Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 22 Jan 2016 08:42:47 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Jan/22/t1453452193coaved83y6go893.htm/, Retrieved Sun, 10 Nov 2024 18:04:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=290408, Retrieved Sun, 10 Nov 2024 18:04:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact98
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [vraag 4] [2016-01-22 08:42:47] [f0540685e8d53548e4baf07e0669deea] [Current]
Feedback Forum

Post a new message
Dataseries X:
1 1 0 6 0 0 3.2 3.2 10.24
0 0 1 7 0 1 3.3 0 10.89
1 0 1 2 1 1 3 3 9
0 0 1 11 0 1 3.5 0 12.25
1 0 1 13 0 0 3.7 3.7 13.69
0 1 0 3 0 0 2.7 0 7.29
1 0 1 17 1 1 3.6 3.6 12.96
0 0 1 10 0 1 3.5 0 12.25
1 1 0 4 0 0 3.8 3.8 14.44
0 0 1 12 0 0 3.4 0 11.56
1 0 0 7 0 1 3.7 3.7 13.69
0 0 1 11 0 0 3.5 0 12.25
1 0 0 3 1 0 2.8 2.8 7.84
0 1 0 5 1 0 3.8 0 14.44
1 0 1 1 0 0 4.3 4.3 18.49
0 0 0 12 0 1 3.3 0 10.89
1 0 0 18 0 0 3.6 3.6 12.96
0 1 0 8 1 0 3.6 0 12.96
1 1 1 6 0 0 3.3 3.3 10.89
0 0 0 1 0 0 2.8 0 7.84




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290408&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290408&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290408&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Geslacht[t] = -2.25178 -0.0267475Drugs[t] + 0.00664035Fruit[t] -0.00503881Numeracy[t] + 0.0729355Sport[t] -0.0287841Alcohol[t] + 1.51645Gebgewicht[t] + 0.293548Inter[t] -0.245934Gebgew2[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Geslacht[t] =  -2.25178 -0.0267475Drugs[t] +  0.00664035Fruit[t] -0.00503881Numeracy[t] +  0.0729355Sport[t] -0.0287841Alcohol[t] +  1.51645Gebgewicht[t] +  0.293548Inter[t] -0.245934Gebgew2[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290408&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Geslacht[t] =  -2.25178 -0.0267475Drugs[t] +  0.00664035Fruit[t] -0.00503881Numeracy[t] +  0.0729355Sport[t] -0.0287841Alcohol[t] +  1.51645Gebgewicht[t] +  0.293548Inter[t] -0.245934Gebgew2[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290408&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290408&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Geslacht[t] = -2.25178 -0.0267475Drugs[t] + 0.00664035Fruit[t] -0.00503881Numeracy[t] + 0.0729355Sport[t] -0.0287841Alcohol[t] + 1.51645Gebgewicht[t] + 0.293548Inter[t] -0.245934Gebgew2[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-2.252 0.7757-2.9030e+00 0.01437 0.007186
Drugs-0.02675 0.02656-1.0070e+00 0.3355 0.1677
Fruit+0.00664 0.01959+3.3890e-01 0.7411 0.3705
Numeracy-0.005039 0.002827-1.7820e+00 0.1023 0.05116
Sport+0.07293 0.01984+3.6770e+00 0.003645 0.001823
Alcohol-0.02878 0.02289-1.2580e+00 0.2346 0.1173
Gebgewicht+1.516 0.4671+3.2470e+00 0.00778 0.00389
Inter+0.2935 0.005155+5.6940e+01 6.053e-15 3.027e-15
Gebgew2-0.2459 0.06756-3.6400e+00 0.003886 0.001943

