Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 20 Jan 2019 11:21:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2019/Jan/20/t154797972585t6e48vvziwt9s.htm/, Retrieved Sun, 10 Nov 2024 18:15:00 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=316410, Retrieved Sun, 10 Nov 2024 18:15:00 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact110
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2019-01-20 10:21:08] [9172f81d29b60ad7d026eed068ac45c3] [Current]
Feedback Forum

Post a new message
Dataseries X:
11 18 17 22
9 19 NA 24
12 18 12 26
NA 15 13 21
NA 19 16 26
12 19 15 25
12 19 14 21
NA NA 15 24
NA 18 13 27
11 20 12 28
12 14 13 23
12 15 14 25
15 18 18 24
13 19 19 24
12 16 15 24
11 18 14 25
NA 18 13 25
NA NA NA NA
9 17 NA 25
NA 19 17 25
11 19 NA 24
NA 17 NA 26
12 18 12 26
NA 16 12 25
NA 20 12 26
NA 13 NA 23
12 19 14 24
12 15 15 24
14 17 13 25
NA 17 14 25
12 16 16 24
9 17 16 28
13 19 15 27
NA 18 15 NA
13 19 16 23
12 20 16 23
NA 16 17 24
12 17 16 24
12 16 11 22
12 16 15 25
NA 16 15 25
12 16 11 28
11 14 13 22
13 17 13 28
13 18 17 25
NA 16 13 24
NA 16 12 24
13 NA 17 23
10 16 16 25
NA 15 18 NA
13 19 12 26
NA 16 15 25
NA 17 15 27
5 19 15 26
NA 17 14 23
10 17 17 25
NA 15 15 21
15 16 NA 22
13 16 NA 24
NA 16 16 25
12 17 12 27
13 18 10 24
13 18 15 26
11 18 NA 21
NA 19 14 27
NA 14 14 22
12 13 13 23
12 18 17 24
13 16 16 25
14 15 16 24
NA 18 16 23
NA 18 17 28
NA 16 NA NA
NA 19 16 24
NA 17 13 26
12 17 17 22
12 19 12 25
10 19 18 25
12 20 15 24
12 19 12 24
NA 18 13 26
NA 16 13 21
12 16 13 25
13 15 NA 25
NA 20 17 26
14 16 15 25
10 16 16 26
12 20 14 27
NA 20 18 25
13 18 16 NA
11 15 14 20
NA 14 12 24
12 16 14 26
NA 14 9 25
12 18 14 25
13 20 17 24
12 20 15 26
9 18 15 25
NA 20 20 28
12 14 12 27
NA 20 14 25
14 17 16 26
NA 20 18 26
11 14 10 26
NA 16 13 NA
NA 20 16 28
NA 19 17 NA
NA 18 16 21
NA 17 17 25
12 17 NA 25
NA 19 18 24
NA 15 15 24
NA 18 14 24
12 15 15 23
NA 16 NA 23
9 16 16 24
13 20 12 24
NA 18 19 25
10 20 17 28
14 18 14 23
10 17 13 24
12 19 14 23
NA 18 14 24
11 19 17 25
NA 17 NA 24
14 18 15 23
13 17 16 23
12 16 17 25
NA 19 13 21
NA 18 15 22
10 17 10 19
NA 18 18 24
12 16 16 25
NA 20 16 21
12 14 14 22
NA 17 NA 23
15 13 13 27
NA 13 NA NA
NA 17 13 26
12 18 14 29
12 16 17 28
10 NA 13 24
12 19 14 25
12 NA 18 25
NA 17 12 22
12 16 14 25
11 17 8 26
13 17 16 26
NA 17 13 24
NA 20 16 25
NA 14 11 19
13 20 15 25
11 19 NA 23
10 16 14 25
9 19 13 25
NA 17 17 26
12 19 13 27
NA 20 18 24
NA 19 16 22
13 19 NA 25
10 16 16 24
13 18 15 23
NA 16 14 27
NA 17 15 24
NA 18 16 24
NA 16 12 21
12 17 19 25
NA 15 15 25
12 18 13 23




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=316410&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
GWSUM[t] = + 12.8778 -0.0308809IKSUM[t] + 0.0149087KVDDSUM[t] -0.0283485SKEOUSUM[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
GWSUM[t] =  +  12.8778 -0.0308809IKSUM[t] +  0.0149087KVDDSUM[t] -0.0283485SKEOUSUM[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]GWSUM[t] =  +  12.8778 -0.0308809IKSUM[t] +  0.0149087KVDDSUM[t] -0.0283485SKEOUSUM[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
GWSUM[t] = + 12.8778 -0.0308809IKSUM[t] + 0.0149087KVDDSUM[t] -0.0283485SKEOUSUM[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.88 2.786+4.6230e+00 1.413e-05 7.064e-06
IKSUM-0.03088 0.09343-3.3050e-01 0.7419 0.3709
KVDDSUM+0.01491 0.07842+1.9010e-01 0.8497 0.4248
SKEOUSUM-0.02835 0.09038-3.1370e-01 0.7546 0.3773

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +12.88 &  2.786 & +4.6230e+00 &  1.413e-05 &  7.064e-06 \tabularnewline
IKSUM & -0.03088 &  0.09343 & -3.3050e-01 &  0.7419 &  0.3709 \tabularnewline
KVDDSUM & +0.01491 &  0.07842 & +1.9010e-01 &  0.8497 &  0.4248 \tabularnewline
SKEOUSUM & -0.02835 &  0.09038 & -3.1370e-01 &  0.7546 &  0.3773 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+12.88[/C][C] 2.786[/C][C]+4.6230e+00[/C][C] 1.413e-05[/C][C] 7.064e-06[/C][/ROW]
[ROW][C]IKSUM[/C][C]-0.03088[/C][C] 0.09343[/C][C]-3.3050e-01[/C][C] 0.7419[/C][C] 0.3709[/C][/ROW]
[ROW][C]KVDDSUM[/C][C]+0.01491[/C][C] 0.07842[/C][C]+1.9010e-01[/C][C] 0.8497[/C][C] 0.4248[/C][/ROW]
