Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 14 Dec 2008 06:33:27 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/14/t1229261711k62h2k3mcim0a3x.htm/, Retrieved Fri, 01 Nov 2024 00:34:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=33365, Retrieved Fri, 01 Nov 2024 00:34:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact171
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [no lineair trend ...] [2008-12-14 13:33:27] [5925747fb2a6bb4cfcd8015825ee5e92] [Current]
Feedback Forum

Post a new message
Dataseries X:
11554.5	180144
13182.1	173666
14800.1	165688
12150.7	161570
14478.2	156145
13253.9	153730
12036.8	182698
12653.2	200765
14035.4	176512
14571.4	166618
15400.9	158644
14283.2	159585
14485.3	163095
14196.3	159044
15559.1	155511
13767.4	153745
14634	150569
14381.1	150605
12509.9	179612
12122.3	194690
13122.3	189917
13908.7	184128
13456.5	175335
12441.6	179566
12953	181140
13057.2	177876
14350.1	175041
13830.2	169292
13755.5	166070
13574.4	166972
12802.6	206348
11737.3	215706
13850.2	202108
15081.8	195411
13653.3	193111
14019.1	195198
13962	198770
13768.7	194163
14747.1	190420
13858.1	189733
13188	186029
13693.1	191531
12970	232571
11392.8	243477
13985.2	227247
14994.7	217859
13584.7	208679
14257.8	213188
13553.4	216234
14007.3	213586
16535.8	209465
14721.4	204045
13664.6	200237
16805.9	203666
13829.4	241476
13735.6	260307
15870.5	243324
15962.4	244460
15744.1	233575
16083.7	237217
14863.9	235243
15533.1	230354
17473.1	227184
15925.5	221678
15573.7	217142
17495	219452
14155.8	256446
14913.9	265845
17250.4	248624
15879.8	241114
17647.8	229245
17749.9	231805
17111.8	219277
16934.8	219313
20280	212610
16238.2	214771
17896.1	211142
18089.3	211457
15660	240048
16162.4	240636
17850.1	230580
18520.4	208795
18524.7	197922
16843.7	194596




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Multiple Linear Regression - Estimated Regression Equation
invoer[t] = + 10341.3857439156 + 0.0218660314107394werkloosheid[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
invoer[t] =  +  10341.3857439156 +  0.0218660314107394werkloosheid[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]invoer[t] =  +  10341.3857439156 +  0.0218660314107394werkloosheid[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
invoer[t] = + 10341.3857439156 + 0.0218660314107394werkloosheid[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)10341.38574391561306.7100777.914100
werkloosheid0.02186603141073940.0064113.41050.0010090.000504

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 10341.3857439156 & 1306.710077 & 7.9141 & 0 & 0 \tabularnewline
werkloosheid & 0.0218660314107394 & 0.006411 & 3.4105 & 0.001009 & 0.000504 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]10341.3857439156[/C][C]1306.710077[/C][C]7.9141[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]werkloosheid[/C][C]0.0218660314107394[/C][C]0.006411[/C][C]3.4105[/C][C]0.001009[/C][C]0.000504[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)10341.38574391561306.7100777.914100
werkloosheid0.02186603141073940.0064113.41050.0010090.000504







Multiple Linear Regression - Regression Statistics
Multiple R0.352454518886459
R-squared0.124224187883486
Adjusted R-squared0.113543995052796
F-TEST (value)11.6312682601134
F-TEST (DF numerator)1
F-TEST (DF denominator)82
p-value0.00100870697995736
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1720.29808344907
Sum Squared Residuals242672890.665319

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.352454518886459 \tabularnewline
R-squared & 0.124224187883486 \tabularnewline
Adjusted R-squared & 0.113543995052796 \tabularnewline
F-TEST (value) & 11.6312682601134 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 82 \tabularnewline
p-value & 0.00100870697995736 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1720.29808344907 \tabularnewline
Sum Squared Residuals & 242672890.665319 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.352454518886459[/C][/ROW]
