Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 05 Jul 2013 11:03:03 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Jul/05/t13730366458z0tpc8fcqz7n2p.htm/, Retrieved Fri, 01 Nov 2024 00:04:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=210787, Retrieved Fri, 01 Nov 2024 00:04:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsJeroen Biesemans
Estimated Impact235
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Tijdreeks 1 stap 32] [2013-07-05 15:03:03] [09688f513f3d2798cb35a3603f8bd204] [Current]
Feedback Forum

Post a new message
Dataseries X:
1155168
1144638
1133976
1111920
1330188
1318626
1155168
1046484
1056978
1056978
1068672
1089696
1155168
1133976
1166694
1220472
1526400
1526400
1461096
1395624
1449402
1514838
1526400
1559118
1657302
1591836
1591836
1690020
1962198
1984254
1929480
1798572
1896726
1896726
1907256
1962198
2005446
2027502
2027502
2092938
2344086
2409390
2419884
2256426
2344086
2311368
2245902
2387334
2419884
2365110
2376672
2452638
2736510
2877744
2877744
2812440
2910492
2812440
2757528
2965434
2997984
2920992
3117198
3194196
3423126
3575052
3554034
3542334
3629994
3619332
3488592
3684768
3750240
3684768
3956946
4087854
4392612
4512858
4480272
4414800
4469610
4535046
4316646
4490766
4600518
4556238
4839942
4937958
5352606
5428566
5330544
5385324
5418042
5450760
5242854
5439066
5547744
5439066
5755650
5853708
6278808
6344280
6365304
6475020
6475020
6518268
6322056
6420246
6485550
6365304
6714474
6779916
7215582
7292580
7401258
7499448
7509942
7521504
7325298
7521504




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210787&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210787&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210787&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.972370526401443
beta0.0390650774282604
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.972370526401443 \tabularnewline
beta & 0.0390650774282604 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210787&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.972370526401443[/C][/ROW]
[ROW][C]beta[/C][C]0.0390650774282604[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210787&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210787&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.972370526401443
beta0.0390650774282604
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
311339761134108-132
411119201123444.63297417-11524.6329741681
513301881101265.63383076228922.36616924
613186261321585.9929861-2959.99298609607
711551681316318.34301227-161150.343012266
810464841151109.64570845-104625.645708448
910569781036889.6165578420088.3834421647
1010569781044700.9054896712277.0945103328
1110686721045383.0816870423288.918312959
1210896961057657.4773527832038.5226472204
1311551681079656.7370585975511.2629414087
1411339761146795.95856709-12819.9585670901
1511666941127557.5282361939136.4717638076
1612204721160326.6268618660145.3731381407
1715264001215808.82787493310591.172125067
1815264001526615.1746585-215.174658500357
1914610961535194.41684476-74098.4168447612
2013956241469117.08948563-73493.0894856299
2114494021400836.6759624248565.3240375833
2215148381453087.0555300361750.9444699697
2315264001520504.398476295895.60152370576
2415591181533833.6009266625284.3990733395
2516573021566976.3450106190325.6549893897
2615918361666794.37528118-74958.375281184
2715918361603047.73743442-11211.7374344221
2816900201600860.5653571189159.4346428872
2919621981699658.14891078262539.85108922
3019842541977018.507144277235.49285572628
3119294802006403.27764701-76923.2776470142
3217985721951032.55332677-152460.553326767
3318967261816420.2830913680305.7169086393
3418967261911193.5448454-14467.5448454018
3519072561913262.51992803-6006.51992802974
3619621981923330.5842198238867.4157801836
3720054461978509.1481557526936.8518442502
3820275022023109.999335624392.00066437805
3920275022045955.73505705-18453.7350570497
4020929382045885.9721134347052.0278865709
4123440862111299.3879883232786.612011695
4224093902366158.2085687543231.7914312482
4324198842438341.69963198-18457.6996319816
4422564262449839.01860377-193413.018603773
4523440862283868.0072858660217.9927141424
4623113682366807.7403614-55439.7403614037
4722459022335179.38364063-89277.3836406325