[ROW][C]SKEOUSUM[/C][C]-0.02835[/C][C] 0.09038[/C][C]-3.1370e-01[/C][C] 0.7546[/C][C] 0.3773[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.88 2.786+4.6230e+00 1.413e-05 7.064e-06
IKSUM-0.03088 0.09343-3.3050e-01 0.7419 0.3709
KVDDSUM+0.01491 0.07842+1.9010e-01 0.8497 0.4248
SKEOUSUM-0.02835 0.09038-3.1370e-01 0.7546 0.3773







Multiple Linear Regression - Regression Statistics
Multiple R 0.05693
R-squared 0.003241
Adjusted R-squared-0.03368
F-TEST (value) 0.0878
F-TEST (DF numerator)3
F-TEST (DF denominator)81
p-value 0.9665
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.506
Sum Squared Residuals 183.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.05693 \tabularnewline
R-squared &  0.003241 \tabularnewline
Adjusted R-squared & -0.03368 \tabularnewline
F-TEST (value) &  0.0878 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 81 \tabularnewline
p-value &  0.9665 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.506 \tabularnewline
Sum Squared Residuals &  183.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.05693[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.003241[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.03368[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.0878[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]81[/C][/ROW]
[ROW][C]p-value[/C][C] 0.9665[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.506[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 183.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.05693
R-squared 0.003241
Adjusted R-squared-0.03368
F-TEST (value) 0.0878
F-TEST (DF numerator)3
F-TEST (DF denominator)81
p-value 0.9665
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.506
Sum Squared Residuals 183.7







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 11.95-0.9517
2 12 11.76 0.2362
3 12 11.81 0.194
4 12 11.9 0.09551
5 11 11.65-0.6454
6 12 11.99 0.01271
7 12 11.91 0.08538
8 15 11.91 3.09
9 13 11.89 1.106
10 12 11.93 0.07301
11 11 11.82-0.822
12 12 11.76 0.2362
13 12 11.82 0.1806
14 12 11.96 0.04212
15 14 11.84 2.162
16 12 11.94 0.0581
17 9 11.8-2.798
18 13 11.75 1.251
19 13 11.88 1.122
20 12 11.85 0.1533
21 12 11.91 0.08898
22 12 11.92 0.07594
23 12 11.9 0.1014
24 12 11.75 0.246
25 11 12.02-1.016
26 13 11.75 1.247
27 13 11.87 1.133
28 10 11.91-1.914
29 13 11.73 1.267
30 5 11.78-6.778
31 10 11.9-1.898
32 12 11.77 0.2337
33 13 11.79 1.209
34 13 11.81 1.191
35 12 12.02-0.01817
36 12 11.89 0.105
37 13 11.91 1.086
38 14 11.97 2.027
39 12 11.98 0.01737
40 12 11.76 0.2387
41 10 11.85-1.851
42 12 11.8 0.1965
43 12 11.79 0.2104
44 12 11.87 0.1312
45 14 11.9 2.101
46 10 11.89-1.885
47 12 11.7 0.2965
48 11 12.06-1.056
49 12 11.86 0.1446
50 12 11.82 0.178
51 13 11.83 1.167
52 12 11.75 0.2532
53 9 11.84-2.837
54 12 11.86 0.141
55 14 11.85 2.146
56 11 11.86-0.8575
57 12 11.99 0.01378
58 9 11.94-2.942
59 13 11.76 1.241
60 10 11.72-1.72
61 14 11.88 2.121
62 10 11.87-1.866
63 12 11.85 0.1522
64 11 11.84-0.8358
65 14 11.89 2.106
66 13 11.94 1.061
67 12 11.93 0.07154
68 10 11.96-1.963
69 12 11.91 0.08645
70 12 12.03-0.03054
71 15 11.9 3.095
72 12 11.71 0.2914
73 12 11.84 0.1566
74 12 11.79 0.2089
75 12 11.88 0.1163
76 11 11.74-0.7351
77 13 11.85 1.146
78 13 11.78 1.225
79 10 11.88-1.884
80 9 11.78-2.776
81 12 11.72 0.2805
82 10 11.94-1.942
83 13 11.89 1.106
84 12 11.93 0.0726
85 12 11.86 0.1362

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  11 &  11.95 & -0.9517 \tabularnewline
2 &  12 &  11.76 &  0.2362 \tabularnewline
3 &  12 &  11.81 &  0.194 \tabularnewline
4 &  12 &  11.9 &  0.09551 \tabularnewline
5 &  11 &  11.65 & -0.6454 \tabularnewline
6 &  12 &  11.99 &  0.01271 \tabularnewline
7 &  12 &  11.91 &  0.08538 \tabularnewline
8 &  15 &  11.91 &  3.09 \tabularnewline
9 &  13 &  11.89 &  1.106 \tabularnewline
10 &  12 &  11.93 &  0.07301 \tabularnewline
11 &  11 &  11.82 & -0.822 \tabularnewline
12 &  12 &  11.76 &  0.2362 \tabularnewline
13 &  12 &  11.82 &  0.1806 \tabularnewline
14 &  12 &  11.96 &  0.04212 \tabularnewline
