Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 18 Dec 2012 16:02:40 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/18/t1355864639nb14o9wxlhnieui.htm/, Retrieved Fri, 01 Nov 2024 01:03:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=201654, Retrieved Fri, 01 Nov 2024 01:03:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact203
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Classical Decomposition] [HPC Retail Sales] [2008-03-02 16:19:32] [74be16979710d4c4e7c6647856088456]
-  M D  [Classical Decomposition] [Monthly births in...] [2010-11-29 10:34:40] [3cdf9c5e1f396891d2638627ccb7b98d]
- RMPD    [Multiple Regression] [] [2011-11-27 14:30:12] [71981af30b475eff259f311228330cd7]
- R P         [Multiple Regression] [Deel 4: tijdreeks...] [2012-12-18 21:02:40] [706ccf0adf4bc144f067c6c403344984] [Current]
Feedback Forum

Post a new message
Dataseries X:
9700
9081
9084
9743
8587
9731
9563
9998
9437
10038
9918
9252
9737
9035
9133
9487
8700
9627
8947
9283
8829
9947
9628
9318
9605
8640
9214
9567
8547
9185
9470
9123
9278
10170
9434
9655
9429
8739
9552
9687
9019
9672
9206
9069
9788
10312
10105
9863
9656
9295
9946
9701
9049
10190
9706
9765
9893
9994
10433
10073
10112
9266
9820
10097
9115
10411
9678
10408
10153
10368
10581
10597
10680
9738
9556




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'George Udny Yule' @ yule.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 9164.15747747748 + 11.6144523470839t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  9164.15747747748 +  11.6144523470839t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  9164.15747747748 +  11.6144523470839t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 9164.15747747748 + 11.6144523470839t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)9164.15747747748102.1043489.752900
t11.61445234708392.3346654.97484e-062e-06

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 9164.15747747748 & 102.10434 & 89.7529 & 0 & 0 \tabularnewline
t & 11.6144523470839 & 2.334665 & 4.9748 & 4e-06 & 2e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]9164.15747747748[/C][C]102.10434[/C][C]89.7529[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]t[/C][C]11.6144523470839[/C][C]2.334665[/C][C]4.9748[/C][C]4e-06[/C][C]2e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)9164.15747747748102.1043489.752900
t11.61445234708392.3346654.97484e-062e-06







Multiple Linear Regression - Regression Statistics
Multiple R0.503175160490124
R-squared0.253185242134262
Adjusted R-squared0.242954902985416
F-TEST (value)24.7484700605286
F-TEST (DF numerator)1
F-TEST (DF denominator)73
p-value4.20387907296149e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation437.710760269625
Sum Squared Residuals13986121.8048743

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.503175160490124 \tabularnewline
R-squared & 0.253185242134262 \tabularnewline
Adjusted R-squared & 0.242954902985416 \tabularnewline
F-TEST (value) & 24.7484700605286 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 73 \tabularnewline
p-value & 4.20387907296149e-06 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 437.710760269625 \tabularnewline
Sum Squared Residuals & 13986121.8048743 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.503175160490124[/C][/ROW]
[ROW][C]R-squared[/C][C]0.253185242134262[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.242954902985416[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]24.7484700605286[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]73[/C][/ROW]
[ROW][C]p-value[/C][C]4.20387907296149e-06[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]437.710760269625[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]13986121.8048743[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.503175160490124
R-squared0.253185242134262
Adjusted R-squared0.242954902985416
F-TEST (value)24.7484700605286
F-TEST (DF numerator)1
F-TEST (DF denominator)73
p-value4.20387907296149e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation437.710760269625
Sum Squared Residuals13986121.8048743







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
197009175.77192982457524.22807017543
290819187.38638217165-106.386382171645
390849199.00083451873-115.000834518729
497439210.61528686581532.384713134187
585879222.2297392129-635.229739212897
697319233.84419155998497.155808440019
795639245.45864390706317.541356092935
899989257.07309625415740.926903745852
994379268.68754860123168.312451398768
10100389280.30200094832757.697999051684
1199189291.9164532954626.0835467046
1292529303.53090564248-51.5309056424842
1397379315.14535798957421.854642010432
1490359326.75981033665-291.759810336652
1591339338.37426268374-205.374262683736
1694879349.98871503082137.01128496918
1787009361.6031673779-661.603167377904
1896279373.21761972499253.782380275012
1989479384.83207207207-437.832072072072
2092839396.44652441916-113.446524419156
2188299408.06097676624-579.06097676624