4823873342267257.03333085120076.966669151
4924198842407465.8940596712418.1059403331
5023651102443462.16252798-78352.1625279789
5123766722388219.83318107-11547.8331810674
5224526382397497.4118549355140.5881450712
5327365102473715.40136653262794.598633469
5428777442761832.47500972115911.52499028
5528777442911527.76089593-33783.7608959265
5628124402914380.46202865-101940.462028653
5729104922847087.3129463763404.6870536255
5828124402942979.38683215-130539.386832149
5927575282845327.32561129-87799.3256112854
6029654342785899.31874986179534.681250139
6129979842993238.776775454745.22322455421
6229209923030798.36825901-109806.368259006
6331171982952800.29338528164397.706614723
6431941963147674.9460180546521.0539819524
6534231263229696.9520712193429.047928795
6635750523461915.50510102113136.494898982
6735540343620357.5184125-66323.518412502
6835423343601778.55685567-59444.5568556655
6936299943587630.4498880342363.5501119671
7036193323674086.75585673-54754.7558567296
7134885923664028.18416056-175436.184160559
7236847683529958.47699101154809.52300899
7337502403722890.5146711427349.4853288624
7436847683792923.05857978-108155.058579776
7539569463727086.62895535229859.371044653
7640878543998656.8441802489197.1558197555
7743926124136839.48621119255772.513788814
7845128584446710.8023813666147.197618641
7944802724574708.69963067-94436.6996306721
8044148004542972.30121499-128172.301214989
8144696104473563.67971332-3953.67971331812
8245350464524791.4011803810254.5988196237
8343166464590224.36234479-273578.362344794
8444907664369274.4438724121491.556127602
8546005184537093.8154269263424.1845730813
8645562384650859.40028072-94621.4002807224
8748399424607351.85364072232590.146359283
8849379584890850.2773293547107.722670652
8953526064995780.48028735356825.519712646
9054285665415425.4184052213140.5815947792
9153305445501380.4069124-170836.406912396
9253853245401952.24864855-16628.2486485532
9354180425451839.9222492-33797.922249198
9454507605483748.47254681-32988.4725468075
9552428545515191.01666956-272337.016669556
9654390665303553.1705925135512.829407503
9755477445493644.0477743854099.9522256237
9854390665606626.46888806-167560.468888056
9957556505497707.92292749257942.077072512
10058537085812333.62963841374.3703619977
10162788085917946.91703033360861.082969668
10263442806347927.23896938-3647.23896937631
10363653046423331.86899246-58027.8689924637
10464750206443654.1462155731365.8537844252
10564750206552091.69956226-77071.6995622618
10665182686552160.14731682-33892.1473168219
10763220566592927.70106425-270871.701064254
10864202466392974.0621129727271.9378870307
10964855506483962.454778491587.54522150848
11063653046550036.40509153-184732.405091532
11167144746427921.13199548286552.868004518
11267799166774954.687831994961.3121680133
11372155826848365.37335353367216.626646474
11472925807287971.441301834608.55869817082
11574012587375163.1708077826094.8291922202
11674994487484238.7475979915209.2524020113
11775099427583307.24490829-73365.2449082863
11875215047593461.67926589-71957.6792658856
11973252987602251.4239991-276953.423999102
12075215047401189.07055633120314.929443669

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 1133976 & 1134108 & -132 \tabularnewline
4 & 1111920 & 1123444.63297417 & -11524.6329741681 \tabularnewline
5 & 1330188 & 1101265.63383076 & 228922.36616924 \tabularnewline
6 & 1318626 & 1321585.9929861 & -2959.99298609607 \tabularnewline
7 & 1155168 & 1316318.34301227 & -161150.343012266 \tabularnewline
8 & 1046484 & 1151109.64570845 & -104625.645708448 \tabularnewline
9 & 1056978 & 1036889.61655784 & 20088.3834421647 \tabularnewline
10 & 1056978 & 1044700.90548967 & 12277.0945103328 \tabularnewline
11 & 1068672 & 1045383.08168704 & 23288.918312959 \tabularnewline
12 & 1089696 & 1057657.47735278 & 32038.5226472204 \tabularnewline
13 & 1155168 & 1079656.73705859 & 75511.2629414087 \tabularnewline
14 & 1133976 & 1146795.95856709 & -12819.9585670901 \tabularnewline
15 & 1166694 & 1127557.52823619 & 39136.4717638076 \tabularnewline
16 & 1220472 & 1160326.62686186 & 60145.3731381407 \tabularnewline
17 & 1526400 & 1215808.82787493 & 310591.172125067 \tabularnewline
18 & 1526400 & 1526615.1746585 & -215.174658500357 \tabularnewline
19 & 1461096 & 1535194.41684476 & -74098.4168447612 \tabularnewline