[ROW][C]R-squared[/C][C]0.124224187883486[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.113543995052796[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]11.6312682601134[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]82[/C][/ROW]
[ROW][C]p-value[/C][C]0.00100870697995736[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1720.29808344907[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]242672890.665319[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.352454518886459
R-squared0.124224187883486
Adjusted R-squared0.113543995052796
F-TEST (value)11.6312682601134
F-TEST (DF numerator)1
F-TEST (DF denominator)82
p-value0.00100870697995736
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1720.29808344907
Sum Squared Residuals242672890.665319







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
111554.514280.4201063718-2725.92010637183
213182.114138.7719548930-956.67195489305
314800.113964.3247562982835.775243701831
412150.713874.2804389487-1723.58043894874
514478.213755.6572185455722.542781454517
613253.913702.8507526885-448.950752688548
712036.814336.2659505948-2299.46595059485
812653.214731.3195400927-2078.11954009267
914035.414201.002680288-165.602680288013
1014571.413984.6601655102586.739834489842
1115400.913810.30043104091590.59956895908
1214283.213830.8763665984452.323633401574
1314485.313907.6261368501577.673863149877
1414196.313819.0468436052377.253156394782
1515559.113741.79415463111817.30584536893
1613767.413703.178743159764.2212568402906
171463413633.73222739921000.2677726008
1814381.113634.51940453746.580595470013
1912509.914268.7873776613-1758.88737766130
2012122.314598.4833992724-2476.18339927243
2113122.314494.1168313490-1371.81683134897
2213908.714367.5343755122-458.834375512203
2313456.514175.2663613176-718.766361317572
2412441.614267.7815402164-1826.18154021641
251295314302.1986736569-1349.19867365691
2613057.214230.8279471323-1173.62794713226
2714350.114168.8377480828181.262251917185
2813830.214043.1299335025-212.929933502473
2913755.513972.6775802971-217.177580297072
3013574.413992.4007406296-418.000740629559
3112802.614853.3975934588-2050.79759345883
3211737.315058.0199154005-3320.71991540053
3313850.214760.6856202773-910.485620277297
3415081.814614.2488079196467.551192080423
3513653.314563.9569356749-910.656935674876
3614019.114609.5913432291-590.491343229088
371396214687.6968074283-725.69680742825
3813768.714586.9600007190-818.260000718973
3914747.114505.1154451486241.984554851424
4013858.114490.0934815694-631.993481569398
411318814409.1017012240-1221.10170122402
4213693.114529.4086060459-836.308606045907
431297015426.7905351427-2456.79053514265
4411392.815665.2614737082-4272.46147370818
4513985.215310.3757839119-1325.17578391187
4614994.715105.0974810279-110.397481027853
4713584.714904.3673126773-1319.66731267727
4814257.815002.9612483083-745.161248308291
4913553.415069.5651799854-1516.16517998540
5014007.315011.6639288098-1004.36392880977
5116535.814921.55401336611614.24598663389
5214721.414803.0401231199-81.6401231199005
5313664.614719.7742755078-1055.17427550780
5416805.914794.75289721522011.14710278477
5513829.415621.5075448553-1792.10754485529
5613735.616033.2667823509-2297.66678235092
5715870.515661.9159709023208.584029097668
5815962.415686.7557825849275.644217415067
5915744.115448.7440306790295.355969320966
6016083.715528.3801170769555.319882923054
6114863.915485.2165710721-621.316571072148
6215533.115378.3135435050154.786456494958
6317473.115308.9982239332164.101776067
6415925.515188.6038549855736.896145014532
6515573.715089.4195365064484.280463493647
661749515139.93006906522355.06993093484
6714155.815948.8420350741-1793.04203507406
6814913.916154.3608643036-1240.46086430359
6917250.415777.80593737931472.59406262075
7015879.815613.5920414846266.207958515401
7117647.815354.06411467052293.73588532947
7217749.915410.04115508202339.85884491798
7317111.815136.10351356831975.69648643172