2299479419.67542911332527.324570886676
2396289431.28988146041196.710118539592
2493189442.90433380749-124.904333807491
2596059454.51878615457150.481213845425
2686409466.13323850166-826.133238501659
2792149477.74769084874-263.747690848743
2895679489.3621431958377.6378568041728
2985479500.97659554291-953.976595542911
3091859512.59104789-327.591047889995
3194709524.20550023708-54.205500237079
3291239535.81995258416-412.819952584163
3392789547.43440493125-269.434404931247
34101709559.04885727833610.951142721669
3594349570.66330962542-136.663309625415
3696559582.277761972572.7222380275013
3794299593.89221431958-164.892214319583
3887399605.50666666667-866.506666666667
3995529617.12111901375-65.1211190137505
4096879628.7355713608358.2644286391656
4190199640.35002370792-621.350023707918
4296729651.96447605520.0355239449977
4392069663.57892840209-457.578928402086
4490699675.19338074917-606.19338074917
4597889686.80783309625101.192166903746
46103129698.42228544334613.577714556662
47101059710.03673779042394.963262209578
4898639721.65119013751141.348809862494
4996569733.26564248459-77.2656424845899
5092959744.88009483167-449.880094831674
5199469756.49454717876189.505452821242
5297019768.10899952584-67.1089995258416
5390499779.72345187293-730.723451872926
54101909791.33790422001398.662095779991
5597069802.95235656709-96.9523565670934
5697659814.56680891418-49.5668089141774
5798939826.1812612612666.8187387387387
5899949837.79571360835156.204286391655
59104339849.41016595543583.589834044571
60100739861.02461830251211.975381697487
61101129872.6390706496239.360929350403
6292669884.25352299668-618.253522996681
6398209895.86797534376-75.867975343765
64100979907.48242769085189.517572309151
6591159919.09688003793-804.096880037933
66104119930.71133238502480.288667614983
6796789942.3257847321-264.325784732101
68104089953.94023707918454.059762920815
69101539965.55468942627187.445310573731
70103689977.16914177335390.830858226647
71105819988.78359412044592.216405879564
721059710000.3980464675596.60195353248
731068010012.0124988146667.987501185396
74973810023.6269511617-285.626951161688
75955610035.2414035088-479.241403508772

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 9700 & 9175.77192982457 & 524.22807017543 \tabularnewline
2 & 9081 & 9187.38638217165 & -106.386382171645 \tabularnewline
3 & 9084 & 9199.00083451873 & -115.000834518729 \tabularnewline
4 & 9743 & 9210.61528686581 & 532.384713134187 \tabularnewline
5 & 8587 & 9222.2297392129 & -635.229739212897 \tabularnewline
6 & 9731 & 9233.84419155998 & 497.155808440019 \tabularnewline
7 & 9563 & 9245.45864390706 & 317.541356092935 \tabularnewline
8 & 9998 & 9257.07309625415 & 740.926903745852 \tabularnewline
9 & 9437 & 9268.68754860123 & 168.312451398768 \tabularnewline
10 & 10038 & 9280.30200094832 & 757.697999051684 \tabularnewline
11 & 9918 & 9291.9164532954 & 626.0835467046 \tabularnewline
12 & 9252 & 9303.53090564248 & -51.5309056424842 \tabularnewline
13 & 9737 & 9315.14535798957 & 421.854642010432 \tabularnewline
14 & 9035 & 9326.75981033665 & -291.759810336652 \tabularnewline
15 & 9133 & 9338.37426268374 & -205.374262683736 \tabularnewline
16 & 9487 & 9349.98871503082 & 137.01128496918 \tabularnewline
17 & 8700 & 9361.6031673779 & -661.603167377904 \tabularnewline
18 & 9627 & 9373.21761972499 & 253.782380275012 \tabularnewline
19 & 8947 & 9384.83207207207 & -437.832072072072 \tabularnewline
20 & 9283 & 9396.44652441916 & -113.446524419156 \tabularnewline
21 & 8829 & 9408.06097676624 & -579.06097676624 \tabularnewline
22 & 9947 & 9419.67542911332 & 527.324570886676 \tabularnewline
23 & 9628 & 9431.28988146041 & 196.710118539592 \tabularnewline
24 & 9318 & 9442.90433380749 & -124.904333807491 \tabularnewline
25 & 9605 & 9454.51878615457 & 150.481213845425 \tabularnewline
26 & 8640 & 9466.13323850166 & -826.133238501659 \tabularnewline
27 & 9214 & 9477.74769084874 & -263.747690848743 \tabularnewline
28 & 9567 & 9489.36214319583 & 77.6378568041728 \tabularnewline
29 & 8547 & 9500.97659554291 & -953.976595542911 \tabularnewline
30 & 9185 & 9512.59104789 & -327.591047889995 \tabularnewline
31 & 9470 & 9524.20550023708 & -54.205500237079 \tabularnewline
32 & 9123 & 9535.81995258416 & -412.819952584163 \tabularnewline
33 & 9278 & 9547.43440493125 & -269.434404931247 \tabularnewline
34 & 10170 & 9559.04885727833 & 610.951142721669 \tabularnewline
35 & 9434 & 9570.66330962542 & -136.663309625415 \tabularnewline
36 & 9655 & 9582.2777619725 & 72.7222380275013 \tabularnewline
37 & 9429 & 9593.89221431958 & -164.892214319583 \tabularnewline
38 & 8739 & 9605.50666666667 & -866.506666666667 \tabularnewline
39 & 9552 & 9617.12111901375 & -65.1211190137505 \tabularnewline
40 & 9687 & 9628.73557136083 & 58.2644286391656 \tabularnewline
41 & 9019 & 9640.35002370792 & -621.350023707918 \tabularnewline
42 & 9672 & 9651.964476055 & 20.0355239449977 \tabularnewline
43 & 9206 & 9663.57892840209 & -457.578928402086 \tabularnewline
44 & 9069 & 9675.19338074917 & -606.19338074917 \tabularnewline