20 & 1395624 & 1469117.08948563 & -73493.0894856299 \tabularnewline
21 & 1449402 & 1400836.67596242 & 48565.3240375833 \tabularnewline
22 & 1514838 & 1453087.05553003 & 61750.9444699697 \tabularnewline
23 & 1526400 & 1520504.39847629 & 5895.60152370576 \tabularnewline
24 & 1559118 & 1533833.60092666 & 25284.3990733395 \tabularnewline
25 & 1657302 & 1566976.34501061 & 90325.6549893897 \tabularnewline
26 & 1591836 & 1666794.37528118 & -74958.375281184 \tabularnewline
27 & 1591836 & 1603047.73743442 & -11211.7374344221 \tabularnewline
28 & 1690020 & 1600860.56535711 & 89159.4346428872 \tabularnewline
29 & 1962198 & 1699658.14891078 & 262539.85108922 \tabularnewline
30 & 1984254 & 1977018.50714427 & 7235.49285572628 \tabularnewline
31 & 1929480 & 2006403.27764701 & -76923.2776470142 \tabularnewline
32 & 1798572 & 1951032.55332677 & -152460.553326767 \tabularnewline
33 & 1896726 & 1816420.28309136 & 80305.7169086393 \tabularnewline
34 & 1896726 & 1911193.5448454 & -14467.5448454018 \tabularnewline
35 & 1907256 & 1913262.51992803 & -6006.51992802974 \tabularnewline
36 & 1962198 & 1923330.58421982 & 38867.4157801836 \tabularnewline
37 & 2005446 & 1978509.14815575 & 26936.8518442502 \tabularnewline
38 & 2027502 & 2023109.99933562 & 4392.00066437805 \tabularnewline
39 & 2027502 & 2045955.73505705 & -18453.7350570497 \tabularnewline
40 & 2092938 & 2045885.97211343 & 47052.0278865709 \tabularnewline
41 & 2344086 & 2111299.3879883 & 232786.612011695 \tabularnewline
42 & 2409390 & 2366158.20856875 & 43231.7914312482 \tabularnewline
43 & 2419884 & 2438341.69963198 & -18457.6996319816 \tabularnewline
44 & 2256426 & 2449839.01860377 & -193413.018603773 \tabularnewline
45 & 2344086 & 2283868.00728586 & 60217.9927141424 \tabularnewline
46 & 2311368 & 2366807.7403614 & -55439.7403614037 \tabularnewline
47 & 2245902 & 2335179.38364063 & -89277.3836406325 \tabularnewline
48 & 2387334 & 2267257.03333085 & 120076.966669151 \tabularnewline
49 & 2419884 & 2407465.89405967 & 12418.1059403331 \tabularnewline
50 & 2365110 & 2443462.16252798 & -78352.1625279789 \tabularnewline
51 & 2376672 & 2388219.83318107 & -11547.8331810674 \tabularnewline
52 & 2452638 & 2397497.41185493 & 55140.5881450712 \tabularnewline
53 & 2736510 & 2473715.40136653 & 262794.598633469 \tabularnewline
54 & 2877744 & 2761832.47500972 & 115911.52499028 \tabularnewline
55 & 2877744 & 2911527.76089593 & -33783.7608959265 \tabularnewline
56 & 2812440 & 2914380.46202865 & -101940.462028653 \tabularnewline
57 & 2910492 & 2847087.31294637 & 63404.6870536255 \tabularnewline
58 & 2812440 & 2942979.38683215 & -130539.386832149 \tabularnewline
59 & 2757528 & 2845327.32561129 & -87799.3256112854 \tabularnewline
60 & 2965434 & 2785899.31874986 & 179534.681250139 \tabularnewline
61 & 2997984 & 2993238.77677545 & 4745.22322455421 \tabularnewline
62 & 2920992 & 3030798.36825901 & -109806.368259006 \tabularnewline
63 & 3117198 & 2952800.29338528 & 164397.706614723 \tabularnewline
64 & 3194196 & 3147674.94601805 & 46521.0539819524 \tabularnewline
65 & 3423126 & 3229696.9520712 & 193429.047928795 \tabularnewline
66 & 3575052 & 3461915.50510102 & 113136.494898982 \tabularnewline
67 & 3554034 & 3620357.5184125 & -66323.518412502 \tabularnewline
68 & 3542334 & 3601778.55685567 & -59444.5568556655 \tabularnewline
69 & 3629994 & 3587630.44988803 & 42363.5501119671 \tabularnewline
70 & 3619332 & 3674086.75585673 & -54754.7558567296 \tabularnewline
71 & 3488592 & 3664028.18416056 & -175436.184160559 \tabularnewline
72 & 3684768 & 3529958.47699101 & 154809.52300899 \tabularnewline
73 & 3750240 & 3722890.51467114 & 27349.4853288624 \tabularnewline
74 & 3684768 & 3792923.05857978 & -108155.058579776 \tabularnewline
75 & 3956946 & 3727086.62895535 & 229859.371044653 \tabularnewline
76 & 4087854 & 3998656.84418024 & 89197.1558197555 \tabularnewline
77 & 4392612 & 4136839.48621119 & 255772.513788814 \tabularnewline
78 & 4512858 & 4446710.80238136 & 66147.197618641 \tabularnewline
79 & 4480272 & 4574708.69963067 & -94436.6996306721 \tabularnewline
80 & 4414800 & 4542972.30121499 & -128172.301214989 \tabularnewline
81 & 4469610 & 4473563.67971332 & -3953.67971331812 \tabularnewline
82 & 4535046 & 4524791.40118038 & 10254.5988196237 \tabularnewline