7416934.815136.89069069911797.90930930093
752028014990.32268215295289.67731784712
7616238.215037.57517603151200.62482396851
7717896.114958.22334804192937.87665195808
7818089.314965.11114793633124.1888520637
791566015590.282852000769.7171479992499
8016162.415603.1400784703559.259921529735
8117850.115383.25526660392466.84473339613
8218520.414906.90377232093613.49622767909
8318524.714669.15441279193855.54558720806
8416843.714596.42799231982247.27200768018

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 11554.5 & 14280.4201063718 & -2725.92010637183 \tabularnewline
2 & 13182.1 & 14138.7719548930 & -956.67195489305 \tabularnewline
3 & 14800.1 & 13964.3247562982 & 835.775243701831 \tabularnewline
4 & 12150.7 & 13874.2804389487 & -1723.58043894874 \tabularnewline
5 & 14478.2 & 13755.6572185455 & 722.542781454517 \tabularnewline
6 & 13253.9 & 13702.8507526885 & -448.950752688548 \tabularnewline
7 & 12036.8 & 14336.2659505948 & -2299.46595059485 \tabularnewline
8 & 12653.2 & 14731.3195400927 & -2078.11954009267 \tabularnewline
9 & 14035.4 & 14201.002680288 & -165.602680288013 \tabularnewline
10 & 14571.4 & 13984.6601655102 & 586.739834489842 \tabularnewline
11 & 15400.9 & 13810.3004310409 & 1590.59956895908 \tabularnewline
12 & 14283.2 & 13830.8763665984 & 452.323633401574 \tabularnewline
13 & 14485.3 & 13907.6261368501 & 577.673863149877 \tabularnewline
14 & 14196.3 & 13819.0468436052 & 377.253156394782 \tabularnewline
15 & 15559.1 & 13741.7941546311 & 1817.30584536893 \tabularnewline
16 & 13767.4 & 13703.1787431597 & 64.2212568402906 \tabularnewline
17 & 14634 & 13633.7322273992 & 1000.2677726008 \tabularnewline
18 & 14381.1 & 13634.51940453 & 746.580595470013 \tabularnewline
19 & 12509.9 & 14268.7873776613 & -1758.88737766130 \tabularnewline
20 & 12122.3 & 14598.4833992724 & -2476.18339927243 \tabularnewline
21 & 13122.3 & 14494.1168313490 & -1371.81683134897 \tabularnewline
22 & 13908.7 & 14367.5343755122 & -458.834375512203 \tabularnewline
23 & 13456.5 & 14175.2663613176 & -718.766361317572 \tabularnewline
24 & 12441.6 & 14267.7815402164 & -1826.18154021641 \tabularnewline
25 & 12953 & 14302.1986736569 & -1349.19867365691 \tabularnewline
26 & 13057.2 & 14230.8279471323 & -1173.62794713226 \tabularnewline
27 & 14350.1 & 14168.8377480828 & 181.262251917185 \tabularnewline
28 & 13830.2 & 14043.1299335025 & -212.929933502473 \tabularnewline
29 & 13755.5 & 13972.6775802971 & -217.177580297072 \tabularnewline
30 & 13574.4 & 13992.4007406296 & -418.000740629559 \tabularnewline
31 & 12802.6 & 14853.3975934588 & -2050.79759345883 \tabularnewline
32 & 11737.3 & 15058.0199154005 & -3320.71991540053 \tabularnewline
33 & 13850.2 & 14760.6856202773 & -910.485620277297 \tabularnewline
34 & 15081.8 & 14614.2488079196 & 467.551192080423 \tabularnewline
35 & 13653.3 & 14563.9569356749 & -910.656935674876 \tabularnewline
36 & 14019.1 & 14609.5913432291 & -590.491343229088 \tabularnewline
37 & 13962 & 14687.6968074283 & -725.69680742825 \tabularnewline
38 & 13768.7 & 14586.9600007190 & -818.260000718973 \tabularnewline
39 & 14747.1 & 14505.1154451486 & 241.984554851424 \tabularnewline
40 & 13858.1 & 14490.0934815694 & -631.993481569398 \tabularnewline
41 & 13188 & 14409.1017012240 & -1221.10170122402 \tabularnewline
42 & 13693.1 & 14529.4086060459 & -836.308606045907 \tabularnewline
43 & 12970 & 15426.7905351427 & -2456.79053514265 \tabularnewline
44 & 11392.8 & 15665.2614737082 & -4272.46147370818 \tabularnewline
45 & 13985.2 & 15310.3757839119 & -1325.17578391187 \tabularnewline
46 & 14994.7 & 15105.0974810279 & -110.397481027853 \tabularnewline
47 & 13584.7 & 14904.3673126773 & -1319.66731267727 \tabularnewline
48 & 14257.8 & 15002.9612483083 & -745.161248308291 \tabularnewline
49 & 13553.4 & 15069.5651799854 & -1516.16517998540 \tabularnewline
50 & 14007.3 & 15011.6639288098 & -1004.36392880977 \tabularnewline
51 & 16535.8 & 14921.5540133661 & 1614.24598663389 \tabularnewline