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -2.252 &  0.7757 & -2.9030e+00 &  0.01437 &  0.007186 \tabularnewline
Drugs & -0.02675 &  0.02656 & -1.0070e+00 &  0.3355 &  0.1677 \tabularnewline
Fruit & +0.00664 &  0.01959 & +3.3890e-01 &  0.7411 &  0.3705 \tabularnewline
Numeracy & -0.005039 &  0.002827 & -1.7820e+00 &  0.1023 &  0.05116 \tabularnewline
Sport & +0.07293 &  0.01984 & +3.6770e+00 &  0.003645 &  0.001823 \tabularnewline
Alcohol & -0.02878 &  0.02289 & -1.2580e+00 &  0.2346 &  0.1173 \tabularnewline
Gebgewicht & +1.516 &  0.4671 & +3.2470e+00 &  0.00778 &  0.00389 \tabularnewline
Inter & +0.2935 &  0.005155 & +5.6940e+01 &  6.053e-15 &  3.027e-15 \tabularnewline
Gebgew2 & -0.2459 &  0.06756 & -3.6400e+00 &  0.003886 &  0.001943 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290408&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-2.252[/C][C] 0.7757[/C][C]-2.9030e+00[/C][C] 0.01437[/C][C] 0.007186[/C][/ROW]
[ROW][C]Drugs[/C][C]-0.02675[/C][C] 0.02656[/C][C]-1.0070e+00[/C][C] 0.3355[/C][C] 0.1677[/C][/ROW]
[ROW][C]Fruit[/C][C]+0.00664[/C][C] 0.01959[/C][C]+3.3890e-01[/C][C] 0.7411[/C][C] 0.3705[/C][/ROW]
[ROW][C]Numeracy[/C][C]-0.005039[/C][C] 0.002827[/C][C]-1.7820e+00[/C][C] 0.1023[/C][C] 0.05116[/C][/ROW]
[ROW][C]Sport[/C][C]+0.07293[/C][C] 0.01984[/C][C]+3.6770e+00[/C][C] 0.003645[/C][C] 0.001823[/C][/ROW]
[ROW][C]Alcohol[/C][C]-0.02878[/C][C] 0.02289[/C][C]-1.2580e+00[/C][C] 0.2346[/C][C] 0.1173[/C][/ROW]
[ROW][C]Gebgewicht[/C][C]+1.516[/C][C] 0.4671[/C][C]+3.2470e+00[/C][C] 0.00778[/C][C] 0.00389[/C][/ROW]
[ROW][C]Inter[/C][C]+0.2935[/C][C] 0.005155[/C][C]+5.6940e+01[/C][C] 6.053e-15[/C][C] 3.027e-15[/C][/ROW]
[ROW][C]Gebgew2[/C][C]-0.2459[/C][C] 0.06756[/C][C]-3.6400e+00[/C][C] 0.003886[/C][C] 0.001943[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290408&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290408&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-2.252 0.7757-2.9030e+00 0.01437 0.007186
Drugs-0.02675 0.02656-1.0070e+00 0.3355 0.1677
Fruit+0.00664 0.01959+3.3890e-01 0.7411 0.3705
Numeracy-0.005039 0.002827-1.7820e+00 0.1023 0.05116
Sport+0.07293 0.01984+3.6770e+00 0.003645 0.001823
Alcohol-0.02878 0.02289-1.2580e+00 0.2346 0.1173
Gebgewicht+1.516 0.4671+3.2470e+00 0.00778 0.00389
Inter+0.2935 0.005155+5.6940e+01 6.053e-15 3.027e-15
Gebgew2-0.2459 0.06756-3.6400e+00 0.003886 0.001943







Multiple Linear Regression - Regression Statistics
Multiple R 0.9985
R-squared 0.9969
Adjusted R-squared 0.9947
F-TEST (value) 448.3
F-TEST (DF numerator)8
F-TEST (DF denominator)11
p-value 1.013e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.03728
Sum Squared Residuals 0.01529

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.9985 \tabularnewline
R-squared &  0.9969 \tabularnewline
Adjusted R-squared &  0.9947 \tabularnewline
F-TEST (value) &  448.3 \tabularnewline
F-TEST (DF numerator) & 8 \tabularnewline
F-TEST (DF denominator) & 11 \tabularnewline
p-value &  1.013e-12 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.03728 \tabularnewline
Sum Squared Residuals &  0.01529 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290408&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.9985[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.9969[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.9947[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 448.3[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]8[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]11[/C][/ROW]
[ROW][C]p-value[/C][C] 1.013e-12[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.03728[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 0.01529[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290408&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290408&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.9985
R-squared 0.9969
Adjusted R-squared 0.9947
F-TEST (value) 448.3
F-TEST (DF numerator)8
F-TEST (DF denominator)11
p-value 1.013e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.03728
Sum Squared Residuals 0.01529







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1 0.9649 0.03512
2 0 0.01688-0.01688
3 1 1.006-0.005535
4 0-0.03445 0.03445
5 1 1.02-0.01953
6 0 0.007924-0.007924
7 1 1.042-0.04206
8 0-0.02941 0.02941
9 1 1.028-0.02804
10 0 0.007344-0.007344
11 1 1.014-0.01434
12 0-0.005666 0.005666
13 1 0.9459 0.05408
14 0-0.01954 0.01954
15 1 0.9855 0.01449
16 0-0.01495 0.01495
17 1 0.9862 0.01377
18 0 0.02603-0.02603
19 1 0.9927 0.007333
20 0 0.06113-0.06113

