Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 08 Dec 2008 12:15:43 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/08/t12287637793zskpby1v6wf7k4.htm/, Retrieved Fri, 01 Nov 2024 00:29:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=30763, Retrieved Fri, 01 Nov 2024 00:29:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact228
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Standard Deviation-Mean Plot] [] [2008-12-07 12:44:29] [a4ee3bef49b119f4bd2e925060c84f5e]
-         [Standard Deviation-Mean Plot] [] [2008-12-08 19:15:43] [3762bf489501725951ad2579179cae2a] [Current]
Feedback Forum

Post a new message
Dataseries X:
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698
31956
29506
34506
27165
26736
23691
18157
17328
18205
20995
17382
9367
31124
26551
30651
25859
25100
25778
20418
18688
20424
24776
19814
12738
31566
30111
30019
31934
25826
26835




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30763&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30763&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30763&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
123293.16666666674863.9772508688515966
223712.256639.8206865848422631
322142.255608.3585043786519045
422916.16666666677303.0689045251725139
523493.41666666675265.9772719589218386

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 23293.1666666667 & 4863.97725086885 & 15966 \tabularnewline
2 & 23712.25 & 6639.82068658484 & 22631 \tabularnewline
3 & 22142.25 & 5608.35850437865 & 19045 \tabularnewline
4 & 22916.1666666667 & 7303.06890452517 & 25139 \tabularnewline
5 & 23493.4166666667 & 5265.97727195892 & 18386 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30763&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]23293.1666666667[/C][C]4863.97725086885[/C][C]15966[/C][/ROW]
[ROW][C]2[/C][C]23712.25[/C][C]6639.82068658484[/C][C]22631[/C][/ROW]
[ROW][C]3[/C][C]22142.25[/C][C]5608.35850437865[/C][C]19045[/C][/ROW]
[ROW][C]4[/C][C]22916.1666666667[/C][C]7303.06890452517[/C][C]25139[/C][/ROW]
[ROW][C]5[/C][C]23493.4166666667[/C][C]5265.97727195892[/C][C]18386[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30763&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30763&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
123293.16666666674863.9772508688515966
223712.256639.8206865848422631
322142.255608.3585043786519045
422916.16666666677303.0689045251725139
523493.41666666675265.9772719589218386







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha5590.35136190098
beta0.0149661385054727
S.D.0.945497355114099
T-STAT0.0158288528513828
p-value0.988364775873014

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 5590.35136190098 \tabularnewline
beta & 0.0149661385054727 \tabularnewline
S.D. & 0.945497355114099 \tabularnewline
T-STAT & 0.0158288528513828 \tabularnewline
p-value & 0.988364775873014 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30763&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]5590.35136190098[/C][/ROW]
[ROW][C]beta[/C][C]0.0149661385054727[/C][/ROW]
[ROW][C]S.D.[/C][C]0.945497355114099[/C][/ROW]
[ROW][C]T-STAT[/C][C]0.0158288528513828[/C][/ROW]
[ROW][C]p-value[/C][C]0.988364775873014[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30763&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30763&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha5590.35136190098
beta0.0149661385054727
S.D.0.945497355114099
T-STAT0.0158288528513828
p-value0.988364775873014







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha8.64338078887353
beta0.00339643357819854
S.D.3.59256771359422
T-STAT0.000945405584241736
p-value0.999305027582722
Lambda0.996603566421801

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 8.64338078887353 \tabularnewline
beta & 0.00339643357819854 \tabularnewline
S.D. & 3.59256771359422 \tabularnewline
T-STAT & 0.000945405584241736 \tabularnewline
p-value & 0.999305027582722 \tabularnewline
Lambda & 0.996603566421801 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30763&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]8.64338078887353[/C][/ROW]
[ROW][C]beta[/C][C]0.00339643357819854[/C][/ROW]
[ROW][C]S.D.[/C][C]3.59256771359422[/C][/ROW]
[ROW][C]T-STAT[/C][C]0.000945405584241736[/C][/ROW]
[ROW][C]p-value[/C][C]0.999305027582722[/C][/ROW]
[ROW][C]Lambda[/C][C]0.996603566421801[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30763&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30763&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha8.64338078887353
beta0.00339643357819854
S.D.3.59256771359422
T-STAT0.000945405584241736
p-value0.999305027582722
Lambda0.996603566421801



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = ; par3 = ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')