15 &  14 &  11.84 &  2.162 \tabularnewline
16 &  12 &  11.94 &  0.0581 \tabularnewline
17 &  9 &  11.8 & -2.798 \tabularnewline
18 &  13 &  11.75 &  1.251 \tabularnewline
19 &  13 &  11.88 &  1.122 \tabularnewline
20 &  12 &  11.85 &  0.1533 \tabularnewline
21 &  12 &  11.91 &  0.08898 \tabularnewline
22 &  12 &  11.92 &  0.07594 \tabularnewline
23 &  12 &  11.9 &  0.1014 \tabularnewline
24 &  12 &  11.75 &  0.246 \tabularnewline
25 &  11 &  12.02 & -1.016 \tabularnewline
26 &  13 &  11.75 &  1.247 \tabularnewline
27 &  13 &  11.87 &  1.133 \tabularnewline
28 &  10 &  11.91 & -1.914 \tabularnewline
29 &  13 &  11.73 &  1.267 \tabularnewline
30 &  5 &  11.78 & -6.778 \tabularnewline
31 &  10 &  11.9 & -1.898 \tabularnewline
32 &  12 &  11.77 &  0.2337 \tabularnewline
33 &  13 &  11.79 &  1.209 \tabularnewline
34 &  13 &  11.81 &  1.191 \tabularnewline
35 &  12 &  12.02 & -0.01817 \tabularnewline
36 &  12 &  11.89 &  0.105 \tabularnewline
37 &  13 &  11.91 &  1.086 \tabularnewline
38 &  14 &  11.97 &  2.027 \tabularnewline
39 &  12 &  11.98 &  0.01737 \tabularnewline
40 &  12 &  11.76 &  0.2387 \tabularnewline
41 &  10 &  11.85 & -1.851 \tabularnewline
42 &  12 &  11.8 &  0.1965 \tabularnewline
43 &  12 &  11.79 &  0.2104 \tabularnewline
44 &  12 &  11.87 &  0.1312 \tabularnewline
45 &  14 &  11.9 &  2.101 \tabularnewline
46 &  10 &  11.89 & -1.885 \tabularnewline
47 &  12 &  11.7 &  0.2965 \tabularnewline
48 &  11 &  12.06 & -1.056 \tabularnewline
49 &  12 &  11.86 &  0.1446 \tabularnewline
50 &  12 &  11.82 &  0.178 \tabularnewline
51 &  13 &  11.83 &  1.167 \tabularnewline
52 &  12 &  11.75 &  0.2532 \tabularnewline
53 &  9 &  11.84 & -2.837 \tabularnewline
54 &  12 &  11.86 &  0.141 \tabularnewline
55 &  14 &  11.85 &  2.146 \tabularnewline
56 &  11 &  11.86 & -0.8575 \tabularnewline
57 &  12 &  11.99 &  0.01378 \tabularnewline
58 &  9 &  11.94 & -2.942 \tabularnewline
59 &  13 &  11.76 &  1.241 \tabularnewline
60 &  10 &  11.72 & -1.72 \tabularnewline
61 &  14 &  11.88 &  2.121 \tabularnewline
62 &  10 &  11.87 & -1.866 \tabularnewline
63 &  12 &  11.85 &  0.1522 \tabularnewline
64 &  11 &  11.84 & -0.8358 \tabularnewline
65 &  14 &  11.89 &  2.106 \tabularnewline
66 &  13 &  11.94 &  1.061 \tabularnewline
67 &  12 &  11.93 &  0.07154 \tabularnewline
68 &  10 &  11.96 & -1.963 \tabularnewline
69 &  12 &  11.91 &  0.08645 \tabularnewline
70 &  12 &  12.03 & -0.03054 \tabularnewline
71 &  15 &  11.9 &  3.095 \tabularnewline
72 &  12 &  11.71 &  0.2914 \tabularnewline
73 &  12 &  11.84 &  0.1566 \tabularnewline
74 &  12 &  11.79 &  0.2089 \tabularnewline
75 &  12 &  11.88 &  0.1163 \tabularnewline
76 &  11 &  11.74 & -0.7351 \tabularnewline
77 &  13 &  11.85 &  1.146 \tabularnewline
78 &  13 &  11.78 &  1.225 \tabularnewline
79 &  10 &  11.88 & -1.884 \tabularnewline
80 &  9 &  11.78 & -2.776 \tabularnewline
81 &  12 &  11.72 &  0.2805 \tabularnewline
82 &  10 &  11.94 & -1.942 \tabularnewline
83 &  13 &  11.89 &  1.106 \tabularnewline
84 &  12 &  11.93 &  0.0726 \tabularnewline
85 &  12 &  11.86 &  0.1362 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 11[/C][C] 11.95[/C][C]-0.9517[/C][/ROW]
[ROW][C]2[/C][C] 12[/C][C] 11.76[/C][C] 0.2362[/C][/ROW]
[ROW][C]3[/C][C] 12[/C][C] 11.81[/C][C] 0.194[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 11.9[/C][C] 0.09551[/C][/ROW]
[ROW][C]5[/C][C] 11[/C][C] 11.65[/C][C]-0.6454[/C][/ROW]
[ROW][C]6[/C][C] 12[/C][C] 11.99[/C][C] 0.01271[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 11.91[/C][C] 0.08538[/C][/ROW]
[ROW][C]8[/C][C] 15[/C][C] 11.91[/C][C] 3.09[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 11.89[/C][C] 1.106[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 11.93[/C][C] 0.07301[/C][/ROW]
[ROW][C]11[/C][C] 11[/C][C] 11.82[/C][C]-0.822[/C][/ROW]
[ROW][C]12[/C][C] 12[/C][C] 11.76[/C][C] 0.2362[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 11.82[/C][C] 0.1806[/C][/ROW]
[ROW][C]14[/C][C] 12[/C][C] 11.96[/C][C] 0.04212[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 11.84[/C][C] 2.162[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 11.94[/C][C] 0.0581[/C][/ROW]