45 & 9788 & 9686.80783309625 & 101.192166903746 \tabularnewline
46 & 10312 & 9698.42228544334 & 613.577714556662 \tabularnewline
47 & 10105 & 9710.03673779042 & 394.963262209578 \tabularnewline
48 & 9863 & 9721.65119013751 & 141.348809862494 \tabularnewline
49 & 9656 & 9733.26564248459 & -77.2656424845899 \tabularnewline
50 & 9295 & 9744.88009483167 & -449.880094831674 \tabularnewline
51 & 9946 & 9756.49454717876 & 189.505452821242 \tabularnewline
52 & 9701 & 9768.10899952584 & -67.1089995258416 \tabularnewline
53 & 9049 & 9779.72345187293 & -730.723451872926 \tabularnewline
54 & 10190 & 9791.33790422001 & 398.662095779991 \tabularnewline
55 & 9706 & 9802.95235656709 & -96.9523565670934 \tabularnewline
56 & 9765 & 9814.56680891418 & -49.5668089141774 \tabularnewline
57 & 9893 & 9826.18126126126 & 66.8187387387387 \tabularnewline
58 & 9994 & 9837.79571360835 & 156.204286391655 \tabularnewline
59 & 10433 & 9849.41016595543 & 583.589834044571 \tabularnewline
60 & 10073 & 9861.02461830251 & 211.975381697487 \tabularnewline
61 & 10112 & 9872.6390706496 & 239.360929350403 \tabularnewline
62 & 9266 & 9884.25352299668 & -618.253522996681 \tabularnewline
63 & 9820 & 9895.86797534376 & -75.867975343765 \tabularnewline
64 & 10097 & 9907.48242769085 & 189.517572309151 \tabularnewline
65 & 9115 & 9919.09688003793 & -804.096880037933 \tabularnewline
66 & 10411 & 9930.71133238502 & 480.288667614983 \tabularnewline
67 & 9678 & 9942.3257847321 & -264.325784732101 \tabularnewline
68 & 10408 & 9953.94023707918 & 454.059762920815 \tabularnewline
69 & 10153 & 9965.55468942627 & 187.445310573731 \tabularnewline
70 & 10368 & 9977.16914177335 & 390.830858226647 \tabularnewline
71 & 10581 & 9988.78359412044 & 592.216405879564 \tabularnewline
72 & 10597 & 10000.3980464675 & 596.60195353248 \tabularnewline
73 & 10680 & 10012.0124988146 & 667.987501185396 \tabularnewline
74 & 9738 & 10023.6269511617 & -285.626951161688 \tabularnewline
75 & 9556 & 10035.2414035088 & -479.241403508772 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]9700[/C][C]9175.77192982457[/C][C]524.22807017543[/C][/ROW]
[ROW][C]2[/C][C]9081[/C][C]9187.38638217165[/C][C]-106.386382171645[/C][/ROW]
[ROW][C]3[/C][C]9084[/C][C]9199.00083451873[/C][C]-115.000834518729[/C][/ROW]
[ROW][C]4[/C][C]9743[/C][C]9210.61528686581[/C][C]532.384713134187[/C][/ROW]
[ROW][C]5[/C][C]8587[/C][C]9222.2297392129[/C][C]-635.229739212897[/C][/ROW]
[ROW][C]6[/C][C]9731[/C][C]9233.84419155998[/C][C]497.155808440019[/C][/ROW]
[ROW][C]7[/C][C]9563[/C][C]9245.45864390706[/C][C]317.541356092935[/C][/ROW]
[ROW][C]8[/C][C]9998[/C][C]9257.07309625415[/C][C]740.926903745852[/C][/ROW]
[ROW][C]9[/C][C]9437[/C][C]9268.68754860123[/C][C]168.312451398768[/C][/ROW]
[ROW][C]10[/C][C]10038[/C][C]9280.30200094832[/C][C]757.697999051684[/C][/ROW]
[ROW][C]11[/C][C]9918[/C][C]9291.9164532954[/C][C]626.0835467046[/C][/ROW]
[ROW][C]12[/C][C]9252[/C][C]9303.53090564248[/C][C]-51.5309056424842[/C][/ROW]
[ROW][C]13[/C][C]9737[/C][C]9315.14535798957[/C][C]421.854642010432[/C][/ROW]
[ROW][C]14[/C][C]9035[/C][C]9326.75981033665[/C][C]-291.759810336652[/C][/ROW]
[ROW][C]15[/C][C]9133[/C][C]9338.37426268374[/C][C]-205.374262683736[/C][/ROW]
[ROW][C]16[/C][C]9487[/C][C]9349.98871503082[/C][C]137.01128496918[/C][/ROW]
[ROW][C]17[/C][C]8700[/C][C]9361.6031673779[/C][C]-661.603167377904[/C][/ROW]
[ROW][C]18[/C][C]9627[/C][C]9373.21761972499[/C][C]253.782380275012[/C][/ROW]
[ROW][C]19[/C][C]8947[/C][C]9384.83207207207[/C][C]-437.832072072072[/C][/ROW]
[ROW][C]20[/C][C]9283[/C][C]9396.44652441916[/C][C]-113.446524419156[/C][/ROW]
[ROW][C]21[/C][C]8829[/C][C]9408.06097676624[/C][C]-579.06097676624[/C][/ROW]
[ROW][C]22[/C][C]9947[/C][C]9419.67542911332[/C][C]527.324570886676[/C][/ROW]
[ROW][C]23[/C][C]9628[/C][C]9431.28988146041[/C][C]196.710118539592[/C][/ROW]
[ROW][C]24[/C][C]9318[/C][C]9442.90433380749[/C][C]-124.904333807491[/C][/ROW]
[ROW][C]25[/C][C]9605[/C][C]9454.51878615457[/C][C]150.481213845425[/C][/ROW]
[ROW][C]26[/C][C]8640[/C][C]9466.13323850166[/C][C]-826.133238501659[/C][/ROW]
[ROW][C]27[/C][C]9214[/C][C]9477.74769084874[/C][C]-263.747690848743[/C][/ROW]
[ROW][C]28[/C][C]9567[/C][C]9489.36214319583[/C][C]77.6378568041728[/C][/ROW]
[ROW][C]29[/C][C]8547[/C][C]9500.97659554291[/C][C]-953.976595542911[/C][/ROW]
[ROW][C]30[/C][C]9185[/C][C]9512.59104789[/C][C]-327.591047889995[/C][/ROW]
[ROW][C]31[/C][C]9470[/C][C]9524.20550023708[/C][C]-54.205500237079[/C][/ROW]
[ROW][C]32[/C][C]9123[/C][C]9535.81995258416[/C][C]-412.819952584163[/C][/ROW]
[ROW][C]33[/C][C]9278[/C][C]9547.43440493125[/C][C]-269.434404931247[/C][/ROW]
[ROW][C]34[/C][C]10170[/C][C]9559.04885727833[/C][C]610.951142721669[/C][/ROW]
[ROW][C]35[/C][C]9434[/C][C]9570.66330962542[/C][C]-136.663309625415[/C][/ROW]
[ROW][C]36[/C][C]9655[/C][C]9582.2777619725[/C][C]72.7222380275013[/C][/ROW]
[ROW][C]37[/C][C]9429[/C][C]9593.89221431958[/C][C]-164.892214319583[/C][/ROW]
