.44267168585644e-3211
28001
29001
30001
31001
32001
33001
34001
35001
36001
37001
38001
39001
40001
41001
42001
43001
44001
45001
46001
47001
48001
49001
50001
51001
52001
53001
54001
55001
56001
57001
58001
59001
60001
61001
62001
63001
64001
65001
66001
67001
68001
69001
70001
71001
72001
73001
74001
75001
76001
77001
78001
79001
802.2819056477148e-234.56381129542961e-231
815.55691312064633e-561.11138262412927e-551
824.34973043321855e-448.6994608664371e-441
832.07334947786838e-244.14669895573677e-241
846.37477947099195e-1721.27495589419839e-1711
850.9999944390921951.11218156104005e-055.56090780520026e-06
868.22122114389993e-491.64424422877999e-481
8711.77785200883509e-188.88926004417544e-19
88100
89100
90100
91100
92100
93100
94100
95100
96100
97100
98100
99100
100100
101100
102100
103100
104100
105100
106100
107100
108100
109100
110100
111100
112100
113100
114100
115100
116100
117100
118100
119100
120100
121100
122100
123100
124100
125100
12614.82637652771979e-3132.4131882638599e-313
12711.26433901303691e-3006.32169506518457e-301
12812.70327879004758e-2911.35163939502379e-291
12911.67596633464668e-2738.37983167323341e-274
13011.08447576538326e-2605.42237882691632e-261
13115.19879017208721e-2382.5993950860436e-238
13211.36411442572075e-2266.82057212860376e-227
13318.95788869185114e-2154.47894434592557e-215
13415.3511665187501e-2072.67558325937505e-207
13517.33679864874105e-1843.66839932437053e-184
13614.16553051131741e-1692.0827652556587e-169
13712.3528289428652e-1541.1764144714326e-154
138100
13915.42653903523516e-1252.71326951761758e-125
14013.53632767902074e-1111.76816383951037e-111
14113.1605362910222e-1011.5802681455111e-101
14211.31973586104299e-846.59867930521493e-85
14311.0962664518886e-725.48133225944302e-73
14412.46843131392784e-591.23421565696392e-59
14514.67424110775585e-902.33712055387793e-90

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
9 & 2.57848000771605e-47 & 5.1569600154321e-47 & 1 \tabularnewline
10 & 7.44931664884029e-63 & 1.48986332976806e-62 & 1 \tabularnewline
11 & 8.52158604199791e-82 & 1.70431720839958e-81 & 1 \tabularnewline
12 & 1.29251298765192e-91 & 2.58502597530383e-91 & 1 \tabularnewline
13 & 2.50959634239427e-121 & 5.01919268478854e-121 & 1 \tabularnewline
14 & 5.74356440448428e-121 & 1.14871288089686e-120 & 1 \tabularnewline
15 & 4.89564046552559e-136 & 9.79128093105117e-136 & 1 \tabularnewline
16 & 0 & 0 & 1 \tabularnewline
17 & 1.01576150258641e-178 & 2.03152300517283e-178 & 1 \tabularnewline
18 & 1.33264272039276e-182 & 2.66528544078552e-182 & 1 \tabularnewline
19 & 2.28305408402311e-196 & 4.56610816804622e-196 & 1 \tabularnewline
20 & 1.18058331616943e-221 & 2.36116663233886e-221 & 1 \tabularnewline
21 & 1.22488021550532e-256 & 2.44976043101064e-256 & 1 \tabularnewline
22 & 6.5721751380763e-245 & 1.31443502761526e-244 & 1 \tabularnewline
23 & 7.41734804018213e-256 & 1.48346960803643e-255 & 1 \tabularnewline
24 & 3.61528558182342e-274 & 7.23057116364684e-274 & 1 \tabularnewline
25 & 7.18936413319469e-293 & 1.43787282663894e-292 & 1 \tabularnewline
26 & 0 & 0 & 1 \tabularnewline
27 & 7.2133584292822e-322 & 1.44267168585644e-321 & 1 \tabularnewline
28 & 0 & 0 & 1 \tabularnewline
29 & 0 & 0 & 1 \tabularnewline
30 & 0 & 0 & 1 \tabularnewline
31 & 0 & 0 & 1 \tabularnewline
32 & 0 & 0 & 1 \tabularnewline
33 & 0 & 0 & 1 \tabularnewline
34 & 0 & 0 & 1 \tabularnewline
35 & 0 & 0 & 1 \tabularnewline
36 & 0 & 0 & 1 \tabularnewline
37 & 0 & 0 & 1 \tabularnewline
38 & 0 & 0 & 1 \tabularnewline
39 & 0 & 0 & 1 \tabularnewline
40 & 0 & 0 & 1 \tabularnewline
41 & 0 & 0 & 1 \tabularnewline
42 & 0 & 0 & 1 \tabularnewline
43 & 0 & 0 & 1 \tabularnewline
44 & 0 & 0 & 1 \tabularnewline
45 & 0 & 0 & 1 \tabularnewline
46 & 0 & 0 & 1 \tabularnewline
47 & 0 & 0 & 1 \tabularnewline
48 & 0 & 0 & 1 \tabularnewline
49 & 0 & 0 & 1 \tabularnewline
50 & 0 & 0 & 1 \tabularnewline
51 & 0 & 0 & 1 \tabularnewline
52 & 0 & 0 & 1 \tabularnewline
53 & 0 & 0 & 1 \tabularnewline
54 & 0 & 0 & 1 \tabularnewline
55 & 0 & 0 & 1 \tabularnewline