83 & 4316646 & 4590224.36234479 & -273578.362344794 \tabularnewline
84 & 4490766 & 4369274.4438724 & 121491.556127602 \tabularnewline
85 & 4600518 & 4537093.81542692 & 63424.1845730813 \tabularnewline
86 & 4556238 & 4650859.40028072 & -94621.4002807224 \tabularnewline
87 & 4839942 & 4607351.85364072 & 232590.146359283 \tabularnewline
88 & 4937958 & 4890850.27732935 & 47107.722670652 \tabularnewline
89 & 5352606 & 4995780.48028735 & 356825.519712646 \tabularnewline
90 & 5428566 & 5415425.41840522 & 13140.5815947792 \tabularnewline
91 & 5330544 & 5501380.4069124 & -170836.406912396 \tabularnewline
92 & 5385324 & 5401952.24864855 & -16628.2486485532 \tabularnewline
93 & 5418042 & 5451839.9222492 & -33797.922249198 \tabularnewline
94 & 5450760 & 5483748.47254681 & -32988.4725468075 \tabularnewline
95 & 5242854 & 5515191.01666956 & -272337.016669556 \tabularnewline
96 & 5439066 & 5303553.1705925 & 135512.829407503 \tabularnewline
97 & 5547744 & 5493644.04777438 & 54099.9522256237 \tabularnewline
98 & 5439066 & 5606626.46888806 & -167560.468888056 \tabularnewline
99 & 5755650 & 5497707.92292749 & 257942.077072512 \tabularnewline
100 & 5853708 & 5812333.629638 & 41374.3703619977 \tabularnewline
101 & 6278808 & 5917946.91703033 & 360861.082969668 \tabularnewline
102 & 6344280 & 6347927.23896938 & -3647.23896937631 \tabularnewline
103 & 6365304 & 6423331.86899246 & -58027.8689924637 \tabularnewline
104 & 6475020 & 6443654.14621557 & 31365.8537844252 \tabularnewline
105 & 6475020 & 6552091.69956226 & -77071.6995622618 \tabularnewline
106 & 6518268 & 6552160.14731682 & -33892.1473168219 \tabularnewline
107 & 6322056 & 6592927.70106425 & -270871.701064254 \tabularnewline
108 & 6420246 & 6392974.06211297 & 27271.9378870307 \tabularnewline
109 & 6485550 & 6483962.45477849 & 1587.54522150848 \tabularnewline
110 & 6365304 & 6550036.40509153 & -184732.405091532 \tabularnewline
111 & 6714474 & 6427921.13199548 & 286552.868004518 \tabularnewline
112 & 6779916 & 6774954.68783199 & 4961.3121680133 \tabularnewline
113 & 7215582 & 6848365.37335353 & 367216.626646474 \tabularnewline
114 & 7292580 & 7287971.44130183 & 4608.55869817082 \tabularnewline
115 & 7401258 & 7375163.17080778 & 26094.8291922202 \tabularnewline
116 & 7499448 & 7484238.74759799 & 15209.2524020113 \tabularnewline
117 & 7509942 & 7583307.24490829 & -73365.2449082863 \tabularnewline
118 & 7521504 & 7593461.67926589 & -71957.6792658856 \tabularnewline
119 & 7325298 & 7602251.4239991 & -276953.423999102 \tabularnewline
120 & 7521504 & 7401189.07055633 & 120314.929443669 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210787&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]1133976[/C][C]1134108[/C][C]-132[/C][/ROW]
[ROW][C]4[/C][C]1111920[/C][C]1123444.63297417[/C][C]-11524.6329741681[/C][/ROW]
[ROW][C]5[/C][C]1330188[/C][C]1101265.63383076[/C][C]228922.36616924[/C][/ROW]
[ROW][C]6[/C][C]1318626[/C][C]1321585.9929861[/C][C]-2959.99298609607[/C][/ROW]
[ROW][C]7[/C][C]1155168[/C][C]1316318.34301227[/C][C]-161150.343012266[/C][/ROW]
[ROW][C]8[/C][C]1046484[/C][C]1151109.64570845[/C][C]-104625.645708448[/C][/ROW]
[ROW][C]9[/C][C]1056978[/C][C]1036889.61655784[/C][C]20088.3834421647[/C][/ROW]
[ROW][C]10[/C][C]1056978[/C][C]1044700.90548967[/C][C]12277.0945103328[/C][/ROW]
[ROW][C]11[/C][C]1068672[/C][C]1045383.08168704[/C][C]23288.918312959[/C][/ROW]
[ROW][C]12[/C][C]1089696[/C][C]1057657.47735278[/C][C]32038.5226472204[/C][/ROW]
[ROW][C]13[/C][C]1155168[/C][C]1079656.73705859[/C][C]75511.2629414087[/C][/ROW]
[ROW][C]14[/C][C]1133976[/C][C]1146795.95856709[/C][C]-12819.9585670901[/C][/ROW]
[ROW][C]15[/C][C]1166694[/C][C]1127557.52823619[/C][C]39136.4717638076[/C][/ROW]
[ROW][C]16[/C][C]1220472[/C][C]1160326.62686186[/C][C]60145.3731381407[/C][/ROW]
[ROW][C]17[/C][C]1526400[/C][C]1215808.82787493[/C][C]310591.172125067[/C][/ROW]
[ROW][C]18[/C][C]1526400[/C][C]1526615.1746585[/C][C]-215.174658500357[/C][/ROW]
[ROW][C]19[/C][C]1461096[/C][C]1535194.41684476[/C][C]-74098.4168447612[/C][/ROW]
[ROW][C]20[/C][C]1395624[/C][C]1469117.08948563[/C][C]-73493.0894856299[/C][/ROW]
[ROW][C]21[/C][C]1449402[/C][C]1400836.67596242[/C][C]48565.3240375833[/C][/ROW]
[ROW][C]22[/C][C]1514838[/C][C]1453087.05553003[/C][C]61750.9444699697[/C][/ROW]