[ROW][C]38[/C][C]8739[/C][C]9605.50666666667[/C][C]-866.506666666667[/C][/ROW]
[ROW][C]39[/C][C]9552[/C][C]9617.12111901375[/C][C]-65.1211190137505[/C][/ROW]
[ROW][C]40[/C][C]9687[/C][C]9628.73557136083[/C][C]58.2644286391656[/C][/ROW]
[ROW][C]41[/C][C]9019[/C][C]9640.35002370792[/C][C]-621.350023707918[/C][/ROW]
[ROW][C]42[/C][C]9672[/C][C]9651.964476055[/C][C]20.0355239449977[/C][/ROW]
[ROW][C]43[/C][C]9206[/C][C]9663.57892840209[/C][C]-457.578928402086[/C][/ROW]
[ROW][C]44[/C][C]9069[/C][C]9675.19338074917[/C][C]-606.19338074917[/C][/ROW]
[ROW][C]45[/C][C]9788[/C][C]9686.80783309625[/C][C]101.192166903746[/C][/ROW]
[ROW][C]46[/C][C]10312[/C][C]9698.42228544334[/C][C]613.577714556662[/C][/ROW]
[ROW][C]47[/C][C]10105[/C][C]9710.03673779042[/C][C]394.963262209578[/C][/ROW]
[ROW][C]48[/C][C]9863[/C][C]9721.65119013751[/C][C]141.348809862494[/C][/ROW]
[ROW][C]49[/C][C]9656[/C][C]9733.26564248459[/C][C]-77.2656424845899[/C][/ROW]
[ROW][C]50[/C][C]9295[/C][C]9744.88009483167[/C][C]-449.880094831674[/C][/ROW]
[ROW][C]51[/C][C]9946[/C][C]9756.49454717876[/C][C]189.505452821242[/C][/ROW]
[ROW][C]52[/C][C]9701[/C][C]9768.10899952584[/C][C]-67.1089995258416[/C][/ROW]
[ROW][C]53[/C][C]9049[/C][C]9779.72345187293[/C][C]-730.723451872926[/C][/ROW]
[ROW][C]54[/C][C]10190[/C][C]9791.33790422001[/C][C]398.662095779991[/C][/ROW]
[ROW][C]55[/C][C]9706[/C][C]9802.95235656709[/C][C]-96.9523565670934[/C][/ROW]
[ROW][C]56[/C][C]9765[/C][C]9814.56680891418[/C][C]-49.5668089141774[/C][/ROW]
[ROW][C]57[/C][C]9893[/C][C]9826.18126126126[/C][C]66.8187387387387[/C][/ROW]
[ROW][C]58[/C][C]9994[/C][C]9837.79571360835[/C][C]156.204286391655[/C][/ROW]
[ROW][C]59[/C][C]10433[/C][C]9849.41016595543[/C][C]583.589834044571[/C][/ROW]
[ROW][C]60[/C][C]10073[/C][C]9861.02461830251[/C][C]211.975381697487[/C][/ROW]
[ROW][C]61[/C][C]10112[/C][C]9872.6390706496[/C][C]239.360929350403[/C][/ROW]
[ROW][C]62[/C][C]9266[/C][C]9884.25352299668[/C][C]-618.253522996681[/C][/ROW]
[ROW][C]63[/C][C]9820[/C][C]9895.86797534376[/C][C]-75.867975343765[/C][/ROW]
[ROW][C]64[/C][C]10097[/C][C]9907.48242769085[/C][C]189.517572309151[/C][/ROW]
[ROW][C]65[/C][C]9115[/C][C]9919.09688003793[/C][C]-804.096880037933[/C][/ROW]
[ROW][C]66[/C][C]10411[/C][C]9930.71133238502[/C][C]480.288667614983[/C][/ROW]
[ROW][C]67[/C][C]9678[/C][C]9942.3257847321[/C][C]-264.325784732101[/C][/ROW]
[ROW][C]68[/C][C]10408[/C][C]9953.94023707918[/C][C]454.059762920815[/C][/ROW]
[ROW][C]69[/C][C]10153[/C][C]9965.55468942627[/C][C]187.445310573731[/C][/ROW]
[ROW][C]70[/C][C]10368[/C][C]9977.16914177335[/C][C]390.830858226647[/C][/ROW]
[ROW][C]71[/C][C]10581[/C][C]9988.78359412044[/C][C]592.216405879564[/C][/ROW]
[ROW][C]72[/C][C]10597[/C][C]10000.3980464675[/C][C]596.60195353248[/C][/ROW]
[ROW][C]73[/C][C]10680[/C][C]10012.0124988146[/C][C]667.987501185396[/C][/ROW]
[ROW][C]74[/C][C]9738[/C][C]10023.6269511617[/C][C]-285.626951161688[/C][/ROW]
[ROW][C]75[/C][C]9556[/C][C]10035.2414035088[/C][C]-479.241403508772[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
197009175.77192982457524.22807017543
290819187.38638217165-106.386382171645
390849199.00083451873-115.000834518729
497439210.61528686581532.384713134187
585879222.2297392129-635.229739212897
697319233.84419155998497.155808440019
795639245.45864390706317.541356092935
899989257.07309625415740.926903745852
994379268.68754860123168.312451398768
10100389280.30200094832757.697999051684
1199189291.9164532954626.0835467046
1292529303.53090564248-51.5309056424842
1397379315.14535798957421.854642010432
1490359326.75981033665-291.759810336652
1591339338.37426268374-205.374262683736
1694879349.98871503082137.01128496918
1787009361.6031673779-661.603167377904
1896279373.21761972499253.782380275012
1989479384.83207207207-437.832072072072
2092839396.44652441916-113.446524419156
2188299408.06097676624-579.06097676624
2299479419.67542911332527.324570886676
2396289431.28988146041196.710118539592
2493189442.90433380749-124.904333807491
2596059454.51878615457150.481213845425
2686409466.13323850166-826.133238501659
2792149477.74769084874-263.747690848743
2895679489.3621431958377.6378568041728
2985479500.97659554291-953.976595542911
3091859512.59104789-327.591047889995
3194709524.20550023708-54.205500237079
3291239535.81995258416-412.819952584163
3392789547.43440493125-269.434404931247
34101709559.04885727833610.951142721669
3594349570.66330962542-136.663309625415
3696559582.277761972572.7222380275013
3794299593.89221431958-164.892214319583
3887399605.50666666667-866.506666666667
3995529617.12111901375-65.1211190137505
4096879628.7355713608358.2644286391656
4190199640.35002370792-621.350023707918
4296729651.96447605520.0355239449977
4392069663.57892840209-457.578928402086
4490699675.19338074917-606.19338074917
4597889686.80783309625101.192166903746
46103129698.42228544334613.577714556662
47101059710.03673779042394.963262209578
4898639721.65119013751141.348809862494
4996569733.26564248459-77.2656424845899
5092959744.88009483167-449.880094831674