56 & 0 & 0 & 1 \tabularnewline
57 & 0 & 0 & 1 \tabularnewline
58 & 0 & 0 & 1 \tabularnewline
59 & 0 & 0 & 1 \tabularnewline
60 & 0 & 0 & 1 \tabularnewline
61 & 0 & 0 & 1 \tabularnewline
62 & 0 & 0 & 1 \tabularnewline
63 & 0 & 0 & 1 \tabularnewline
64 & 0 & 0 & 1 \tabularnewline
65 & 0 & 0 & 1 \tabularnewline
66 & 0 & 0 & 1 \tabularnewline
67 & 0 & 0 & 1 \tabularnewline
68 & 0 & 0 & 1 \tabularnewline
69 & 0 & 0 & 1 \tabularnewline
70 & 0 & 0 & 1 \tabularnewline
71 & 0 & 0 & 1 \tabularnewline
72 & 0 & 0 & 1 \tabularnewline
73 & 0 & 0 & 1 \tabularnewline
74 & 0 & 0 & 1 \tabularnewline
75 & 0 & 0 & 1 \tabularnewline
76 & 0 & 0 & 1 \tabularnewline
77 & 0 & 0 & 1 \tabularnewline
78 & 0 & 0 & 1 \tabularnewline
79 & 0 & 0 & 1 \tabularnewline
80 & 2.2819056477148e-23 & 4.56381129542961e-23 & 1 \tabularnewline
81 & 5.55691312064633e-56 & 1.11138262412927e-55 & 1 \tabularnewline
82 & 4.34973043321855e-44 & 8.6994608664371e-44 & 1 \tabularnewline
83 & 2.07334947786838e-24 & 4.14669895573677e-24 & 1 \tabularnewline
84 & 6.37477947099195e-172 & 1.27495589419839e-171 & 1 \tabularnewline
85 & 0.999994439092195 & 1.11218156104005e-05 & 5.56090780520026e-06 \tabularnewline
86 & 8.22122114389993e-49 & 1.64424422877999e-48 & 1 \tabularnewline
87 & 1 & 1.77785200883509e-18 & 8.88926004417544e-19 \tabularnewline
88 & 1 & 0 & 0 \tabularnewline
89 & 1 & 0 & 0 \tabularnewline
90 & 1 & 0 & 0 \tabularnewline
91 & 1 & 0 & 0 \tabularnewline
92 & 1 & 0 & 0 \tabularnewline
93 & 1 & 0 & 0 \tabularnewline
94 & 1 & 0 & 0 \tabularnewline
95 & 1 & 0 & 0 \tabularnewline
96 & 1 & 0 & 0 \tabularnewline
97 & 1 & 0 & 0 \tabularnewline
98 & 1 & 0 & 0 \tabularnewline
99 & 1 & 0 & 0 \tabularnewline
100 & 1 & 0 & 0 \tabularnewline
101 & 1 & 0 & 0 \tabularnewline
102 & 1 & 0 & 0 \tabularnewline
103 & 1 & 0 & 0 \tabularnewline
104 & 1 & 0 & 0 \tabularnewline
105 & 1 & 0 & 0 \tabularnewline
106 & 1 & 0 & 0 \tabularnewline
107 & 1 & 0 & 0 \tabularnewline
108 & 1 & 0 & 0 \tabularnewline
109 & 1 & 0 & 0 \tabularnewline
110 & 1 & 0 & 0 \tabularnewline
111 & 1 & 0 & 0 \tabularnewline
112 & 1 & 0 & 0 \tabularnewline
113 & 1 & 0 & 0 \tabularnewline
114 & 1 & 0 & 0 \tabularnewline
115 & 1 & 0 & 0 \tabularnewline
116 & 1 & 0 & 0 \tabularnewline
117 & 1 & 0 & 0 \tabularnewline
118 & 1 & 0 & 0 \tabularnewline
119 & 1 & 0 & 0 \tabularnewline
120 & 1 & 0 & 0 \tabularnewline
121 & 1 & 0 & 0 \tabularnewline
122 & 1 & 0 & 0 \tabularnewline
123 & 1 & 0 & 0 \tabularnewline
124 & 1 & 0 & 0 \tabularnewline
125 & 1 & 0 & 0 \tabularnewline
126 & 1 & 4.82637652771979e-313 & 2.4131882638599e-313 \tabularnewline
127 & 1 & 1.26433901303691e-300 & 6.32169506518457e-301 \tabularnewline
128 & 1 & 2.70327879004758e-291 & 1.35163939502379e-291 \tabularnewline
129 & 1 & 1.67596633464668e-273 & 8.37983167323341e-274 \tabularnewline
130 & 1 & 1.08447576538326e-260 & 5.42237882691632e-261 \tabularnewline
131 & 1 & 5.19879017208721e-238 & 2.5993950860436e-238 \tabularnewline
132 & 1 & 1.36411442572075e-226 & 6.82057212860376e-227 \tabularnewline
133 & 1 & 8.95788869185114e-215 & 4.47894434592557e-215 \tabularnewline
134 & 1 & 5.3511665187501e-207 & 2.67558325937505e-207 \tabularnewline
135 & 1 & 7.33679864874105e-184 & 3.66839932437053e-184 \tabularnewline
136 & 1 & 4.16553051131741e-169 & 2.0827652556587e-169 \tabularnewline
137 & 1 & 2.3528289428652e-154 & 1.1764144714326e-154 \tabularnewline
138 & 1 & 0 & 0 \tabularnewline
139 & 1 & 5.42653903523516e-125 & 2.71326951761758e-125 \tabularnewline
140 & 1 & 3.53632767902074e-111 & 1.76816383951037e-111 \tabularnewline
141 & 1 & 3.1605362910222e-101 & 1.5802681455111e-101 \tabularnewline
142 & 1 & 1.31973586104299e-84 & 6.59867930521493e-85 \tabularnewline
143 & 1 & 1.0962664518886e-72 & 5.48133225944302e-73 \tabularnewline
144 & 1 & 2.46843131392784e-59 & 1.23421565696392e-59 \tabularnewline
145 & 1 & 4.67424110775585e-90 & 2.33712055387793e-90 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]9[/C][C]2.57848000771605e-47[/C][C]5.1569600154321e-47[/C][C]1[/C][/ROW]
