Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationThu, 04 Dec 2014 14:58:39 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/04/t1417705404sd9lsyf0atg2tf3.htm/, Retrieved Fri, 01 Nov 2024 00:00:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=263299, Retrieved Fri, 01 Nov 2024 00:00:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-04 14:58:39] [18673d63f90870b9c004059cd6229007] [Current]
Feedback Forum

Post a new message
Dataseries X:
10	0.5
8.5	7.5
9	9
7.5	9.5
9	8
8	7
8	9.5
9	4
5	6
7	8
5.5	5.5
2	7.5
8.5	7
9	8
8	7
10	7
3	6
5.5	10
6	2.5
5	8
8	8.5
7.5	6
8.5	9
10.5	5.5
8	9
9.5	8.5
9	9
10	10
6	10
8.5	7.5
7	7.5
5	6
1.5	10
8	10
8.5	5
7.5	4.5
6	7.5
10.5	5.5
10.5	9.5
9.5	6.5
7.5	6.5
5	10
10	4.5
6	4.5
7	0.5
7	4.5
8	5.5
10	8.5
5.5	5.5
6	5
9.5	3.5
8	5
7	7
9	9.5
8	6
8	9
9	7.5
9.5	8.5
7	6.5
8	8.5
3.5	8
8.5	7
6.5	9.5
4	7
10.5	3.5
8.5	6.5
9.5	6.5
6	8.5
7.5	4
9	8.5
8.5	8
7	8.5
9.5	7
8	8.5
9.5	7.5
9	8.5
7.5	7
2.5	10
6.5	7.5
8.5	5
5	8
2.5	6.5
3.5	8
4	9
4.5	3
5.5	0.5
2.5	6.5
5.5	4.5
4.5	8
5	7.5
4.5	9.5
7.5	6.5
6	6
1.5	8
3.5	5
4	6
5	1
5.5	1
6.5	5.5
6.5	6.5
7	4.5
5	2
7	5
0	0.5
3.5	5
6	5.5
3.5	0.5
3.5	6.5
4	7.5
7.5	5.5
4.5	4
3.5	4
4.5	0.5
2.5	3.5
7.5	2.5
3	4.5
3.5	4.5
4.5	2.5
2.5	0
7	5
0	6.5
1	5
3.5	5.5
5.5	5
NA	7
NA	4.5
NA	8.5
NA	3.5
NA	9
NA	6.5
NA	7.5
NA	1
NA	1.5
NA	3
NA	7.5
NA	6
NA	6
NA	1
NA	6
NA	5
NA	1
NA	6.5
NA	7.5
NA	3.5
NA	7.5
NA	6.5
NA	0
NA	5.5
NA	5
NA	7
NA	0
NA	4.5
NA	1.5
NA	2.5
NA	5.5
NA	8
NA	1
NA	5
NA	3
NA	3
NA	8
NA	5.5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263299&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263299&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263299&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Two Sample t-test (unpaired)
Mean of Sample 16.45967741935484
Mean of Sample 25.91358024691358
t-stat1.79704595926416
df284
p-value0.0733906962093555
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.0520575617239952,1.14425190660651]
F-test to compare two variances
F-stat0.930294598103388
df123
p-value0.676251429793756
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.669109456315475,1.30320298570178]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 6.45967741935484 \tabularnewline
Mean of Sample 2 & 5.91358024691358 \tabularnewline
t-stat & 1.79704595926416 \tabularnewline
df & 284 \tabularnewline
p-value & 0.0733906962093555 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.0520575617239952,1.14425190660651] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 0.930294598103388 \tabularnewline
df & 123 \tabularnewline
p-value & 0.676251429793756 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.669109456315475,1.30320298570178] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263299&T=1

[TABLE]
[ROW][C]Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]6.45967741935484[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]5.91358024691358[/C][/ROW]
[ROW][C]t-stat[/C][C]1.79704595926416[/C][/ROW]
[ROW][C]df[/C][C]284[/C][/ROW]
[ROW][C]p-value[/C][C]0.0733906962093555[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.0520575617239952,1.14425190660651][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]0.930294598103388[/C][/ROW]
[ROW][C]df[/C][C]123[/C][/ROW]
[ROW][C]p-value[/C][C]0.676251429793756[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.669109456315475,1.30320298570178][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263299&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263299&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (unpaired)
Mean of Sample 16.45967741935484
Mean of Sample 25.91358024691358
t-stat1.79704595926416
df284
p-value0.0733906962093555
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.0520575617239952,1.14425190660651]
F-test to compare two variances
F-stat0.930294598103388
df123
p-value0.676251429793756
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.669109456315475,1.30320298570178]







Welch Two Sample t-test (unpaired)
Mean of Sample 16.45967741935484
Mean of Sample 25.91358024691358
t-stat1.80571933335356
df269.361399181302
p-value0.0720785137758297
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.0493229320696467,1.14151727695216]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 6.45967741935484 \tabularnewline
Mean of Sample 2 & 5.91358024691358 \tabularnewline
t-stat & 1.80571933335356 \tabularnewline
df & 269.361399181302 \tabularnewline
p-value & 0.0720785137758297 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.0493229320696467,1.14151727695216] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263299&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]6.45967741935484[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]5.91358024691358[/C][/ROW]
[ROW][C]t-stat[/C][C]1.80571933335356[/C][/ROW]
[ROW][C]df[/C][C]269.361399181302[/C][/ROW]
[ROW][C]p-value[/C][C]0.0720785137758297[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.0493229320696467,1.14151727695216][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263299&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263299&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (unpaired)
Mean of Sample 16.45967741935484
Mean of Sample 25.91358024691358
t-stat1.80571933335356
df269.361399181302
p-value0.0720785137758297
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.0493229320696467,1.14151727695216]







Wicoxon rank sum test with continuity correction (unpaired)
W11194.5
p-value0.0964625251935134
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.105535643170052
p-value0.414524496662065
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.106531262445241
p-value0.402727110493681

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (unpaired) \tabularnewline
W & 11194.5 \tabularnewline
p-value & 0.0964625251935134 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.105535643170052 \tabularnewline
p-value & 0.414524496662065 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.106531262445241 \tabularnewline
p-value & 0.402727110493681 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=263299&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (unpaired)[/C][/ROW]
[ROW][C]W[/C][C]11194.5[/C][/ROW]
[ROW][C]p-value[/C][C]0.0964625251935134[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.105535643170052[/C][/ROW]
[ROW][C]p-value[/C][C]0.414524496662065[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.106531262445241[/C][/ROW]
[ROW][C]p-value[/C][C]0.402727110493681[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=263299&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=263299&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (unpaired)
W11194.5
p-value0.0964625251935134
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.105535643170052
p-value0.414524496662065
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.106531262445241
p-value0.402727110493681



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')