52 & 14721.4 & 14803.0401231199 & -81.6401231199005 \tabularnewline
53 & 13664.6 & 14719.7742755078 & -1055.17427550780 \tabularnewline
54 & 16805.9 & 14794.7528972152 & 2011.14710278477 \tabularnewline
55 & 13829.4 & 15621.5075448553 & -1792.10754485529 \tabularnewline
56 & 13735.6 & 16033.2667823509 & -2297.66678235092 \tabularnewline
57 & 15870.5 & 15661.9159709023 & 208.584029097668 \tabularnewline
58 & 15962.4 & 15686.7557825849 & 275.644217415067 \tabularnewline
59 & 15744.1 & 15448.7440306790 & 295.355969320966 \tabularnewline
60 & 16083.7 & 15528.3801170769 & 555.319882923054 \tabularnewline
61 & 14863.9 & 15485.2165710721 & -621.316571072148 \tabularnewline
62 & 15533.1 & 15378.3135435050 & 154.786456494958 \tabularnewline
63 & 17473.1 & 15308.998223933 & 2164.101776067 \tabularnewline
64 & 15925.5 & 15188.6038549855 & 736.896145014532 \tabularnewline
65 & 15573.7 & 15089.4195365064 & 484.280463493647 \tabularnewline
66 & 17495 & 15139.9300690652 & 2355.06993093484 \tabularnewline
67 & 14155.8 & 15948.8420350741 & -1793.04203507406 \tabularnewline
68 & 14913.9 & 16154.3608643036 & -1240.46086430359 \tabularnewline
69 & 17250.4 & 15777.8059373793 & 1472.59406262075 \tabularnewline
70 & 15879.8 & 15613.5920414846 & 266.207958515401 \tabularnewline
71 & 17647.8 & 15354.0641146705 & 2293.73588532947 \tabularnewline
72 & 17749.9 & 15410.0411550820 & 2339.85884491798 \tabularnewline
73 & 17111.8 & 15136.1035135683 & 1975.69648643172 \tabularnewline
74 & 16934.8 & 15136.8906906991 & 1797.90930930093 \tabularnewline
75 & 20280 & 14990.3226821529 & 5289.67731784712 \tabularnewline
76 & 16238.2 & 15037.5751760315 & 1200.62482396851 \tabularnewline
77 & 17896.1 & 14958.2233480419 & 2937.87665195808 \tabularnewline
78 & 18089.3 & 14965.1111479363 & 3124.1888520637 \tabularnewline
79 & 15660 & 15590.2828520007 & 69.7171479992499 \tabularnewline
80 & 16162.4 & 15603.1400784703 & 559.259921529735 \tabularnewline
81 & 17850.1 & 15383.2552666039 & 2466.84473339613 \tabularnewline
82 & 18520.4 & 14906.9037723209 & 3613.49622767909 \tabularnewline
83 & 18524.7 & 14669.1544127919 & 3855.54558720806 \tabularnewline
84 & 16843.7 & 14596.4279923198 & 2247.27200768018 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]11554.5[/C][C]14280.4201063718[/C][C]-2725.92010637183[/C][/ROW]
[ROW][C]2[/C][C]13182.1[/C][C]14138.7719548930[/C][C]-956.67195489305[/C][/ROW]
[ROW][C]3[/C][C]14800.1[/C][C]13964.3247562982[/C][C]835.775243701831[/C][/ROW]
[ROW][C]4[/C][C]12150.7[/C][C]13874.2804389487[/C][C]-1723.58043894874[/C][/ROW]
[ROW][C]5[/C][C]14478.2[/C][C]13755.6572185455[/C][C]722.542781454517[/C][/ROW]
[ROW][C]6[/C][C]13253.9[/C][C]13702.8507526885[/C][C]-448.950752688548[/C][/ROW]
[ROW][C]7[/C][C]12036.8[/C][C]14336.2659505948[/C][C]-2299.46595059485[/C][/ROW]
[ROW][C]8[/C][C]12653.2[/C][C]14731.3195400927[/C][C]-2078.11954009267[/C][/ROW]
[ROW][C]9[/C][C]14035.4[/C][C]14201.002680288[/C][C]-165.602680288013[/C][/ROW]
[ROW][C]10[/C][C]14571.4[/C][C]13984.6601655102[/C][C]586.739834489842[/C][/ROW]
[ROW][C]11[/C][C]15400.9[/C][C]13810.3004310409[/C][C]1590.59956895908[/C][/ROW]
[ROW][C]12[/C][C]14283.2[/C][C]13830.8763665984[/C][C]452.323633401574[/C][/ROW]
[ROW][C]13[/C][C]14485.3[/C][C]13907.6261368501[/C][C]577.673863149877[/C][/ROW]
[ROW][C]14[/C][C]14196.3[/C][C]13819.0468436052[/C][C]377.253156394782[/C][/ROW]
[ROW][C]15[/C][C]15559.1[/C][C]13741.7941546311[/C][C]1817.30584536893[/C][/ROW]
[ROW][C]16[/C][C]13767.4[/C][C]13703.1787431597[/C][C]64.2212568402906[/C][/ROW]
[ROW][C]17[/C][C]14634[/C][C]13633.7322273992[/C][C]1000.2677726008[/C][/ROW]
[ROW][C]18[/C][C]14381.1[/C][C]13634.51940453[/C][C]746.580595470013[/C][/ROW]
[ROW][C]19[/C][C]12509.9[/C][C]14268.7873776613[/C][C]-1758.88737766130[/C][/ROW]
[ROW][C]20[/C][C]12122.3[/C][C]14598.4833992724[/C][C]-2476.18339927243[/C][/ROW]
[ROW][C]21[/C][C]13122.3[/C][C]14494.1168313490[/C][C]-1371.81683134897[/C][/ROW]