[ROW][C]23[/C][C]1526400[/C][C]1520504.39847629[/C][C]5895.60152370576[/C][/ROW]
[ROW][C]24[/C][C]1559118[/C][C]1533833.60092666[/C][C]25284.3990733395[/C][/ROW]
[ROW][C]25[/C][C]1657302[/C][C]1566976.34501061[/C][C]90325.6549893897[/C][/ROW]
[ROW][C]26[/C][C]1591836[/C][C]1666794.37528118[/C][C]-74958.375281184[/C][/ROW]
[ROW][C]27[/C][C]1591836[/C][C]1603047.73743442[/C][C]-11211.7374344221[/C][/ROW]
[ROW][C]28[/C][C]1690020[/C][C]1600860.56535711[/C][C]89159.4346428872[/C][/ROW]
[ROW][C]29[/C][C]1962198[/C][C]1699658.14891078[/C][C]262539.85108922[/C][/ROW]
[ROW][C]30[/C][C]1984254[/C][C]1977018.50714427[/C][C]7235.49285572628[/C][/ROW]
[ROW][C]31[/C][C]1929480[/C][C]2006403.27764701[/C][C]-76923.2776470142[/C][/ROW]
[ROW][C]32[/C][C]1798572[/C][C]1951032.55332677[/C][C]-152460.553326767[/C][/ROW]
[ROW][C]33[/C][C]1896726[/C][C]1816420.28309136[/C][C]80305.7169086393[/C][/ROW]
[ROW][C]34[/C][C]1896726[/C][C]1911193.5448454[/C][C]-14467.5448454018[/C][/ROW]
[ROW][C]35[/C][C]1907256[/C][C]1913262.51992803[/C][C]-6006.51992802974[/C][/ROW]
[ROW][C]36[/C][C]1962198[/C][C]1923330.58421982[/C][C]38867.4157801836[/C][/ROW]
[ROW][C]37[/C][C]2005446[/C][C]1978509.14815575[/C][C]26936.8518442502[/C][/ROW]
[ROW][C]38[/C][C]2027502[/C][C]2023109.99933562[/C][C]4392.00066437805[/C][/ROW]
[ROW][C]39[/C][C]2027502[/C][C]2045955.73505705[/C][C]-18453.7350570497[/C][/ROW]
[ROW][C]40[/C][C]2092938[/C][C]2045885.97211343[/C][C]47052.0278865709[/C][/ROW]
[ROW][C]41[/C][C]2344086[/C][C]2111299.3879883[/C][C]232786.612011695[/C][/ROW]
[ROW][C]42[/C][C]2409390[/C][C]2366158.20856875[/C][C]43231.7914312482[/C][/ROW]
[ROW][C]43[/C][C]2419884[/C][C]2438341.69963198[/C][C]-18457.6996319816[/C][/ROW]
[ROW][C]44[/C][C]2256426[/C][C]2449839.01860377[/C][C]-193413.018603773[/C][/ROW]
[ROW][C]45[/C][C]2344086[/C][C]2283868.00728586[/C][C]60217.9927141424[/C][/ROW]
[ROW][C]46[/C][C]2311368[/C][C]2366807.7403614[/C][C]-55439.7403614037[/C][/ROW]
[ROW][C]47[/C][C]2245902[/C][C]2335179.38364063[/C][C]-89277.3836406325[/C][/ROW]
[ROW][C]48[/C][C]2387334[/C][C]2267257.03333085[/C][C]120076.966669151[/C][/ROW]
[ROW][C]49[/C][C]2419884[/C][C]2407465.89405967[/C][C]12418.1059403331[/C][/ROW]
[ROW][C]50[/C][C]2365110[/C][C]2443462.16252798[/C][C]-78352.1625279789[/C][/ROW]
[ROW][C]51[/C][C]2376672[/C][C]2388219.83318107[/C][C]-11547.8331810674[/C][/ROW]
[ROW][C]52[/C][C]2452638[/C][C]2397497.41185493[/C][C]55140.5881450712[/C][/ROW]
[ROW][C]53[/C][C]2736510[/C][C]2473715.40136653[/C][C]262794.598633469[/C][/ROW]
[ROW][C]54[/C][C]2877744[/C][C]2761832.47500972[/C][C]115911.52499028[/C][/ROW]
[ROW][C]55[/C][C]2877744[/C][C]2911527.76089593[/C][C]-33783.7608959265[/C][/ROW]
[ROW][C]56[/C][C]2812440[/C][C]2914380.46202865[/C][C]-101940.462028653[/C][/ROW]
[ROW][C]57[/C][C]2910492[/C][C]2847087.31294637[/C][C]63404.6870536255[/C][/ROW]
[ROW][C]58[/C][C]2812440[/C][C]2942979.38683215[/C][C]-130539.386832149[/C][/ROW]
[ROW][C]59[/C][C]2757528[/C][C]2845327.32561129[/C][C]-87799.3256112854[/C][/ROW]
[ROW][C]60[/C][C]2965434[/C][C]2785899.31874986[/C][C]179534.681250139[/C][/ROW]
[ROW][C]61[/C][C]2997984[/C][C]2993238.77677545[/C][C]4745.22322455421[/C][/ROW]
[ROW][C]62[/C][C]2920992[/C][C]3030798.36825901[/C][C]-109806.368259006[/C][/ROW]
[ROW][C]63[/C][C]3117198[/C][C]2952800.29338528[/C][C]164397.706614723[/C][/ROW]
[ROW][C]64[/C][C]3194196[/C][C]3147674.94601805[/C][C]46521.0539819524[/C][/ROW]
[ROW][C]65[/C][C]3423126[/C][C]3229696.9520712[/C][C]193429.047928795[/C][/ROW]
[ROW][C]66[/C][C]3575052[/C][C]3461915.50510102[/C][C]113136.494898982[/C][/ROW]
[ROW][C]67[/C][C]3554034[/C][C]3620357.5184125[/C][C]-66323.518412502[/C][/ROW]
[ROW][C]68[/C][C]3542334[/C][C]3601778.55685567[/C][C]-59444.5568556655[/C][/ROW]
[ROW][C]69[/C][C]3629994[/C][C]3587630.44988803[/C][C]42363.5501119671[/C][/ROW]
[ROW][C]70[/C][C]3619332[/C][C]3674086.75585673[/C][C]-54754.7558567296[/C][/ROW]
[ROW][C]71[/C][C]3488592[/C][C]3664028.18416056[/C][C]-175436.184160559[/C][/ROW]
[ROW][C]72[/C][C]3684768[/C][C]3529958.47699101[/C][C]154809.52300899[/C][/ROW]
[ROW][C]73[/C][C]3750240[/C][C]3722890.51467114[/C][C]27349.4853288624[/C][/ROW]
[ROW][C]74[/C][C]3684768[/C][C]3792923.05857978[/C][C]-108155.058579776[/C][/ROW]