[ROW][C]17[/C][C] 9[/C][C] 11.8[/C][C]-2.798[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 11.75[/C][C] 1.251[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 11.88[/C][C] 1.122[/C][/ROW]
[ROW][C]20[/C][C] 12[/C][C] 11.85[/C][C] 0.1533[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 11.91[/C][C] 0.08898[/C][/ROW]
[ROW][C]22[/C][C] 12[/C][C] 11.92[/C][C] 0.07594[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 11.9[/C][C] 0.1014[/C][/ROW]
[ROW][C]24[/C][C] 12[/C][C] 11.75[/C][C] 0.246[/C][/ROW]
[ROW][C]25[/C][C] 11[/C][C] 12.02[/C][C]-1.016[/C][/ROW]
[ROW][C]26[/C][C] 13[/C][C] 11.75[/C][C] 1.247[/C][/ROW]
[ROW][C]27[/C][C] 13[/C][C] 11.87[/C][C] 1.133[/C][/ROW]
[ROW][C]28[/C][C] 10[/C][C] 11.91[/C][C]-1.914[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 11.73[/C][C] 1.267[/C][/ROW]
[ROW][C]30[/C][C] 5[/C][C] 11.78[/C][C]-6.778[/C][/ROW]
[ROW][C]31[/C][C] 10[/C][C] 11.9[/C][C]-1.898[/C][/ROW]
[ROW][C]32[/C][C] 12[/C][C] 11.77[/C][C] 0.2337[/C][/ROW]
[ROW][C]33[/C][C] 13[/C][C] 11.79[/C][C] 1.209[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 11.81[/C][C] 1.191[/C][/ROW]
[ROW][C]35[/C][C] 12[/C][C] 12.02[/C][C]-0.01817[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 11.89[/C][C] 0.105[/C][/ROW]
[ROW][C]37[/C][C] 13[/C][C] 11.91[/C][C] 1.086[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 11.97[/C][C] 2.027[/C][/ROW]
[ROW][C]39[/C][C] 12[/C][C] 11.98[/C][C] 0.01737[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 11.76[/C][C] 0.2387[/C][/ROW]
[ROW][C]41[/C][C] 10[/C][C] 11.85[/C][C]-1.851[/C][/ROW]
[ROW][C]42[/C][C] 12[/C][C] 11.8[/C][C] 0.1965[/C][/ROW]
[ROW][C]43[/C][C] 12[/C][C] 11.79[/C][C] 0.2104[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 11.87[/C][C] 0.1312[/C][/ROW]
[ROW][C]45[/C][C] 14[/C][C] 11.9[/C][C] 2.101[/C][/ROW]
[ROW][C]46[/C][C] 10[/C][C] 11.89[/C][C]-1.885[/C][/ROW]
[ROW][C]47[/C][C] 12[/C][C] 11.7[/C][C] 0.2965[/C][/ROW]
[ROW][C]48[/C][C] 11[/C][C] 12.06[/C][C]-1.056[/C][/ROW]
[ROW][C]49[/C][C] 12[/C][C] 11.86[/C][C] 0.1446[/C][/ROW]
[ROW][C]50[/C][C] 12[/C][C] 11.82[/C][C] 0.178[/C][/ROW]
[ROW][C]51[/C][C] 13[/C][C] 11.83[/C][C] 1.167[/C][/ROW]
[ROW][C]52[/C][C] 12[/C][C] 11.75[/C][C] 0.2532[/C][/ROW]
[ROW][C]53[/C][C] 9[/C][C] 11.84[/C][C]-2.837[/C][/ROW]
[ROW][C]54[/C][C] 12[/C][C] 11.86[/C][C] 0.141[/C][/ROW]
[ROW][C]55[/C][C] 14[/C][C] 11.85[/C][C] 2.146[/C][/ROW]
[ROW][C]56[/C][C] 11[/C][C] 11.86[/C][C]-0.8575[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 11.99[/C][C] 0.01378[/C][/ROW]
[ROW][C]58[/C][C] 9[/C][C] 11.94[/C][C]-2.942[/C][/ROW]
[ROW][C]59[/C][C] 13[/C][C] 11.76[/C][C] 1.241[/C][/ROW]
[ROW][C]60[/C][C] 10[/C][C] 11.72[/C][C]-1.72[/C][/ROW]
[ROW][C]61[/C][C] 14[/C][C] 11.88[/C][C] 2.121[/C][/ROW]
[ROW][C]62[/C][C] 10[/C][C] 11.87[/C][C]-1.866[/C][/ROW]
[ROW][C]63[/C][C] 12[/C][C] 11.85[/C][C] 0.1522[/C][/ROW]
[ROW][C]64[/C][C] 11[/C][C] 11.84[/C][C]-0.8358[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 11.89[/C][C] 2.106[/C][/ROW]
[ROW][C]66[/C][C] 13[/C][C] 11.94[/C][C] 1.061[/C][/ROW]
[ROW][C]67[/C][C] 12[/C][C] 11.93[/C][C] 0.07154[/C][/ROW]
[ROW][C]68[/C][C] 10[/C][C] 11.96[/C][C]-1.963[/C][/ROW]
[ROW][C]69[/C][C] 12[/C][C] 11.91[/C][C] 0.08645[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 12.03[/C][C]-0.03054[/C][/ROW]
[ROW][C]71[/C][C] 15[/C][C] 11.9[/C][C] 3.095[/C][/ROW]
[ROW][C]72[/C][C] 12[/C][C] 11.71[/C][C] 0.2914[/C][/ROW]
[ROW][C]73[/C][C] 12[/C][C] 11.84[/C][C] 0.1566[/C][/ROW]
[ROW][C]74[/C][C] 12[/C][C] 11.79[/C][C] 0.2089[/C][/ROW]
[ROW][C]75[/C][C] 12[/C][C] 11.88[/C][C] 0.1163[/C][/ROW]
[ROW][C]76[/C][C] 11[/C][C] 11.74[/C][C]-0.7351[/C][/ROW]
[ROW][C]77[/C][C] 13[/C][C] 11.85[/C][C] 1.146[/C][/ROW]
[ROW][C]78[/C][C] 13[/C][C] 11.78[/C][C] 1.225[/C][/ROW]
[ROW][C]79[/C][C] 10[/C][C] 11.88[/C][C]-1.884[/C][/ROW]
[ROW][C]80[/C][C] 9[/C][C] 11.78[/C][C]-2.776[/C][/ROW]
[ROW][C]81[/C][C] 12[/C][C] 11.72[/C][C] 0.2805[/C][/ROW]