[ROW][C]22[/C][C]13908.7[/C][C]14367.5343755122[/C][C]-458.834375512203[/C][/ROW]
[ROW][C]23[/C][C]13456.5[/C][C]14175.2663613176[/C][C]-718.766361317572[/C][/ROW]
[ROW][C]24[/C][C]12441.6[/C][C]14267.7815402164[/C][C]-1826.18154021641[/C][/ROW]
[ROW][C]25[/C][C]12953[/C][C]14302.1986736569[/C][C]-1349.19867365691[/C][/ROW]
[ROW][C]26[/C][C]13057.2[/C][C]14230.8279471323[/C][C]-1173.62794713226[/C][/ROW]
[ROW][C]27[/C][C]14350.1[/C][C]14168.8377480828[/C][C]181.262251917185[/C][/ROW]
[ROW][C]28[/C][C]13830.2[/C][C]14043.1299335025[/C][C]-212.929933502473[/C][/ROW]
[ROW][C]29[/C][C]13755.5[/C][C]13972.6775802971[/C][C]-217.177580297072[/C][/ROW]
[ROW][C]30[/C][C]13574.4[/C][C]13992.4007406296[/C][C]-418.000740629559[/C][/ROW]
[ROW][C]31[/C][C]12802.6[/C][C]14853.3975934588[/C][C]-2050.79759345883[/C][/ROW]
[ROW][C]32[/C][C]11737.3[/C][C]15058.0199154005[/C][C]-3320.71991540053[/C][/ROW]
[ROW][C]33[/C][C]13850.2[/C][C]14760.6856202773[/C][C]-910.485620277297[/C][/ROW]
[ROW][C]34[/C][C]15081.8[/C][C]14614.2488079196[/C][C]467.551192080423[/C][/ROW]
[ROW][C]35[/C][C]13653.3[/C][C]14563.9569356749[/C][C]-910.656935674876[/C][/ROW]
[ROW][C]36[/C][C]14019.1[/C][C]14609.5913432291[/C][C]-590.491343229088[/C][/ROW]
[ROW][C]37[/C][C]13962[/C][C]14687.6968074283[/C][C]-725.69680742825[/C][/ROW]
[ROW][C]38[/C][C]13768.7[/C][C]14586.9600007190[/C][C]-818.260000718973[/C][/ROW]
[ROW][C]39[/C][C]14747.1[/C][C]14505.1154451486[/C][C]241.984554851424[/C][/ROW]
[ROW][C]40[/C][C]13858.1[/C][C]14490.0934815694[/C][C]-631.993481569398[/C][/ROW]
[ROW][C]41[/C][C]13188[/C][C]14409.1017012240[/C][C]-1221.10170122402[/C][/ROW]
[ROW][C]42[/C][C]13693.1[/C][C]14529.4086060459[/C][C]-836.308606045907[/C][/ROW]
[ROW][C]43[/C][C]12970[/C][C]15426.7905351427[/C][C]-2456.79053514265[/C][/ROW]
[ROW][C]44[/C][C]11392.8[/C][C]15665.2614737082[/C][C]-4272.46147370818[/C][/ROW]
[ROW][C]45[/C][C]13985.2[/C][C]15310.3757839119[/C][C]-1325.17578391187[/C][/ROW]
[ROW][C]46[/C][C]14994.7[/C][C]15105.0974810279[/C][C]-110.397481027853[/C][/ROW]
[ROW][C]47[/C][C]13584.7[/C][C]14904.3673126773[/C][C]-1319.66731267727[/C][/ROW]
[ROW][C]48[/C][C]14257.8[/C][C]15002.9612483083[/C][C]-745.161248308291[/C][/ROW]
[ROW][C]49[/C][C]13553.4[/C][C]15069.5651799854[/C][C]-1516.16517998540[/C][/ROW]
[ROW][C]50[/C][C]14007.3[/C][C]15011.6639288098[/C][C]-1004.36392880977[/C][/ROW]
[ROW][C]51[/C][C]16535.8[/C][C]14921.5540133661[/C][C]1614.24598663389[/C][/ROW]
[ROW][C]52[/C][C]14721.4[/C][C]14803.0401231199[/C][C]-81.6401231199005[/C][/ROW]
[ROW][C]53[/C][C]13664.6[/C][C]14719.7742755078[/C][C]-1055.17427550780[/C][/ROW]
[ROW][C]54[/C][C]16805.9[/C][C]14794.7528972152[/C][C]2011.14710278477[/C][/ROW]
[ROW][C]55[/C][C]13829.4[/C][C]15621.5075448553[/C][C]-1792.10754485529[/C][/ROW]
[ROW][C]56[/C][C]13735.6[/C][C]16033.2667823509[/C][C]-2297.66678235092[/C][/ROW]
[ROW][C]57[/C][C]15870.5[/C][C]15661.9159709023[/C][C]208.584029097668[/C][/ROW]
[ROW][C]58[/C][C]15962.4[/C][C]15686.7557825849[/C][C]275.644217415067[/C][/ROW]
[ROW][C]59[/C][C]15744.1[/C][C]15448.7440306790[/C][C]295.355969320966[/C][/ROW]
[ROW][C]60[/C][C]16083.7[/C][C]15528.3801170769[/C][C]555.319882923054[/C][/ROW]
[ROW][C]61[/C][C]14863.9[/C][C]15485.2165710721[/C][C]-621.316571072148[/C][/ROW]
[ROW][C]62[/C][C]15533.1[/C][C]15378.3135435050[/C][C]154.786456494958[/C][/ROW]
[ROW][C]63[/C][C]17473.1[/C][C]15308.998223933[/C][C]2164.101776067[/C][/ROW]
[ROW][C]64[/C][C]15925.5[/C][C]15188.6038549855[/C][C]736.896145014532[/C][/ROW]
[ROW][C]65[/C][C]15573.7[/C][C]15089.4195365064[/C][C]484.280463493647[/C][/ROW]
[ROW][C]66[/C][C]17495[/C][C]15139.9300690652[/C][C]2355.06993093484[/C][/ROW]
[ROW][C]67[/C][C]14155.8[/C][C]15948.8420350741[/C][C]-1793.04203507406[/C][/ROW]
[ROW][C]68[/C][C]14913.9[/C][C]16154.3608643036[/C][C]-1240.46086430359[/C][/ROW]
[ROW][C]69[/C][C]17250.4[/C][C]15777.8059373793[/C][C]1472.59406262075[/C][/ROW]
[ROW][C]70[/C][C]15879.8[/C][C]15613.5920414846[/C][C]266.207958515401[/C][/ROW]