[ROW][C]75[/C][C]3956946[/C][C]3727086.62895535[/C][C]229859.371044653[/C][/ROW]
[ROW][C]76[/C][C]4087854[/C][C]3998656.84418024[/C][C]89197.1558197555[/C][/ROW]
[ROW][C]77[/C][C]4392612[/C][C]4136839.48621119[/C][C]255772.513788814[/C][/ROW]
[ROW][C]78[/C][C]4512858[/C][C]4446710.80238136[/C][C]66147.197618641[/C][/ROW]
[ROW][C]79[/C][C]4480272[/C][C]4574708.69963067[/C][C]-94436.6996306721[/C][/ROW]
[ROW][C]80[/C][C]4414800[/C][C]4542972.30121499[/C][C]-128172.301214989[/C][/ROW]
[ROW][C]81[/C][C]4469610[/C][C]4473563.67971332[/C][C]-3953.67971331812[/C][/ROW]
[ROW][C]82[/C][C]4535046[/C][C]4524791.40118038[/C][C]10254.5988196237[/C][/ROW]
[ROW][C]83[/C][C]4316646[/C][C]4590224.36234479[/C][C]-273578.362344794[/C][/ROW]
[ROW][C]84[/C][C]4490766[/C][C]4369274.4438724[/C][C]121491.556127602[/C][/ROW]
[ROW][C]85[/C][C]4600518[/C][C]4537093.81542692[/C][C]63424.1845730813[/C][/ROW]
[ROW][C]86[/C][C]4556238[/C][C]4650859.40028072[/C][C]-94621.4002807224[/C][/ROW]
[ROW][C]87[/C][C]4839942[/C][C]4607351.85364072[/C][C]232590.146359283[/C][/ROW]
[ROW][C]88[/C][C]4937958[/C][C]4890850.27732935[/C][C]47107.722670652[/C][/ROW]
[ROW][C]89[/C][C]5352606[/C][C]4995780.48028735[/C][C]356825.519712646[/C][/ROW]
[ROW][C]90[/C][C]5428566[/C][C]5415425.41840522[/C][C]13140.5815947792[/C][/ROW]
[ROW][C]91[/C][C]5330544[/C][C]5501380.4069124[/C][C]-170836.406912396[/C][/ROW]
[ROW][C]92[/C][C]5385324[/C][C]5401952.24864855[/C][C]-16628.2486485532[/C][/ROW]
[ROW][C]93[/C][C]5418042[/C][C]5451839.9222492[/C][C]-33797.922249198[/C][/ROW]
[ROW][C]94[/C][C]5450760[/C][C]5483748.47254681[/C][C]-32988.4725468075[/C][/ROW]
[ROW][C]95[/C][C]5242854[/C][C]5515191.01666956[/C][C]-272337.016669556[/C][/ROW]
[ROW][C]96[/C][C]5439066[/C][C]5303553.1705925[/C][C]135512.829407503[/C][/ROW]
[ROW][C]97[/C][C]5547744[/C][C]5493644.04777438[/C][C]54099.9522256237[/C][/ROW]
[ROW][C]98[/C][C]5439066[/C][C]5606626.46888806[/C][C]-167560.468888056[/C][/ROW]
[ROW][C]99[/C][C]5755650[/C][C]5497707.92292749[/C][C]257942.077072512[/C][/ROW]
[ROW][C]100[/C][C]5853708[/C][C]5812333.629638[/C][C]41374.3703619977[/C][/ROW]
[ROW][C]101[/C][C]6278808[/C][C]5917946.91703033[/C][C]360861.082969668[/C][/ROW]
[ROW][C]102[/C][C]6344280[/C][C]6347927.23896938[/C][C]-3647.23896937631[/C][/ROW]
[ROW][C]103[/C][C]6365304[/C][C]6423331.86899246[/C][C]-58027.8689924637[/C][/ROW]
[ROW][C]104[/C][C]6475020[/C][C]6443654.14621557[/C][C]31365.8537844252[/C][/ROW]
[ROW][C]105[/C][C]6475020[/C][C]6552091.69956226[/C][C]-77071.6995622618[/C][/ROW]
[ROW][C]106[/C][C]6518268[/C][C]6552160.14731682[/C][C]-33892.1473168219[/C][/ROW]
[ROW][C]107[/C][C]6322056[/C][C]6592927.70106425[/C][C]-270871.701064254[/C][/ROW]
[ROW][C]108[/C][C]6420246[/C][C]6392974.06211297[/C][C]27271.9378870307[/C][/ROW]
[ROW][C]109[/C][C]6485550[/C][C]6483962.45477849[/C][C]1587.54522150848[/C][/ROW]
[ROW][C]110[/C][C]6365304[/C][C]6550036.40509153[/C][C]-184732.405091532[/C][/ROW]
[ROW][C]111[/C][C]6714474[/C][C]6427921.13199548[/C][C]286552.868004518[/C][/ROW]
[ROW][C]112[/C][C]6779916[/C][C]6774954.68783199[/C][C]4961.3121680133[/C][/ROW]
[ROW][C]113[/C][C]7215582[/C][C]6848365.37335353[/C][C]367216.626646474[/C][/ROW]
[ROW][C]114[/C][C]7292580[/C][C]7287971.44130183[/C][C]4608.55869817082[/C][/ROW]
[ROW][C]115[/C][C]7401258[/C][C]7375163.17080778[/C][C]26094.8291922202[/C][/ROW]
[ROW][C]116[/C][C]7499448[/C][C]7484238.74759799[/C][C]15209.2524020113[/C][/ROW]
[ROW][C]117[/C][C]7509942[/C][C]7583307.24490829[/C][C]-73365.2449082863[/C][/ROW]
[ROW][C]118[/C][C]7521504[/C][C]7593461.67926589[/C][C]-71957.6792658856[/C][/ROW]
[ROW][C]119[/C][C]7325298[/C][C]7602251.4239991[/C][C]-276953.423999102[/C][/ROW]
[ROW][C]120[/C][C]7521504[/C][C]7401189.07055633[/C][C]120314.929443669[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210787&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210787&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
311339761134108-132
411119201123444.63297417-11524.6329741681
513301881101265.63383076228922.36616924
613186261321585.9929861-2959.99298609607
711551681316318.34301227-161150.343012266
810464841151109.64570845-104625.645708448
910569781036889.6165578420088.3834421647
1010569781044700.9054896712277.0945103328