5199469756.49454717876189.505452821242
5297019768.10899952584-67.1089995258416
5390499779.72345187293-730.723451872926
54101909791.33790422001398.662095779991
5597069802.95235656709-96.9523565670934
5697659814.56680891418-49.5668089141774
5798939826.1812612612666.8187387387387
5899949837.79571360835156.204286391655
59104339849.41016595543583.589834044571
60100739861.02461830251211.975381697487
61101129872.6390706496239.360929350403
6292669884.25352299668-618.253522996681
6398209895.86797534376-75.867975343765
64100979907.48242769085189.517572309151
6591159919.09688003793-804.096880037933
66104119930.71133238502480.288667614983
6796789942.3257847321-264.325784732101
68104089953.94023707918454.059762920815
69101539965.55468942627187.445310573731
70103689977.16914177335390.830858226647
71105819988.78359412044592.216405879564
721059710000.3980464675596.60195353248
731068010012.0124988146667.987501185396
74973810023.6269511617-285.626951161688
75955610035.2414035088-479.241403508772







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.6886340335393120.6227319329213760.311365966460688
60.7866609660628360.4266780678743280.213339033937164
70.7018294178043470.5963411643913060.298170582195653
80.7136077433544940.5727845132910110.286392256645506
90.6335179078656790.7329641842686420.366482092134321
100.6236651664223830.7526696671552350.376334833577617
110.5706972861550590.8586054276898810.429302713844941
120.6311510466684640.7376979066630730.368848953331536
130.5755720808507650.8488558382984690.424427919149235
140.6669780301461680.6660439397076640.333021969853832
150.6509414209663670.6981171580672660.349058579033633
160.5835278122838260.8329443754323470.416472187716174
170.6912953498360290.6174093003279430.308704650163971
180.6641456296137120.6717087407725750.335854370386287
190.6388119817782380.7223760364435240.361188018221762
200.5649708962574160.8700582074851670.435029103742584
210.5517974003888750.8964051992222510.448202599611125
220.6859827115907970.6280345768184060.314017288409203
230.6688744202213270.6622511595573470.331125579778673
240.6037716679884270.7924566640231460.396228332011573
250.5779770920435790.8440458159128420.422022907956421
260.6618462315029880.6763075369940240.338153768497012
270.5950236878259070.8099526243481870.404976312174093
280.5663390212490090.8673219575019820.433660978750991
290.678809738161430.642380523677140.32119026183857
300.6168733785511970.7662532428976060.383126621448803
310.5717912390296910.8564175219406180.428208760970309
320.5131269079067120.9737461841865760.486873092093288
330.4493070553517260.8986141107034510.550692944648274
340.6717820812957460.6564358374085080.328217918704254
350.6133486818939980.7733026362120040.386651318106002
360.5855227681814930.8289544636370150.414477231818507
370.5209895675917780.9580208648164450.479010432408222
380.6019785713861290.7960428572277410.398021428613871
390.5493622861940470.9012754276119050.450637713805953
400.5150636569505020.9698726860989950.484936343049498
410.5141956027358660.9716087945282680.485804397264134
420.4704733721752270.9409467443504550.529526627824773
430.4378562209214390.8757124418428770.562143779078562
440.4622317394712950.924463478942590.537768260528705
450.4311262853421660.8622525706843310.568873714657834
460.5823050046127850.8353899907744290.417694995387215
470.6231542845407160.7536914309185680.376845715459284
480.5871413386288620.8257173227422750.412858661371138
490.5191306609380390.9617386781239230.480869339061961
500.4895134835365460.9790269670730920.510486516463454
510.4542838383968280.9085676767936550.545716161603172
520.3848114864238550.7696229728477110.615188513576145
530.491548593911950.9830971878239010.50845140608805
540.4961137848625230.9922275697250460.503886215137477
550.4261999609280720.8523999218561450.573800039071928
560.3575942679054110.7151885358108210.642405732094589
570.2928775526645620.5857551053291240.707122447335438
580.2376220607863830.4752441215727660.762377939213617
590.2926718827434630.5853437654869260.707328117256537
600.2512379695184610.5024759390369220.748762030481539
610.2260437506690620.4520875013381250.773956249330938
620.2492566946951630.4985133893903250.750743305304837
630.1844969291990680.3689938583981360.815503070800932
640.1346594948542030.2693189897084070.865340505145797
650.4251765617529970.8503531235059930.574823438247003
660.3454108122852280.6908216245704570.654589187714772
670.5506284807539750.898743038492050.449371519246025
680.4583776849217530.9167553698435050.541622315078247
690.5439411134104180.9121177731791640.456058886589582
700.6398943689944840.7202112620110310.360105631005516

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0.688634033539312 & 0.622731932921376 & 0.311365966460688 \tabularnewline
6 & 0.786660966062836 & 0.426678067874328 & 0.213339033937164 \tabularnewline
7 & 0.701829417804347 & 0.596341164391306 & 0.298170582195653 \tabularnewline
8 & 0.713607743354494 & 0.572784513291011 & 0.286392256645506 \tabularnewline