[ROW][C]71[/C][C]17647.8[/C][C]15354.0641146705[/C][C]2293.73588532947[/C][/ROW]
[ROW][C]72[/C][C]17749.9[/C][C]15410.0411550820[/C][C]2339.85884491798[/C][/ROW]
[ROW][C]73[/C][C]17111.8[/C][C]15136.1035135683[/C][C]1975.69648643172[/C][/ROW]
[ROW][C]74[/C][C]16934.8[/C][C]15136.8906906991[/C][C]1797.90930930093[/C][/ROW]
[ROW][C]75[/C][C]20280[/C][C]14990.3226821529[/C][C]5289.67731784712[/C][/ROW]
[ROW][C]76[/C][C]16238.2[/C][C]15037.5751760315[/C][C]1200.62482396851[/C][/ROW]
[ROW][C]77[/C][C]17896.1[/C][C]14958.2233480419[/C][C]2937.87665195808[/C][/ROW]
[ROW][C]78[/C][C]18089.3[/C][C]14965.1111479363[/C][C]3124.1888520637[/C][/ROW]
[ROW][C]79[/C][C]15660[/C][C]15590.2828520007[/C][C]69.7171479992499[/C][/ROW]
[ROW][C]80[/C][C]16162.4[/C][C]15603.1400784703[/C][C]559.259921529735[/C][/ROW]
[ROW][C]81[/C][C]17850.1[/C][C]15383.2552666039[/C][C]2466.84473339613[/C][/ROW]
[ROW][C]82[/C][C]18520.4[/C][C]14906.9037723209[/C][C]3613.49622767909[/C][/ROW]
[ROW][C]83[/C][C]18524.7[/C][C]14669.1544127919[/C][C]3855.54558720806[/C][/ROW]
[ROW][C]84[/C][C]16843.7[/C][C]14596.4279923198[/C][C]2247.27200768018[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
111554.514280.4201063718-2725.92010637183
213182.114138.7719548930-956.67195489305
314800.113964.3247562982835.775243701831
412150.713874.2804389487-1723.58043894874
514478.213755.6572185455722.542781454517
613253.913702.8507526885-448.950752688548
712036.814336.2659505948-2299.46595059485
812653.214731.3195400927-2078.11954009267
914035.414201.002680288-165.602680288013
1014571.413984.6601655102586.739834489842
1115400.913810.30043104091590.59956895908
1214283.213830.8763665984452.323633401574
1314485.313907.6261368501577.673863149877
1414196.313819.0468436052377.253156394782
1515559.113741.79415463111817.30584536893
1613767.413703.178743159764.2212568402906
171463413633.73222739921000.2677726008
1814381.113634.51940453746.580595470013
1912509.914268.7873776613-1758.88737766130
2012122.314598.4833992724-2476.18339927243
2113122.314494.1168313490-1371.81683134897
2213908.714367.5343755122-458.834375512203
2313456.514175.2663613176-718.766361317572
2412441.614267.7815402164-1826.18154021641
251295314302.1986736569-1349.19867365691
2613057.214230.8279471323-1173.62794713226
2714350.114168.8377480828181.262251917185
2813830.214043.1299335025-212.929933502473
2913755.513972.6775802971-217.177580297072
3013574.413992.4007406296-418.000740629559
3112802.614853.3975934588-2050.79759345883
3211737.315058.0199154005-3320.71991540053
3313850.214760.6856202773-910.485620277297
3415081.814614.2488079196467.551192080423
3513653.314563.9569356749-910.656935674876
3614019.114609.5913432291-590.491343229088
371396214687.6968074283-725.69680742825
3813768.714586.9600007190-818.260000718973
3914747.114505.1154451486241.984554851424
4013858.114490.0934815694-631.993481569398
411318814409.1017012240-1221.10170122402
4213693.114529.4086060459-836.308606045907
431297015426.7905351427-2456.79053514265
4411392.815665.2614737082-4272.46147370818
4513985.215310.3757839119-1325.17578391187
4614994.715105.0974810279-110.397481027853
4713584.714904.3673126773-1319.66731267727
4814257.815002.9612483083-745.161248308291
4913553.415069.5651799854-1516.16517998540
5014007.315011.6639288098-1004.36392880977
5116535.814921.55401336611614.24598663389
5214721.414803.0401231199-81.6401231199005
5313664.614719.7742755078-1055.17427550780
5416805.914794.75289721522011.14710278477
5513829.415621.5075448553-1792.10754485529
5613735.616033.2667823509-2297.66678235092
5715870.515661.9159709023208.584029097668
5815962.415686.7557825849275.644217415067
5915744.115448.7440306790295.355969320966
6016083.715528.3801170769555.319882923054
6114863.915485.2165710721-621.316571072148
6215533.115378.3135435050154.786456494958
6317473.115308.9982239332164.101776067
6415925.515188.6038549855736.896145014532
6515573.715089.4195365064484.280463493647
661749515139.93006906522355.06993093484