1110686721045383.0816870423288.918312959
1210896961057657.4773527832038.5226472204
1311551681079656.7370585975511.2629414087
1411339761146795.95856709-12819.9585670901
1511666941127557.5282361939136.4717638076
1612204721160326.6268618660145.3731381407
1715264001215808.82787493310591.172125067
1815264001526615.1746585-215.174658500357
1914610961535194.41684476-74098.4168447612
2013956241469117.08948563-73493.0894856299
2114494021400836.6759624248565.3240375833
2215148381453087.0555300361750.9444699697
2315264001520504.398476295895.60152370576
2415591181533833.6009266625284.3990733395
2516573021566976.3450106190325.6549893897
2615918361666794.37528118-74958.375281184
2715918361603047.73743442-11211.7374344221
2816900201600860.5653571189159.4346428872
2919621981699658.14891078262539.85108922
3019842541977018.507144277235.49285572628
3119294802006403.27764701-76923.2776470142
3217985721951032.55332677-152460.553326767
3318967261816420.2830913680305.7169086393
3418967261911193.5448454-14467.5448454018
3519072561913262.51992803-6006.51992802974
3619621981923330.5842198238867.4157801836
3720054461978509.1481557526936.8518442502
3820275022023109.999335624392.00066437805
3920275022045955.73505705-18453.7350570497
4020929382045885.9721134347052.0278865709
4123440862111299.3879883232786.612011695
4224093902366158.2085687543231.7914312482
4324198842438341.69963198-18457.6996319816
4422564262449839.01860377-193413.018603773
4523440862283868.0072858660217.9927141424
4623113682366807.7403614-55439.7403614037
4722459022335179.38364063-89277.3836406325
4823873342267257.03333085120076.966669151
4924198842407465.8940596712418.1059403331
5023651102443462.16252798-78352.1625279789
5123766722388219.83318107-11547.8331810674
5224526382397497.4118549355140.5881450712
5327365102473715.40136653262794.598633469
5428777442761832.47500972115911.52499028
5528777442911527.76089593-33783.7608959265
5628124402914380.46202865-101940.462028653
5729104922847087.3129463763404.6870536255
5828124402942979.38683215-130539.386832149
5927575282845327.32561129-87799.3256112854
6029654342785899.31874986179534.681250139
6129979842993238.776775454745.22322455421
6229209923030798.36825901-109806.368259006
6331171982952800.29338528164397.706614723
6431941963147674.9460180546521.0539819524
6534231263229696.9520712193429.047928795
6635750523461915.50510102113136.494898982
6735540343620357.5184125-66323.518412502
6835423343601778.55685567-59444.5568556655
6936299943587630.4498880342363.5501119671
7036193323674086.75585673-54754.7558567296
7134885923664028.18416056-175436.184160559
7236847683529958.47699101154809.52300899
7337502403722890.5146711427349.4853288624
7436847683792923.05857978-108155.058579776
7539569463727086.62895535229859.371044653
7640878543998656.8441802489197.1558197555
7743926124136839.48621119255772.513788814
7845128584446710.8023813666147.197618641
7944802724574708.69963067-94436.6996306721
8044148004542972.30121499-128172.301214989
8144696104473563.67971332-3953.67971331812
8245350464524791.4011803810254.5988196237
8343166464590224.36234479-273578.362344794
8444907664369274.4438724121491.556127602
8546005184537093.8154269263424.1845730813
8645562384650859.40028072-94621.4002807224
8748399424607351.85364072232590.146359283
8849379584890850.2773293547107.722670652
8953526064995780.48028735356825.519712646
9054285665415425.4184052213140.5815947792
9153305445501380.4069124-170836.406912396
9253853245401952.24864855-16628.2486485532
9354180425451839.9222492-33797.922249198
9454507605483748.47254681-32988.4725468075
9552428545515191.01666956-272337.016669556
9654390665303553.1705925135512.829407503
9755477445493644.0477743854099.9522256237
9854390665606626.46888806-167560.468888056
9957556505497707.92292749257942.077072512
10058537085812333.62963841374.3703619977
10162788085917946.91703033360861.082969668
10263442806347927.23896938-3647.23896937631
10363653046423331.86899246-58027.8689924637
10464750206443654.1462155731365.8537844252
10564750206552091.69956226-77071.6995622618
10665182686552160.14731682-33892.1473168219
10763220566592927.70106425-270871.701064254
10864202466392974.0621129727271.9378870307
10964855506483962.454778491587.54522150848
11063653046550036.40509153-184732.405091532