[ROW][C]82[/C][C] 10[/C][C] 11.94[/C][C]-1.942[/C][/ROW]
[ROW][C]83[/C][C] 13[/C][C] 11.89[/C][C] 1.106[/C][/ROW]
[ROW][C]84[/C][C] 12[/C][C] 11.93[/C][C] 0.0726[/C][/ROW]
[ROW][C]85[/C][C] 12[/C][C] 11.86[/C][C] 0.1362[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 11.95-0.9517
2 12 11.76 0.2362
3 12 11.81 0.194
4 12 11.9 0.09551
5 11 11.65-0.6454
6 12 11.99 0.01271
7 12 11.91 0.08538
8 15 11.91 3.09
9 13 11.89 1.106
10 12 11.93 0.07301
11 11 11.82-0.822
12 12 11.76 0.2362
13 12 11.82 0.1806
14 12 11.96 0.04212
15 14 11.84 2.162
16 12 11.94 0.0581
17 9 11.8-2.798
18 13 11.75 1.251
19 13 11.88 1.122
20 12 11.85 0.1533
21 12 11.91 0.08898
22 12 11.92 0.07594
23 12 11.9 0.1014
24 12 11.75 0.246
25 11 12.02-1.016
26 13 11.75 1.247
27 13 11.87 1.133
28 10 11.91-1.914
29 13 11.73 1.267
30 5 11.78-6.778
31 10 11.9-1.898
32 12 11.77 0.2337
33 13 11.79 1.209
34 13 11.81 1.191
35 12 12.02-0.01817
36 12 11.89 0.105
37 13 11.91 1.086
38 14 11.97 2.027
39 12 11.98 0.01737
40 12 11.76 0.2387
41 10 11.85-1.851
42 12 11.8 0.1965
43 12 11.79 0.2104
44 12 11.87 0.1312
45 14 11.9 2.101
46 10 11.89-1.885
47 12 11.7 0.2965
48 11 12.06-1.056
49 12 11.86 0.1446
50 12 11.82 0.178
51 13 11.83 1.167
52 12 11.75 0.2532
53 9 11.84-2.837
54 12 11.86 0.141
55 14 11.85 2.146
56 11 11.86-0.8575
57 12 11.99 0.01378
58 9 11.94-2.942
59 13 11.76 1.241
60 10 11.72-1.72
61 14 11.88 2.121
62 10 11.87-1.866
63 12 11.85 0.1522
64 11 11.84-0.8358
65 14 11.89 2.106
66 13 11.94 1.061
67 12 11.93 0.07154
68 10 11.96-1.963
69 12 11.91 0.08645
70 12 12.03-0.03054
71 15 11.9 3.095
72 12 11.71 0.2914
73 12 11.84 0.1566
74 12 11.79 0.2089
75 12 11.88 0.1163
76 11 11.74-0.7351
77 13 11.85 1.146
78 13 11.78 1.225
79 10 11.88-1.884
80 9 11.78-2.776
81 12 11.72 0.2805
82 10 11.94-1.942
83 13 11.89 1.106
84 12 11.93 0.0726
85 12 11.86 0.1362







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.05528 0.1106 0.9447
8 0.42 0.8399 0.58
9 0.2998 0.5996 0.7002
10 0.1973 0.3946 0.8027
11 0.1515 0.303 0.8485
12 0.1017 0.2033 0.8983
13 0.0596 0.1192 0.9404
14 0.03443 0.06887 0.9656
15 0.0946 0.1892 0.9054
16 0.0649 0.1298 0.9351
17 0.2483 0.4966 0.7517
18 0.2371 0.4742 0.7629
19 0.1858 0.3715 0.8142
20 0.1427 0.2854 0.8573
21 0.1015 0.2031 0.8985
22 0.06975 0.1395 0.9303
23 0.0464 0.0928 0.9536
24 0.03349 0.06698 0.9665
25 0.02771 0.05541 0.9723
26 0.02656 0.05311 0.9734
27 0.01994 0.03987 0.9801
28 0.03201 0.06402 0.968
29 0.02615 0.05231 0.9738
30 0.9294 0.1411 0.07055
31 0.9362 0.1275 0.06377
32 0.9138 0.1725 0.08624
33 0.899 0.2021 0.101
34 0.8882 0.2236 0.1118
35 0.8536 0.2927 0.1464
36 0.813 0.374 0.187
37 0.7937 0.4125 0.2063
38 0.8281 0.3439 0.1719
39 0.7845 0.4311 0.2155
40 0.735 0.5301 0.265
41 0.7548 0.4904 0.2452
42 0.7015 0.5969 0.2985
43 0.6453 0.7094 0.3547
44 0.5839 0.8321 0.4161
45 0.6414 0.7172 0.3586
46 0.6689 0.6623 0.3311
47 0.6105 0.779 0.3895
48 0.5812 0.8375 0.4188
49 0.5167 0.9666 0.4833
50 0.4519 0.9038 0.5481
51 0.4243 0.8485 0.5757
52 0.3626 0.7252 0.6374
53 0.5143 0.9714 0.4857
54 0.4474 0.8947 0.5526
55 0.5088 0.9823 0.4912
56 0.46 0.92 0.54
57 0.3917 0.7834 0.6083
58 0.582 0.8359 0.418
59 0.5853 0.8293 0.4147
60 0.611 0.778 0.389
61 0.7032 0.5936 0.2968
62 0.7292 0.5415 0.2708
63 0.6703 0.6593 0.3297
64 0.6255 0.749 0.3745
65 0.7332 0.5336 0.2668
66 0.7185 0.5631 0.2815
67 0.6441 0.7119 0.3559
68 0.6076 0.7849 0.3924
69 0.5196 0.9608 0.4804
70 0.4274 0.8548 0.5726
71 0.7616 0.4768 0.2384
72 0.673 0.6541 0.327
73 0.5724 0.8552 0.4276
74 0.4589 0.9179 0.5411
75 0.3883 0.7767 0.6117
76 0.356 0.712 0.644
77 0.4022 0.8044 0.5978
78 0.2625 0.5249 0.7375

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.05528 &  0.1106 &  0.9447 \tabularnewline
8 &  0.42 &  0.8399 &  0.58 \tabularnewline
9 &  0.2998 &  0.5996 &  0.7002 \tabularnewline
10 &  0.1973 &  0.3946 &  0.8027 \tabularnewline
11 &  0.1515 &  0.303 &  0.8485 \tabularnewline
12 &  0.1017 &  0.2033 &  0.8983 \tabularnewline
13 &  0.0596 &  0.1192 &  0.9404 \tabularnewline
14 &  0.03443 &  0.06887 &  0.9656 \tabularnewline