6714155.815948.8420350741-1793.04203507406
6814913.916154.3608643036-1240.46086430359
6917250.415777.80593737931472.59406262075
7015879.815613.5920414846266.207958515401
7117647.815354.06411467052293.73588532947
7217749.915410.04115508202339.85884491798
7317111.815136.10351356831975.69648643172
7416934.815136.89069069911797.90930930093
752028014990.32268215295289.67731784712
7616238.215037.57517603151200.62482396851
7717896.114958.22334804192937.87665195808
7818089.314965.11114793633124.1888520637
791566015590.282852000769.7171479992499
8016162.415603.1400784703559.259921529735
8117850.115383.25526660392466.84473339613
8218520.414906.90377232093613.49622767909
8318524.714669.15441279193855.54558720806
8416843.714596.42799231982247.27200768018







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.3689487644492470.7378975288984950.631051235550753
60.2616203324722670.5232406649445340.738379667527733
70.1544979078366870.3089958156733750.845502092163313
80.1254240658980450.2508481317960890.874575934101955
90.1010290935248770.2020581870497550.898970906475123
100.08495494786726750.1699098957345350.915045052132732
110.09113161969330640.1822632393866130.908868380306694
120.05439981551433660.1087996310286730.945600184485663
130.03408932212845450.06817864425690890.965910677871545
140.01854660544274180.03709321088548350.981453394557258
150.01662472962153360.03324945924306720.983375270378466
160.01062002024381180.02124004048762360.989379979756188
170.005664868096140840.01132973619228170.99433513190386
180.002965797141611330.005931594283222650.997034202858389
190.001788429579816420.003576859159632840.998211570420184
200.001051652032660300.002103304065320600.99894834796734
210.0006348848229709050.001269769645941810.99936511517703
220.0004777720397787690.0009555440795575370.999522227960221
230.0002286938027141160.0004573876054282320.999771306197286
240.0001585305749596030.0003170611499192070.99984146942504
258.10193440992273e-050.0001620386881984550.9999189806559
264.07536771759618e-058.15073543519236e-050.999959246322824
272.99827972827524e-055.99655945655047e-050.999970017202717
281.35620895968121e-052.71241791936243e-050.999986437910403
296.01379645653018e-061.20275929130604e-050.999993986203544
302.79352468054690e-065.58704936109381e-060.99999720647532
312.54323904516006e-065.08647809032012e-060.999997456760955
322.56633217247007e-065.13266434494014e-060.999997433667828
334.63878272254273e-069.27756544508546e-060.999995361217278
342.54127187642527e-055.08254375285053e-050.999974587281236
351.81297408992561e-053.62594817985122e-050.9999818702591
361.60000599984670e-053.20001199969339e-050.999983999940002
371.43141900879515e-052.8628380175903e-050.999985685809912
381.09566436415800e-052.19132872831601e-050.999989043356358
391.37422945245421e-052.74845890490841e-050.999986257705475
401.10798445726165e-052.2159689145233e-050.999988920155427
411.42840390632135e-052.8568078126427e-050.999985715960937
421.80269810085475e-053.60539620170949e-050.999981973018991
432.14153951718114e-054.28307903436228e-050.999978584604828
448.93547760008823e-050.0001787095520017650.999910645224
450.0001614260459440120.0003228520918880240.999838573954056
460.0004065506883788320.0008131013767576630.999593449311621
470.0007253641715060760.001450728343012150.999274635828494
480.001178088189255770.002356176378511540.998821911810744
490.002568995054188220.005137990108376440.997431004945812
500.005619899092781650.01123979818556330.994380100907218
510.02302698929639380.04605397859278750.976973010703606
520.04565333169389470.09130666338778930.954346668306105
530.2649037191663680.5298074383327350.735096280833632
540.4482561086610230.8965122173220470.551743891338977
550.5365211109665160.9269577780669670.463478889033484
560.5324410429439780.9351179141120430.467558957056022
570.5583390117036740.8833219765926530.441660988296326
580.566710948371650.86657810325670.43328905162835
590.56608509936070.86782980127860.4339149006393