9 & 0.633517907865679 & 0.732964184268642 & 0.366482092134321 \tabularnewline
10 & 0.623665166422383 & 0.752669667155235 & 0.376334833577617 \tabularnewline
11 & 0.570697286155059 & 0.858605427689881 & 0.429302713844941 \tabularnewline
12 & 0.631151046668464 & 0.737697906663073 & 0.368848953331536 \tabularnewline
13 & 0.575572080850765 & 0.848855838298469 & 0.424427919149235 \tabularnewline
14 & 0.666978030146168 & 0.666043939707664 & 0.333021969853832 \tabularnewline
15 & 0.650941420966367 & 0.698117158067266 & 0.349058579033633 \tabularnewline
16 & 0.583527812283826 & 0.832944375432347 & 0.416472187716174 \tabularnewline
17 & 0.691295349836029 & 0.617409300327943 & 0.308704650163971 \tabularnewline
18 & 0.664145629613712 & 0.671708740772575 & 0.335854370386287 \tabularnewline
19 & 0.638811981778238 & 0.722376036443524 & 0.361188018221762 \tabularnewline
20 & 0.564970896257416 & 0.870058207485167 & 0.435029103742584 \tabularnewline
21 & 0.551797400388875 & 0.896405199222251 & 0.448202599611125 \tabularnewline
22 & 0.685982711590797 & 0.628034576818406 & 0.314017288409203 \tabularnewline
23 & 0.668874420221327 & 0.662251159557347 & 0.331125579778673 \tabularnewline
24 & 0.603771667988427 & 0.792456664023146 & 0.396228332011573 \tabularnewline
25 & 0.577977092043579 & 0.844045815912842 & 0.422022907956421 \tabularnewline
26 & 0.661846231502988 & 0.676307536994024 & 0.338153768497012 \tabularnewline
27 & 0.595023687825907 & 0.809952624348187 & 0.404976312174093 \tabularnewline
28 & 0.566339021249009 & 0.867321957501982 & 0.433660978750991 \tabularnewline
29 & 0.67880973816143 & 0.64238052367714 & 0.32119026183857 \tabularnewline
30 & 0.616873378551197 & 0.766253242897606 & 0.383126621448803 \tabularnewline
31 & 0.571791239029691 & 0.856417521940618 & 0.428208760970309 \tabularnewline
32 & 0.513126907906712 & 0.973746184186576 & 0.486873092093288 \tabularnewline
33 & 0.449307055351726 & 0.898614110703451 & 0.550692944648274 \tabularnewline
34 & 0.671782081295746 & 0.656435837408508 & 0.328217918704254 \tabularnewline
35 & 0.613348681893998 & 0.773302636212004 & 0.386651318106002 \tabularnewline
36 & 0.585522768181493 & 0.828954463637015 & 0.414477231818507 \tabularnewline
37 & 0.520989567591778 & 0.958020864816445 & 0.479010432408222 \tabularnewline
38 & 0.601978571386129 & 0.796042857227741 & 0.398021428613871 \tabularnewline
39 & 0.549362286194047 & 0.901275427611905 & 0.450637713805953 \tabularnewline
40 & 0.515063656950502 & 0.969872686098995 & 0.484936343049498 \tabularnewline
41 & 0.514195602735866 & 0.971608794528268 & 0.485804397264134 \tabularnewline
42 & 0.470473372175227 & 0.940946744350455 & 0.529526627824773 \tabularnewline
43 & 0.437856220921439 & 0.875712441842877 & 0.562143779078562 \tabularnewline
44 & 0.462231739471295 & 0.92446347894259 & 0.537768260528705 \tabularnewline
45 & 0.431126285342166 & 0.862252570684331 & 0.568873714657834 \tabularnewline
46 & 0.582305004612785 & 0.835389990774429 & 0.417694995387215 \tabularnewline
47 & 0.623154284540716 & 0.753691430918568 & 0.376845715459284 \tabularnewline
48 & 0.587141338628862 & 0.825717322742275 & 0.412858661371138 \tabularnewline
49 & 0.519130660938039 & 0.961738678123923 & 0.480869339061961 \tabularnewline
50 & 0.489513483536546 & 0.979026967073092 & 0.510486516463454 \tabularnewline
51 & 0.454283838396828 & 0.908567676793655 & 0.545716161603172 \tabularnewline
52 & 0.384811486423855 & 0.769622972847711 & 0.615188513576145 \tabularnewline
53 & 0.49154859391195 & 0.983097187823901 & 0.50845140608805 \tabularnewline
54 & 0.496113784862523 & 0.992227569725046 & 0.503886215137477 \tabularnewline
55 & 0.426199960928072 & 0.852399921856145 & 0.573800039071928 \tabularnewline
56 & 0.357594267905411 & 0.715188535810821 & 0.642405732094589 \tabularnewline
57 & 0.292877552664562 & 0.585755105329124 & 0.707122447335438 \tabularnewline
58 & 0.237622060786383 & 0.475244121572766 & 0.762377939213617 \tabularnewline
59 & 0.292671882743463 & 0.585343765486926 & 0.707328117256537 \tabularnewline
60 & 0.251237969518461 & 0.502475939036922 & 0.748762030481539 \tabularnewline
61 & 0.226043750669062 & 0.452087501338125 & 0.773956249330938 \tabularnewline
62 & 0.249256694695163 & 0.498513389390325 & 0.750743305304837 \tabularnewline
63 & 0.184496929199068 & 0.368993858398136 & 0.815503070800932 \tabularnewline
64 & 0.134659494854203 & 0.269318989708407 & 0.865340505145797 \tabularnewline
65 & 0.425176561752997 & 0.850353123505993 & 0.574823438247003 \tabularnewline
66 & 0.345410812285228 & 0.690821624570457 & 0.654589187714772 \tabularnewline
67 & 0.550628480753975 & 0.89874303849205 & 0.449371519246025 \tabularnewline
68 & 0.458377684921753 & 0.916755369843505 & 0.541622315078247 \tabularnewline
69 & 0.543941113410418 & 0.912117773179164 & 0.456058886589582 \tabularnewline
70 & 0.639894368994484 & 0.720211262011031 & 0.360105631005516 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0.688634033539312[/C][C]0.622731932921376[/C][C]0.311365966460688[/C][/ROW]