15 &  0.0946 &  0.1892 &  0.9054 \tabularnewline
16 &  0.0649 &  0.1298 &  0.9351 \tabularnewline
17 &  0.2483 &  0.4966 &  0.7517 \tabularnewline
18 &  0.2371 &  0.4742 &  0.7629 \tabularnewline
19 &  0.1858 &  0.3715 &  0.8142 \tabularnewline
20 &  0.1427 &  0.2854 &  0.8573 \tabularnewline
21 &  0.1015 &  0.2031 &  0.8985 \tabularnewline
22 &  0.06975 &  0.1395 &  0.9303 \tabularnewline
23 &  0.0464 &  0.0928 &  0.9536 \tabularnewline
24 &  0.03349 &  0.06698 &  0.9665 \tabularnewline
25 &  0.02771 &  0.05541 &  0.9723 \tabularnewline
26 &  0.02656 &  0.05311 &  0.9734 \tabularnewline
27 &  0.01994 &  0.03987 &  0.9801 \tabularnewline
28 &  0.03201 &  0.06402 &  0.968 \tabularnewline
29 &  0.02615 &  0.05231 &  0.9738 \tabularnewline
30 &  0.9294 &  0.1411 &  0.07055 \tabularnewline
31 &  0.9362 &  0.1275 &  0.06377 \tabularnewline
32 &  0.9138 &  0.1725 &  0.08624 \tabularnewline
33 &  0.899 &  0.2021 &  0.101 \tabularnewline
34 &  0.8882 &  0.2236 &  0.1118 \tabularnewline
35 &  0.8536 &  0.2927 &  0.1464 \tabularnewline
36 &  0.813 &  0.374 &  0.187 \tabularnewline
37 &  0.7937 &  0.4125 &  0.2063 \tabularnewline
38 &  0.8281 &  0.3439 &  0.1719 \tabularnewline
39 &  0.7845 &  0.4311 &  0.2155 \tabularnewline
40 &  0.735 &  0.5301 &  0.265 \tabularnewline
41 &  0.7548 &  0.4904 &  0.2452 \tabularnewline
42 &  0.7015 &  0.5969 &  0.2985 \tabularnewline
43 &  0.6453 &  0.7094 &  0.3547 \tabularnewline
44 &  0.5839 &  0.8321 &  0.4161 \tabularnewline
45 &  0.6414 &  0.7172 &  0.3586 \tabularnewline
46 &  0.6689 &  0.6623 &  0.3311 \tabularnewline
47 &  0.6105 &  0.779 &  0.3895 \tabularnewline
48 &  0.5812 &  0.8375 &  0.4188 \tabularnewline
49 &  0.5167 &  0.9666 &  0.4833 \tabularnewline
50 &  0.4519 &  0.9038 &  0.5481 \tabularnewline
51 &  0.4243 &  0.8485 &  0.5757 \tabularnewline
52 &  0.3626 &  0.7252 &  0.6374 \tabularnewline
53 &  0.5143 &  0.9714 &  0.4857 \tabularnewline
54 &  0.4474 &  0.8947 &  0.5526 \tabularnewline
55 &  0.5088 &  0.9823 &  0.4912 \tabularnewline
56 &  0.46 &  0.92 &  0.54 \tabularnewline
57 &  0.3917 &  0.7834 &  0.6083 \tabularnewline
58 &  0.582 &  0.8359 &  0.418 \tabularnewline
59 &  0.5853 &  0.8293 &  0.4147 \tabularnewline
60 &  0.611 &  0.778 &  0.389 \tabularnewline
61 &  0.7032 &  0.5936 &  0.2968 \tabularnewline
62 &  0.7292 &  0.5415 &  0.2708 \tabularnewline
63 &  0.6703 &  0.6593 &  0.3297 \tabularnewline
64 &  0.6255 &  0.749 &  0.3745 \tabularnewline
65 &  0.7332 &  0.5336 &  0.2668 \tabularnewline
66 &  0.7185 &  0.5631 &  0.2815 \tabularnewline
67 &  0.6441 &  0.7119 &  0.3559 \tabularnewline
68 &  0.6076 &  0.7849 &  0.3924 \tabularnewline
69 &  0.5196 &  0.9608 &  0.4804 \tabularnewline
70 &  0.4274 &  0.8548 &  0.5726 \tabularnewline
71 &  0.7616 &  0.4768 &  0.2384 \tabularnewline
72 &  0.673 &  0.6541 &  0.327 \tabularnewline
73 &  0.5724 &  0.8552 &  0.4276 \tabularnewline
74 &  0.4589 &  0.9179 &  0.5411 \tabularnewline
75 &  0.3883 &  0.7767 &  0.6117 \tabularnewline
76 &  0.356 &  0.712 &  0.644 \tabularnewline
77 &  0.4022 &  0.8044 &  0.5978 \tabularnewline
78 &  0.2625 &  0.5249 &  0.7375 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.05528[/C][C] 0.1106[/C][C] 0.9447[/C][/ROW]
[ROW][C]8[/C][C] 0.42[/C][C] 0.8399[/C][C] 0.58[/C][/ROW]
[ROW][C]9[/C][C] 0.2998[/C][C] 0.5996[/C][C] 0.7002[/C][/ROW]
[ROW][C]10[/C][C] 0.1973[/C][C] 0.3946[/C][C] 0.8027[/C][/ROW]
[ROW][C]11[/C][C] 0.1515[/C][C] 0.303[/C][C] 0.8485[/C][/ROW]
[ROW][C]12[/C][C] 0.1017[/C][C] 0.2033[/C][C] 0.8983[/C][/ROW]
[ROW][C]13[/C][C] 0.0596[/C][C] 0.1192[/C][C] 0.9404[/C][/ROW]
[ROW][C]14[/C][C] 0.03443[/C][C] 0.06887[/C][C] 0.9656[/C][/ROW]
[ROW][C]15[/C][C] 0.0946[/C][C] 0.1892[/C][C] 0.9054[/C][/ROW]
[ROW][C]16[/C][C] 0.0649[/C][C] 0.1298[/C][C] 0.9351[/C][/ROW]
[ROW][C]17[/C][C] 0.2483[/C][C] 0.4966[/C][C] 0.7517[/C][/ROW]
[ROW][C]18[/C][C] 0.2371[/C][C] 0.4742[/C][C] 0.7629[/C][/ROW]
[ROW][C]19[/C][C] 0.1858[/C][C] 0.3715[/C][C] 0.8142[/C][/ROW]
[ROW][C]20[/C][C] 0.1427[/C][C] 0.2854[/C][C] 0.8573[/C][/ROW]
[ROW][C]21[/C][C] 0.1015[/C][C] 0.2031[/C][C] 0.8985[/C][/ROW]