[ROW][C]10[/C][C]7.44931664884029e-63[/C][C]1.48986332976806e-62[/C][C]1[/C][/ROW]
[ROW][C]11[/C][C]8.52158604199791e-82[/C][C]1.70431720839958e-81[/C][C]1[/C][/ROW]
[ROW][C]12[/C][C]1.29251298765192e-91[/C][C]2.58502597530383e-91[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]2.50959634239427e-121[/C][C]5.01919268478854e-121[/C][C]1[/C][/ROW]
[ROW][C]14[/C][C]5.74356440448428e-121[/C][C]1.14871288089686e-120[/C][C]1[/C][/ROW]
[ROW][C]15[/C][C]4.89564046552559e-136[/C][C]9.79128093105117e-136[/C][C]1[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]17[/C][C]1.01576150258641e-178[/C][C]2.03152300517283e-178[/C][C]1[/C][/ROW]
[ROW][C]18[/C][C]1.33264272039276e-182[/C][C]2.66528544078552e-182[/C][C]1[/C][/ROW]
[ROW][C]19[/C][C]2.28305408402311e-196[/C][C]4.56610816804622e-196[/C][C]1[/C][/ROW]
[ROW][C]20[/C][C]1.18058331616943e-221[/C][C]2.36116663233886e-221[/C][C]1[/C][/ROW]
[ROW][C]21[/C][C]1.22488021550532e-256[/C][C]2.44976043101064e-256[/C][C]1[/C][/ROW]
[ROW][C]22[/C][C]6.5721751380763e-245[/C][C]1.31443502761526e-244[/C][C]1[/C][/ROW]
[ROW][C]23[/C][C]7.41734804018213e-256[/C][C]1.48346960803643e-255[/C][C]1[/C][/ROW]
[ROW][C]24[/C][C]3.61528558182342e-274[/C][C]7.23057116364684e-274[/C][C]1[/C][/ROW]
[ROW][C]25[/C][C]7.18936413319469e-293[/C][C]1.43787282663894e-292[/C][C]1[/C][/ROW]
[ROW][C]26[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]27[/C][C]7.2133584292822e-322[/C][C]1.44267168585644e-321[/C][C]1[/C][/ROW]
[ROW][C]28[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]29[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]30[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]31[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]32[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]33[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]34[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]35[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]36[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]37[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]38[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]39[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]40[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]41[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]42[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]43[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]44[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]45[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]47[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]48[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]49[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]51[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]52[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]54[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]55[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]56[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]58[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]60[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]61[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]62[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]63[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]64[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]66[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]67[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]68[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]69[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]70[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]71[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]72[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]74[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]75[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]76[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]77[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]78[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]79[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]80[/C][C]2.2819056477148e-23[/C][C]4.56381129542961e-23[/C][C]1[/C][/ROW]