[ROW][C]6[/C][C]0.786660966062836[/C][C]0.426678067874328[/C][C]0.213339033937164[/C][/ROW]
[ROW][C]7[/C][C]0.701829417804347[/C][C]0.596341164391306[/C][C]0.298170582195653[/C][/ROW]
[ROW][C]8[/C][C]0.713607743354494[/C][C]0.572784513291011[/C][C]0.286392256645506[/C][/ROW]
[ROW][C]9[/C][C]0.633517907865679[/C][C]0.732964184268642[/C][C]0.366482092134321[/C][/ROW]
[ROW][C]10[/C][C]0.623665166422383[/C][C]0.752669667155235[/C][C]0.376334833577617[/C][/ROW]
[ROW][C]11[/C][C]0.570697286155059[/C][C]0.858605427689881[/C][C]0.429302713844941[/C][/ROW]
[ROW][C]12[/C][C]0.631151046668464[/C][C]0.737697906663073[/C][C]0.368848953331536[/C][/ROW]
[ROW][C]13[/C][C]0.575572080850765[/C][C]0.848855838298469[/C][C]0.424427919149235[/C][/ROW]
[ROW][C]14[/C][C]0.666978030146168[/C][C]0.666043939707664[/C][C]0.333021969853832[/C][/ROW]
[ROW][C]15[/C][C]0.650941420966367[/C][C]0.698117158067266[/C][C]0.349058579033633[/C][/ROW]
[ROW][C]16[/C][C]0.583527812283826[/C][C]0.832944375432347[/C][C]0.416472187716174[/C][/ROW]
[ROW][C]17[/C][C]0.691295349836029[/C][C]0.617409300327943[/C][C]0.308704650163971[/C][/ROW]
[ROW][C]18[/C][C]0.664145629613712[/C][C]0.671708740772575[/C][C]0.335854370386287[/C][/ROW]
[ROW][C]19[/C][C]0.638811981778238[/C][C]0.722376036443524[/C][C]0.361188018221762[/C][/ROW]
[ROW][C]20[/C][C]0.564970896257416[/C][C]0.870058207485167[/C][C]0.435029103742584[/C][/ROW]
[ROW][C]21[/C][C]0.551797400388875[/C][C]0.896405199222251[/C][C]0.448202599611125[/C][/ROW]
[ROW][C]22[/C][C]0.685982711590797[/C][C]0.628034576818406[/C][C]0.314017288409203[/C][/ROW]
[ROW][C]23[/C][C]0.668874420221327[/C][C]0.662251159557347[/C][C]0.331125579778673[/C][/ROW]
[ROW][C]24[/C][C]0.603771667988427[/C][C]0.792456664023146[/C][C]0.396228332011573[/C][/ROW]
[ROW][C]25[/C][C]0.577977092043579[/C][C]0.844045815912842[/C][C]0.422022907956421[/C][/ROW]
[ROW][C]26[/C][C]0.661846231502988[/C][C]0.676307536994024[/C][C]0.338153768497012[/C][/ROW]
[ROW][C]27[/C][C]0.595023687825907[/C][C]0.809952624348187[/C][C]0.404976312174093[/C][/ROW]
[ROW][C]28[/C][C]0.566339021249009[/C][C]0.867321957501982[/C][C]0.433660978750991[/C][/ROW]
[ROW][C]29[/C][C]0.67880973816143[/C][C]0.64238052367714[/C][C]0.32119026183857[/C][/ROW]
[ROW][C]30[/C][C]0.616873378551197[/C][C]0.766253242897606[/C][C]0.383126621448803[/C][/ROW]
[ROW][C]31[/C][C]0.571791239029691[/C][C]0.856417521940618[/C][C]0.428208760970309[/C][/ROW]
[ROW][C]32[/C][C]0.513126907906712[/C][C]0.973746184186576[/C][C]0.486873092093288[/C][/ROW]
[ROW][C]33[/C][C]0.449307055351726[/C][C]0.898614110703451[/C][C]0.550692944648274[/C][/ROW]
[ROW][C]34[/C][C]0.671782081295746[/C][C]0.656435837408508[/C][C]0.328217918704254[/C][/ROW]
[ROW][C]35[/C][C]0.613348681893998[/C][C]0.773302636212004[/C][C]0.386651318106002[/C][/ROW]
[ROW][C]36[/C][C]0.585522768181493[/C][C]0.828954463637015[/C][C]0.414477231818507[/C][/ROW]
[ROW][C]37[/C][C]0.520989567591778[/C][C]0.958020864816445[/C][C]0.479010432408222[/C][/ROW]
[ROW][C]38[/C][C]0.601978571386129[/C][C]0.796042857227741[/C][C]0.398021428613871[/C][/ROW]
[ROW][C]39[/C][C]0.549362286194047[/C][C]0.901275427611905[/C][C]0.450637713805953[/C][/ROW]
[ROW][C]40[/C][C]0.515063656950502[/C][C]0.969872686098995[/C][C]0.484936343049498[/C][/ROW]
[ROW][C]41[/C][C]0.514195602735866[/C][C]0.971608794528268[/C][C]0.485804397264134[/C][/ROW]
[ROW][C]42[/C][C]0.470473372175227[/C][C]0.940946744350455[/C][C]0.529526627824773[/C][/ROW]
[ROW][C]43[/C][C]0.437856220921439[/C][C]0.875712441842877[/C][C]0.562143779078562[/C][/ROW]
[ROW][C]44[/C][C]0.462231739471295[/C][C]0.92446347894259[/C][C]0.537768260528705[/C][/ROW]
[ROW][C]45[/C][C]0.431126285342166[/C][C]0.862252570684331[/C][C]0.568873714657834[/C][/ROW]
[ROW][C]46[/C][C]0.582305004612785[/C][C]0.835389990774429[/C][C]0.417694995387215[/C][/ROW]
[ROW][C]47[/C][C]0.623154284540716[/C][C]0.753691430918568[/C][C]0.376845715459284[/C][/ROW]
[ROW][C]48[/C][C]0.587141338628862[/C][C]0.825717322742275[/C][C]0.412858661371138[/C][/ROW]
[ROW][C]49[/C][C]0.519130660938039[/C][C]0.961738678123923[/C][C]0.480869339061961[/C][/ROW]
[ROW][C]50[/C][C]0.489513483536546[/C][C]0.979026967073092[/C][C]0.510486516463454[/C][/ROW]
[ROW][C]51[/C][C]0.454283838396828[/C][C]0.908567676793655[/C][C]0.545716161603172[/C][/ROW]
[ROW][C]52[/C][C]0.384811486423855[/C][C]0.769622972847711[/C][C]0.615188513576145[/C][/ROW]
[ROW][C]53[/C][C]0.49154859391195[/C][C]0.983097187823901[/C][C]0.50845140608805[/C][/ROW]
[ROW][C]54[/C][C]0.496113784862523[/C][C]0.992227569725046[/C][C]0.503886215137477[/C][/ROW]
[ROW][C]55[/C][C]0.426199960928072[/C][C]0.852399921856145[/C][C]0.573800039071928[/C][/ROW]
[ROW][C]56[/C][C]0.357594267905411[/C][C]0.715188535810821[/C][C]0.642405732094589[/C][/ROW]
[ROW][C]57[/C][C]0.292877552664562[/C][C]0.585755105329124[/C][C]0.707122447335438[/C][/ROW]
[ROW][C]58[/C][C]0.237622060786383[/C][C]0.475244121572766[/C][C]0.762377939213617[/C][/ROW]