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  1 &  0.9649 &  0.03512 \tabularnewline
2 &  0 &  0.01688 & -0.01688 \tabularnewline
3 &  1 &  1.006 & -0.005535 \tabularnewline
4 &  0 & -0.03445 &  0.03445 \tabularnewline
5 &  1 &  1.02 & -0.01953 \tabularnewline
6 &  0 &  0.007924 & -0.007924 \tabularnewline
7 &  1 &  1.042 & -0.04206 \tabularnewline
8 &  0 & -0.02941 &  0.02941 \tabularnewline
9 &  1 &  1.028 & -0.02804 \tabularnewline
10 &  0 &  0.007344 & -0.007344 \tabularnewline
11 &  1 &  1.014 & -0.01434 \tabularnewline
12 &  0 & -0.005666 &  0.005666 \tabularnewline
13 &  1 &  0.9459 &  0.05408 \tabularnewline
14 &  0 & -0.01954 &  0.01954 \tabularnewline
15 &  1 &  0.9855 &  0.01449 \tabularnewline
16 &  0 & -0.01495 &  0.01495 \tabularnewline
17 &  1 &  0.9862 &  0.01377 \tabularnewline
18 &  0 &  0.02603 & -0.02603 \tabularnewline
19 &  1 &  0.9927 &  0.007333 \tabularnewline
20 &  0 &  0.06113 & -0.06113 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=290408&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 1[/C][C] 0.9649[/C][C] 0.03512[/C][/ROW]
[ROW][C]2[/C][C] 0[/C][C] 0.01688[/C][C]-0.01688[/C][/ROW]
[ROW][C]3[/C][C] 1[/C][C] 1.006[/C][C]-0.005535[/C][/ROW]
[ROW][C]4[/C][C] 0[/C][C]-0.03445[/C][C] 0.03445[/C][/ROW]
[ROW][C]5[/C][C] 1[/C][C] 1.02[/C][C]-0.01953[/C][/ROW]
[ROW][C]6[/C][C] 0[/C][C] 0.007924[/C][C]-0.007924[/C][/ROW]
[ROW][C]7[/C][C] 1[/C][C] 1.042[/C][C]-0.04206[/C][/ROW]
[ROW][C]8[/C][C] 0[/C][C]-0.02941[/C][C] 0.02941[/C][/ROW]
[ROW][C]9[/C][C] 1[/C][C] 1.028[/C][C]-0.02804[/C][/ROW]
[ROW][C]10[/C][C] 0[/C][C] 0.007344[/C][C]-0.007344[/C][/ROW]
[ROW][C]11[/C][C] 1[/C][C] 1.014[/C][C]-0.01434[/C][/ROW]
[ROW][C]12[/C][C] 0[/C][C]-0.005666[/C][C] 0.005666[/C][/ROW]
[ROW][C]13[/C][C] 1[/C][C] 0.9459[/C][C] 0.05408[/C][/ROW]
[ROW][C]14[/C][C] 0[/C][C]-0.01954[/C][C] 0.01954[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 0.9855[/C][C] 0.01449[/C][/ROW]
[ROW][C]16[/C][C] 0[/C][C]-0.01495[/C][C] 0.01495[/C][/ROW]
[ROW][C]17[/C][C] 1[/C][C] 0.9862[/C][C] 0.01377[/C][/ROW]
[ROW][C]18[/C][C] 0[/C][C] 0.02603[/C][C]-0.02603[/C][/ROW]
[ROW][C]19[/C][C] 1[/C][C] 0.9927[/C][C] 0.007333[/C][/ROW]
[ROW][C]20[/C][C] 0[/C][C] 0.06113[/C][C]-0.06113[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=290408&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=290408&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1 0.9649 0.03512
2 0 0.01688-0.01688
3 1 1.006-0.005535
4 0-0.03445 0.03445
5 1 1.02-0.01953
6 0 0.007924-0.007924
7 1 1.042-0.04206
8 0-0.02941 0.02941
9 1 1.028-0.02804
10 0 0.007344-0.007344
11 1 1.014-0.01434
12 0-0.005666 0.005666
13 1 0.9459 0.05408
14 0-0.01954 0.01954
15 1 0.9855 0.01449
16 0-0.01495 0.01495
17 1 0.9862 0.01377
18 0 0.02603-0.02603
19 1 0.9927 0.007333
20 0 0.06113-0.06113



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}