[ROW][C]81[/C][C]5.55691312064633e-56[/C][C]1.11138262412927e-55[/C][C]1[/C][/ROW]
[ROW][C]82[/C][C]4.34973043321855e-44[/C][C]8.6994608664371e-44[/C][C]1[/C][/ROW]
[ROW][C]83[/C][C]2.07334947786838e-24[/C][C]4.14669895573677e-24[/C][C]1[/C][/ROW]
[ROW][C]84[/C][C]6.37477947099195e-172[/C][C]1.27495589419839e-171[/C][C]1[/C][/ROW]
[ROW][C]85[/C][C]0.999994439092195[/C][C]1.11218156104005e-05[/C][C]5.56090780520026e-06[/C][/ROW]
[ROW][C]86[/C][C]8.22122114389993e-49[/C][C]1.64424422877999e-48[/C][C]1[/C][/ROW]
[ROW][C]87[/C][C]1[/C][C]1.77785200883509e-18[/C][C]8.88926004417544e-19[/C][/ROW]
[ROW][C]88[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]89[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]90[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]91[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]92[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]93[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]94[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]95[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]96[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]97[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]98[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]99[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]100[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]101[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]102[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]103[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]104[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]105[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]106[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]107[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]108[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]109[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]110[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]111[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]112[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]113[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]114[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]115[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]116[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]117[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]118[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]119[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]120[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]121[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]122[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]123[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]124[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]125[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]126[/C][C]1[/C][C]4.82637652771979e-313[/C][C]2.4131882638599e-313[/C][/ROW]
[ROW][C]127[/C][C]1[/C][C]1.26433901303691e-300[/C][C]6.32169506518457e-301[/C][/ROW]
[ROW][C]128[/C][C]1[/C][C]2.70327879004758e-291[/C][C]1.35163939502379e-291[/C][/ROW]
[ROW][C]129[/C][C]1[/C][C]1.67596633464668e-273[/C][C]8.37983167323341e-274[/C][/ROW]
[ROW][C]130[/C][C]1[/C][C]1.08447576538326e-260[/C][C]5.42237882691632e-261[/C][/ROW]
[ROW][C]131[/C][C]1[/C][C]5.19879017208721e-238[/C][C]2.5993950860436e-238[/C][/ROW]
[ROW][C]132[/C][C]1[/C][C]1.36411442572075e-226[/C][C]6.82057212860376e-227[/C][/ROW]
[ROW][C]133[/C][C]1[/C][C]8.95788869185114e-215[/C][C]4.47894434592557e-215[/C][/ROW]
[ROW][C]134[/C][C]1[/C][C]5.3511665187501e-207[/C][C]2.67558325937505e-207[/C][/ROW]
[ROW][C]135[/C][C]1[/C][C]7.33679864874105e-184[/C][C]3.66839932437053e-184[/C][/ROW]
[ROW][C]136[/C][C]1[/C][C]4.16553051131741e-169[/C][C]2.0827652556587e-169[/C][/ROW]
[ROW][C]137[/C][C]1[/C][C]2.3528289428652e-154[/C][C]1.1764144714326e-154[/C][/ROW]
[ROW][C]138[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]139[/C][C]1[/C][C]5.42653903523516e-125[/C][C]2.71326951761758e-125[/C][/ROW]