[ROW][C]59[/C][C]0.292671882743463[/C][C]0.585343765486926[/C][C]0.707328117256537[/C][/ROW]
[ROW][C]60[/C][C]0.251237969518461[/C][C]0.502475939036922[/C][C]0.748762030481539[/C][/ROW]
[ROW][C]61[/C][C]0.226043750669062[/C][C]0.452087501338125[/C][C]0.773956249330938[/C][/ROW]
[ROW][C]62[/C][C]0.249256694695163[/C][C]0.498513389390325[/C][C]0.750743305304837[/C][/ROW]
[ROW][C]63[/C][C]0.184496929199068[/C][C]0.368993858398136[/C][C]0.815503070800932[/C][/ROW]
[ROW][C]64[/C][C]0.134659494854203[/C][C]0.269318989708407[/C][C]0.865340505145797[/C][/ROW]
[ROW][C]65[/C][C]0.425176561752997[/C][C]0.850353123505993[/C][C]0.574823438247003[/C][/ROW]
[ROW][C]66[/C][C]0.345410812285228[/C][C]0.690821624570457[/C][C]0.654589187714772[/C][/ROW]
[ROW][C]67[/C][C]0.550628480753975[/C][C]0.89874303849205[/C][C]0.449371519246025[/C][/ROW]
[ROW][C]68[/C][C]0.458377684921753[/C][C]0.916755369843505[/C][C]0.541622315078247[/C][/ROW]
[ROW][C]69[/C][C]0.543941113410418[/C][C]0.912117773179164[/C][C]0.456058886589582[/C][/ROW]
[ROW][C]70[/C][C]0.639894368994484[/C][C]0.720211262011031[/C][C]0.360105631005516[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.6886340335393120.6227319329213760.311365966460688
60.7866609660628360.4266780678743280.213339033937164
70.7018294178043470.5963411643913060.298170582195653
80.7136077433544940.5727845132910110.286392256645506
90.6335179078656790.7329641842686420.366482092134321
100.6236651664223830.7526696671552350.376334833577617
110.5706972861550590.8586054276898810.429302713844941
120.6311510466684640.7376979066630730.368848953331536
130.5755720808507650.8488558382984690.424427919149235
140.6669780301461680.6660439397076640.333021969853832
150.6509414209663670.6981171580672660.349058579033633
160.5835278122838260.8329443754323470.416472187716174
170.6912953498360290.6174093003279430.308704650163971
180.6641456296137120.6717087407725750.335854370386287
190.6388119817782380.7223760364435240.361188018221762
200.5649708962574160.8700582074851670.435029103742584
210.5517974003888750.8964051992222510.448202599611125
220.6859827115907970.6280345768184060.314017288409203
230.6688744202213270.6622511595573470.331125579778673
240.6037716679884270.7924566640231460.396228332011573
250.5779770920435790.8440458159128420.422022907956421
260.6618462315029880.6763075369940240.338153768497012
270.5950236878259070.8099526243481870.404976312174093
280.5663390212490090.8673219575019820.433660978750991
290.678809738161430.642380523677140.32119026183857
300.6168733785511970.7662532428976060.383126621448803
310.5717912390296910.8564175219406180.428208760970309
320.5131269079067120.9737461841865760.486873092093288
330.4493070553517260.8986141107034510.550692944648274
340.6717820812957460.6564358374085080.328217918704254
350.6133486818939980.7733026362120040.386651318106002
360.5855227681814930.8289544636370150.414477231818507
370.5209895675917780.9580208648164450.479010432408222
380.6019785713861290.7960428572277410.398021428613871
390.5493622861940470.9012754276119050.450637713805953
400.5150636569505020.9698726860989950.484936343049498
410.5141956027358660.9716087945282680.485804397264134
420.4704733721752270.9409467443504550.529526627824773
430.4378562209214390.8757124418428770.562143779078562
440.4622317394712950.924463478942590.537768260528705
450.4311262853421660.8622525706843310.568873714657834
460.5823050046127850.8353899907744290.417694995387215
470.6231542845407160.7536914309185680.376845715459284
480.5871413386288620.8257173227422750.412858661371138
490.5191306609380390.9617386781239230.480869339061961
500.4895134835365460.9790269670730920.510486516463454
510.4542838383968280.9085676767936550.545716161603172
520.3848114864238550.7696229728477110.615188513576145
530.491548593911950.9830971878239010.50845140608805
540.4961137848625230.9922275697250460.503886215137477
550.4261999609280720.8523999218561450.573800039071928
560.3575942679054110.7151885358108210.642405732094589
570.2928775526645620.5857551053291240.707122447335438
580.2376220607863830.4752441215727660.762377939213617
590.2926718827434630.5853437654869260.707328117256537
600.2512379695184610.5024759390369220.748762030481539
610.2260437506690620.4520875013381250.773956249330938
620.2492566946951630.4985133893903250.750743305304837
630.1844969291990680.3689938583981360.815503070800932
640.1346594948542030.2693189897084070.865340505145797
650.4251765617529970.8503531235059930.574823438247003
660.3454108122852280.6908216245704570.654589187714772
670.5506284807539750.898743038492050.449371519246025
680.4583776849217530.9167553698435050.541622315078247
690.5439411134104180.9121177731791640.456058886589582
700.6398943689944840.7202112620110310.360105631005516







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201654&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201654&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201654&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}