[ROW][C]22[/C][C] 0.06975[/C][C] 0.1395[/C][C] 0.9303[/C][/ROW]
[ROW][C]23[/C][C] 0.0464[/C][C] 0.0928[/C][C] 0.9536[/C][/ROW]
[ROW][C]24[/C][C] 0.03349[/C][C] 0.06698[/C][C] 0.9665[/C][/ROW]
[ROW][C]25[/C][C] 0.02771[/C][C] 0.05541[/C][C] 0.9723[/C][/ROW]
[ROW][C]26[/C][C] 0.02656[/C][C] 0.05311[/C][C] 0.9734[/C][/ROW]
[ROW][C]27[/C][C] 0.01994[/C][C] 0.03987[/C][C] 0.9801[/C][/ROW]
[ROW][C]28[/C][C] 0.03201[/C][C] 0.06402[/C][C] 0.968[/C][/ROW]
[ROW][C]29[/C][C] 0.02615[/C][C] 0.05231[/C][C] 0.9738[/C][/ROW]
[ROW][C]30[/C][C] 0.9294[/C][C] 0.1411[/C][C] 0.07055[/C][/ROW]
[ROW][C]31[/C][C] 0.9362[/C][C] 0.1275[/C][C] 0.06377[/C][/ROW]
[ROW][C]32[/C][C] 0.9138[/C][C] 0.1725[/C][C] 0.08624[/C][/ROW]
[ROW][C]33[/C][C] 0.899[/C][C] 0.2021[/C][C] 0.101[/C][/ROW]
[ROW][C]34[/C][C] 0.8882[/C][C] 0.2236[/C][C] 0.1118[/C][/ROW]
[ROW][C]35[/C][C] 0.8536[/C][C] 0.2927[/C][C] 0.1464[/C][/ROW]
[ROW][C]36[/C][C] 0.813[/C][C] 0.374[/C][C] 0.187[/C][/ROW]
[ROW][C]37[/C][C] 0.7937[/C][C] 0.4125[/C][C] 0.2063[/C][/ROW]
[ROW][C]38[/C][C] 0.8281[/C][C] 0.3439[/C][C] 0.1719[/C][/ROW]
[ROW][C]39[/C][C] 0.7845[/C][C] 0.4311[/C][C] 0.2155[/C][/ROW]
[ROW][C]40[/C][C] 0.735[/C][C] 0.5301[/C][C] 0.265[/C][/ROW]
[ROW][C]41[/C][C] 0.7548[/C][C] 0.4904[/C][C] 0.2452[/C][/ROW]
[ROW][C]42[/C][C] 0.7015[/C][C] 0.5969[/C][C] 0.2985[/C][/ROW]
[ROW][C]43[/C][C] 0.6453[/C][C] 0.7094[/C][C] 0.3547[/C][/ROW]
[ROW][C]44[/C][C] 0.5839[/C][C] 0.8321[/C][C] 0.4161[/C][/ROW]
[ROW][C]45[/C][C] 0.6414[/C][C] 0.7172[/C][C] 0.3586[/C][/ROW]
[ROW][C]46[/C][C] 0.6689[/C][C] 0.6623[/C][C] 0.3311[/C][/ROW]
[ROW][C]47[/C][C] 0.6105[/C][C] 0.779[/C][C] 0.3895[/C][/ROW]
[ROW][C]48[/C][C] 0.5812[/C][C] 0.8375[/C][C] 0.4188[/C][/ROW]
[ROW][C]49[/C][C] 0.5167[/C][C] 0.9666[/C][C] 0.4833[/C][/ROW]
[ROW][C]50[/C][C] 0.4519[/C][C] 0.9038[/C][C] 0.5481[/C][/ROW]
[ROW][C]51[/C][C] 0.4243[/C][C] 0.8485[/C][C] 0.5757[/C][/ROW]
[ROW][C]52[/C][C] 0.3626[/C][C] 0.7252[/C][C] 0.6374[/C][/ROW]
[ROW][C]53[/C][C] 0.5143[/C][C] 0.9714[/C][C] 0.4857[/C][/ROW]
[ROW][C]54[/C][C] 0.4474[/C][C] 0.8947[/C][C] 0.5526[/C][/ROW]
[ROW][C]55[/C][C] 0.5088[/C][C] 0.9823[/C][C] 0.4912[/C][/ROW]
[ROW][C]56[/C][C] 0.46[/C][C] 0.92[/C][C] 0.54[/C][/ROW]
[ROW][C]57[/C][C] 0.3917[/C][C] 0.7834[/C][C] 0.6083[/C][/ROW]
[ROW][C]58[/C][C] 0.582[/C][C] 0.8359[/C][C] 0.418[/C][/ROW]
[ROW][C]59[/C][C] 0.5853[/C][C] 0.8293[/C][C] 0.4147[/C][/ROW]
[ROW][C]60[/C][C] 0.611[/C][C] 0.778[/C][C] 0.389[/C][/ROW]
[ROW][C]61[/C][C] 0.7032[/C][C] 0.5936[/C][C] 0.2968[/C][/ROW]
[ROW][C]62[/C][C] 0.7292[/C][C] 0.5415[/C][C] 0.2708[/C][/ROW]
[ROW][C]63[/C][C] 0.6703[/C][C] 0.6593[/C][C] 0.3297[/C][/ROW]
[ROW][C]64[/C][C] 0.6255[/C][C] 0.749[/C][C] 0.3745[/C][/ROW]
[ROW][C]65[/C][C] 0.7332[/C][C] 0.5336[/C][C] 0.2668[/C][/ROW]
[ROW][C]66[/C][C] 0.7185[/C][C] 0.5631[/C][C] 0.2815[/C][/ROW]
[ROW][C]67[/C][C] 0.6441[/C][C] 0.7119[/C][C] 0.3559[/C][/ROW]
[ROW][C]68[/C][C] 0.6076[/C][C] 0.7849[/C][C] 0.3924[/C][/ROW]
[ROW][C]69[/C][C] 0.5196[/C][C] 0.9608[/C][C] 0.4804[/C][/ROW]
[ROW][C]70[/C][C] 0.4274[/C][C] 0.8548[/C][C] 0.5726[/C][/ROW]
[ROW][C]71[/C][C] 0.7616[/C][C] 0.4768[/C][C] 0.2384[/C][/ROW]
[ROW][C]72[/C][C] 0.673[/C][C] 0.6541[/C][C] 0.327[/C][/ROW]
[ROW][C]73[/C][C] 0.5724[/C][C] 0.8552[/C][C] 0.4276[/C][/ROW]
[ROW][C]74[/C][C] 0.4589[/C][C] 0.9179[/C][C] 0.5411[/C][/ROW]
[ROW][C]75[/C][C] 0.3883[/C][C] 0.7767[/C][C] 0.6117[/C][/ROW]
[ROW][C]76[/C][C] 0.356[/C][C] 0.712[/C][C] 0.644[/C][/ROW]
[ROW][C]77[/C][C] 0.4022[/C][C] 0.8044[/C][C] 0.5978[/C][/ROW]
[ROW][C]78[/C][C] 0.2625[/C][C] 0.5249[/C][C] 0.7375[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.05528 0.1106 0.9447
8 0.42 0.8399 0.58
9 0.2998 0.5996 0.7002
10 0.1973 0.3946 0.8027
11 0.1515 0.303 0.8485
12 0.1017 0.2033 0.8983
13 0.0596 0.1192 0.9404
14 0.03443 0.06887 0.9656
15 0.0946 0.1892 0.9054
16 0.0649 0.1298 0.9351
17 0.2483 0.4966 0.7517
18 0.2371 0.4742 0.7629
19 0.1858 0.3715 0.8142
20 0.1427 0.2854 0.8573
21 0.1015 0.2031 0.8985
22 0.06975 0.1395 0.9303