11167144746427921.13199548286552.868004518
11267799166774954.687831994961.3121680133
11372155826848365.37335353367216.626646474
11472925807287971.441301834608.55869817082
11574012587375163.1708077826094.8291922202
11674994487484238.7475979915209.2524020113
11775099427583307.24490829-73365.2449082863
11875215047593461.67926589-71957.6792658856
11973252987602251.4239991-276953.423999102
12075215047401189.07055633120314.929443669







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1217590989.005486477334619.699259537847358.3117134
1227663798.249139517299355.076632188028241.42164684
1237736607.492792557283780.573282018189434.41230309
1247809416.73644567277801.205993578341032.26689762
1257882225.980098647277497.067738518486954.89245877
1267955035.223751687280878.085825548629192.36167783
1278027844.467404737286779.617584418768909.31722505
1288100653.711057777294456.139481488906851.28263406
1298173462.954710817303399.87834829043526.03107343
1308246272.198363867313248.897022819179295.4997049
1318319081.44201697323736.090740929314426.79329288
1328391890.685669947334658.879897159449122.49144274

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
121 & 7590989.00548647 & 7334619.69925953 & 7847358.3117134 \tabularnewline
122 & 7663798.24913951 & 7299355.07663218 & 8028241.42164684 \tabularnewline
123 & 7736607.49279255 & 7283780.57328201 & 8189434.41230309 \tabularnewline
124 & 7809416.7364456 & 7277801.20599357 & 8341032.26689762 \tabularnewline
125 & 7882225.98009864 & 7277497.06773851 & 8486954.89245877 \tabularnewline
126 & 7955035.22375168 & 7280878.08582554 & 8629192.36167783 \tabularnewline
127 & 8027844.46740473 & 7286779.61758441 & 8768909.31722505 \tabularnewline
128 & 8100653.71105777 & 7294456.13948148 & 8906851.28263406 \tabularnewline
129 & 8173462.95471081 & 7303399.8783482 & 9043526.03107343 \tabularnewline
130 & 8246272.19836386 & 7313248.89702281 & 9179295.4997049 \tabularnewline
131 & 8319081.4420169 & 7323736.09074092 & 9314426.79329288 \tabularnewline
132 & 8391890.68566994 & 7334658.87989715 & 9449122.49144274 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210787&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]121[/C][C]7590989.00548647[/C][C]7334619.69925953[/C][C]7847358.3117134[/C][/ROW]
[ROW][C]122[/C][C]7663798.24913951[/C][C]7299355.07663218[/C][C]8028241.42164684[/C][/ROW]
[ROW][C]123[/C][C]7736607.49279255[/C][C]7283780.57328201[/C][C]8189434.41230309[/C][/ROW]
[ROW][C]124[/C][C]7809416.7364456[/C][C]7277801.20599357[/C][C]8341032.26689762[/C][/ROW]
[ROW][C]125[/C][C]7882225.98009864[/C][C]7277497.06773851[/C][C]8486954.89245877[/C][/ROW]
[ROW][C]126[/C][C]7955035.22375168[/C][C]7280878.08582554[/C][C]8629192.36167783[/C][/ROW]
[ROW][C]127[/C][C]8027844.46740473[/C][C]7286779.61758441[/C][C]8768909.31722505[/C][/ROW]
[ROW][C]128[/C][C]8100653.71105777[/C][C]7294456.13948148[/C][C]8906851.28263406[/C][/ROW]
[ROW][C]129[/C][C]8173462.95471081[/C][C]7303399.8783482[/C][C]9043526.03107343[/C][/ROW]
[ROW][C]130[/C][C]8246272.19836386[/C][C]7313248.89702281[/C][C]9179295.4997049[/C][/ROW]
[ROW][C]131[/C][C]8319081.4420169[/C][C]7323736.09074092[/C][C]9314426.79329288[/C][/ROW]
[ROW][C]132[/C][C]8391890.68566994[/C][C]7334658.87989715[/C][C]9449122.49144274[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210787&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210787&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1217590989.005486477334619.699259537847358.3117134
1227663798.249139517299355.076632188028241.42164684
1237736607.492792557283780.573282018189434.41230309
1247809416.73644567277801.205993578341032.26689762
1257882225.980098647277497.067738518486954.89245877
1267955035.223751687280878.085825548629192.36167783
1278027844.467404737286779.617584418768909.31722505
1288100653.711057777294456.139481488906851.28263406
1298173462.954710817303399.87834829043526.03107343
1308246272.198363867313248.897022819179295.4997049
1318319081.44201697323736.090740929314426.79329288
1328391890.685669947334658.879897159449122.49144274



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = multiplicative ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = multiplicative ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')