[ROW][C]140[/C][C]1[/C][C]3.53632767902074e-111[/C][C]1.76816383951037e-111[/C][/ROW]
[ROW][C]141[/C][C]1[/C][C]3.1605362910222e-101[/C][C]1.5802681455111e-101[/C][/ROW]
[ROW][C]142[/C][C]1[/C][C]1.31973586104299e-84[/C][C]6.59867930521493e-85[/C][/ROW]
[ROW][C]143[/C][C]1[/C][C]1.0962664518886e-72[/C][C]5.48133225944302e-73[/C][/ROW]
[ROW][C]144[/C][C]1[/C][C]2.46843131392784e-59[/C][C]1.23421565696392e-59[/C][/ROW]
[ROW][C]145[/C][C]1[/C][C]4.67424110775585e-90[/C][C]2.33712055387793e-90[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
92.57848000771605e-475.1569600154321e-471
107.44931664884029e-631.48986332976806e-621
118.52158604199791e-821.70431720839958e-811
121.29251298765192e-912.58502597530383e-911
132.50959634239427e-1215.01919268478854e-1211
145.74356440448428e-1211.14871288089686e-1201
154.89564046552559e-1369.79128093105117e-1361
16001
171.01576150258641e-1782.03152300517283e-1781
181.33264272039276e-1822.66528544078552e-1821
192.28305408402311e-1964.56610816804622e-1961
201.18058331616943e-2212.36116663233886e-2211
211.22488021550532e-2562.44976043101064e-2561
226.5721751380763e-2451.31443502761526e-2441
237.41734804018213e-2561.48346960803643e-2551
243.61528558182342e-2747.23057116364684e-2741
257.18936413319469e-2931.43787282663894e-2921
26001
277.2133584292822e-3221.44267168585644e-3211
28001
29001
30001
31001
32001
33001
34001
35001
36001
37001
38001
39001
40001
41001
42001
43001
44001
45001
46001
47001
48001
49001
50001
51001
52001
53001
54001
55001
56001
57001
58001
59001
60001
61001
62001
63001
64001
65001
66001
67001
68001
69001
70001
71001
72001
73001
74001
75001
76001
77001
78001
79001
802.2819056477148e-234.56381129542961e-231
815.55691312064633e-561.11138262412927e-551
824.34973043321855e-448.6994608664371e-441
832.07334947786838e-244.14669895573677e-241
846.37477947099195e-1721.27495589419839e-1711
850.9999944390921951.11218156104005e-055.56090780520026e-06
868.22122114389993e-491.64424422877999e-481
8711.77785200883509e-188.88926004417544e-19
88100
89100
90100
91100
92100
93100
94100
95100
96100
97100
98100
99100
100100
101100
102100
103100
104100
105100
106100
107100
108100
109100
110100
111100
112100
113100
114100
115100
116100
117100
118100
119100
120100
121100
122100
123100
124100
125100
12614.82637652771979e-3132.4131882638599e-313
12711.26433901303691e-3006.32169506518457e-301
12812.70327879004758e-2911.35163939502379e-291
12911.67596633464668e-2738.37983167323341e-274
13011.08447576538326e-2605.42237882691632e-261
13115.19879017208721e-2382.5993950860436e-238
13211.36411442572075e-2266.82057212860376e-227
13318.95788869185114e-2154.47894434592557e-215
13415.3511665187501e-2072.67558325937505e-207
13517.33679864874105e-1843.66839932437053e-184
13614.16553051131741e-1692.0827652556587e-169
13712.3528289428652e-1541.1764144714326e-154
138100
13915.42653903523516e-1252.71326951761758e-125
14013.53632767902074e-1111.76816383951037e-111
14113.1605362910222e-1011.5802681455111e-101
14211.31973586104299e-846.59867930521493e-85
14311.0962664518886e-725.48133225944302e-73
14412.46843131392784e-591.23421565696392e-59
14514.67424110775585e-902.33712055387793e-90







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1371NOK
5% type I error level1371NOK
10% type I error level1371NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 137 & 1 & NOK \tabularnewline
5% type I error level & 137 & 1 & NOK \tabularnewline
10% type I error level & 137 & 1 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=200867&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]137[/C][C]1[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]137[/C][C]1[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]137[/C][C]1[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=200867&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=200867&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1371NOK
5% type I error level1371NOK
10% type I error level1371NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}