23 0.0464 0.0928 0.9536
24 0.03349 0.06698 0.9665
25 0.02771 0.05541 0.9723
26 0.02656 0.05311 0.9734
27 0.01994 0.03987 0.9801
28 0.03201 0.06402 0.968
29 0.02615 0.05231 0.9738
30 0.9294 0.1411 0.07055
31 0.9362 0.1275 0.06377
32 0.9138 0.1725 0.08624
33 0.899 0.2021 0.101
34 0.8882 0.2236 0.1118
35 0.8536 0.2927 0.1464
36 0.813 0.374 0.187
37 0.7937 0.4125 0.2063
38 0.8281 0.3439 0.1719
39 0.7845 0.4311 0.2155
40 0.735 0.5301 0.265
41 0.7548 0.4904 0.2452
42 0.7015 0.5969 0.2985
43 0.6453 0.7094 0.3547
44 0.5839 0.8321 0.4161
45 0.6414 0.7172 0.3586
46 0.6689 0.6623 0.3311
47 0.6105 0.779 0.3895
48 0.5812 0.8375 0.4188
49 0.5167 0.9666 0.4833
50 0.4519 0.9038 0.5481
51 0.4243 0.8485 0.5757
52 0.3626 0.7252 0.6374
53 0.5143 0.9714 0.4857
54 0.4474 0.8947 0.5526
55 0.5088 0.9823 0.4912
56 0.46 0.92 0.54
57 0.3917 0.7834 0.6083
58 0.582 0.8359 0.418
59 0.5853 0.8293 0.4147
60 0.611 0.778 0.389
61 0.7032 0.5936 0.2968
62 0.7292 0.5415 0.2708
63 0.6703 0.6593 0.3297
64 0.6255 0.749 0.3745
65 0.7332 0.5336 0.2668
66 0.7185 0.5631 0.2815
67 0.6441 0.7119 0.3559
68 0.6076 0.7849 0.3924
69 0.5196 0.9608 0.4804
70 0.4274 0.8548 0.5726
71 0.7616 0.4768 0.2384
72 0.673 0.6541 0.327
73 0.5724 0.8552 0.4276
74 0.4589 0.9179 0.5411
75 0.3883 0.7767 0.6117
76 0.356 0.712 0.644
77 0.4022 0.8044 0.5978
78 0.2625 0.5249 0.7375







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level10.0138889OK
10% type I error level80.111111NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 1 & 0.0138889 & OK \tabularnewline
10% type I error level & 8 & 0.111111 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=316410&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]1[/C][C]0.0138889[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]8[/C][C]0.111111[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=316410&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level10.0138889OK
10% type I error level80.111111NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.61606, df1 = 2, df2 = 79, p-value = 0.5426
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.93052, df1 = 6, df2 = 75, p-value = 0.4782
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.84446, df1 = 2, df2 = 79, p-value = 0.4336

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.61606, df1 = 2, df2 = 79, p-value = 0.5426
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.93052, df1 = 6, df2 = 75, p-value = 0.4782
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.84446, df1 = 2, df2 = 79, p-value = 0.4336
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=316410&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.61606, df1 = 2, df2 = 79, p-value = 0.5426
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.93052, df1 = 6, df2 = 75, p-value = 0.4782
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.84446, df1 = 2, df2 = 79, p-value = 0.4336
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=316410&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.61606, df1 = 2, df2 = 79, p-value = 0.5426
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.93052, df1 = 6, df2 = 75, p-value = 0.4782
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.84446, df1 = 2, df2 = 79, p-value = 0.4336







Variance Inflation Factors (Multicollinearity)
> vif
   IKSUM  KVDDSUM SKEOUSUM 
1.036213 1.022608 1.018379 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   IKSUM  KVDDSUM SKEOUSUM 
1.036213 1.022608 1.018379 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=316410&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   IKSUM  KVDDSUM SKEOUSUM 
1.036213 1.022608 1.018379 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=316410&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=316410&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   IKSUM  KVDDSUM SKEOUSUM 
1.036213 1.022608 1.018379 



Parameters (Session):
par1 = grey ; par2 = no ;
Parameters (R input):
par1 = 1 ; par2 = no ; par3 = No Linear Trend ; par4 = ; par5 = ; par6 = 12 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')