600.5552028047990440.8895943904019120.444797195200956
610.5886141699779370.8227716600441250.411385830022063
620.6012162671938470.7975674656123060.398783732806153
630.6597905535557750.6804188928884510.340209446444225
640.678428294334980.643143411330040.32157170566502
650.7702321458240560.4595357083518880.229767854175944
660.77645290454840.4470941909031990.223547095451599
670.8109074299736510.3781851400526980.189092570026349
680.7719342563242620.4561314873514760.228065743675738
690.7722631879349540.4554736241300930.227736812065047
700.7312526219107950.537494756178410.268747378089205
710.7135314593187410.5729370813625180.286468540681259
720.7045290529523950.590941894095210.295470947047605
730.6447711988669650.710457602266070.355228801133035
740.5782578679623170.8434842640753670.421742132037683
750.9151032386582920.1697935226834150.0848967613417077
760.9163987104164090.1672025791671830.0836012895835914
770.8605635187983320.2788729624033360.139436481201668
780.7862206980664180.4275586038671640.213779301933582
790.7227313691213430.5545372617573140.277268630878657

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0.368948764449247 & 0.737897528898495 & 0.631051235550753 \tabularnewline
6 & 0.261620332472267 & 0.523240664944534 & 0.738379667527733 \tabularnewline
7 & 0.154497907836687 & 0.308995815673375 & 0.845502092163313 \tabularnewline
8 & 0.125424065898045 & 0.250848131796089 & 0.874575934101955 \tabularnewline
9 & 0.101029093524877 & 0.202058187049755 & 0.898970906475123 \tabularnewline
10 & 0.0849549478672675 & 0.169909895734535 & 0.915045052132732 \tabularnewline
11 & 0.0911316196933064 & 0.182263239386613 & 0.908868380306694 \tabularnewline
12 & 0.0543998155143366 & 0.108799631028673 & 0.945600184485663 \tabularnewline
13 & 0.0340893221284545 & 0.0681786442569089 & 0.965910677871545 \tabularnewline
14 & 0.0185466054427418 & 0.0370932108854835 & 0.981453394557258 \tabularnewline
15 & 0.0166247296215336 & 0.0332494592430672 & 0.983375270378466 \tabularnewline
16 & 0.0106200202438118 & 0.0212400404876236 & 0.989379979756188 \tabularnewline
17 & 0.00566486809614084 & 0.0113297361922817 & 0.99433513190386 \tabularnewline
18 & 0.00296579714161133 & 0.00593159428322265 & 0.997034202858389 \tabularnewline
19 & 0.00178842957981642 & 0.00357685915963284 & 0.998211570420184 \tabularnewline
20 & 0.00105165203266030 & 0.00210330406532060 & 0.99894834796734 \tabularnewline
21 & 0.000634884822970905 & 0.00126976964594181 & 0.99936511517703 \tabularnewline
22 & 0.000477772039778769 & 0.000955544079557537 & 0.999522227960221 \tabularnewline
23 & 0.000228693802714116 & 0.000457387605428232 & 0.999771306197286 \tabularnewline
24 & 0.000158530574959603 & 0.000317061149919207 & 0.99984146942504 \tabularnewline
25 & 8.10193440992273e-05 & 0.000162038688198455 & 0.9999189806559 \tabularnewline
26 & 4.07536771759618e-05 & 8.15073543519236e-05 & 0.999959246322824 \tabularnewline
27 & 2.99827972827524e-05 & 5.99655945655047e-05 & 0.999970017202717 \tabularnewline
28 & 1.35620895968121e-05 & 2.71241791936243e-05 & 0.999986437910403 \tabularnewline
29 & 6.01379645653018e-06 & 1.20275929130604e-05 & 0.999993986203544 \tabularnewline
30 & 2.79352468054690e-06 & 5.58704936109381e-06 & 0.99999720647532 \tabularnewline
31 & 2.54323904516006e-06 & 5.08647809032012e-06 & 0.999997456760955 \tabularnewline
32 & 2.56633217247007e-06 & 5.13266434494014e-06 & 0.999997433667828 \tabularnewline
33 & 4.63878272254273e-06 & 9.27756544508546e-06 & 0.999995361217278 \tabularnewline
34 & 2.54127187642527e-05 & 5.08254375285053e-05 & 0.999974587281236 \tabularnewline
35 & 1.81297408992561e-05 & 3.62594817985122e-05 & 0.9999818702591 \tabularnewline
36 & 1.60000599984670e-05 & 3.20001199969339e-05 & 0.999983999940002 \tabularnewline
37 & 1.43141900879515e-05 & 2.8628380175903e-05 & 0.999985685809912 \tabularnewline
38 & 1.09566436415800e-05 & 2.19132872831601e-05 & 0.999989043356358 \tabularnewline
39 & 1.37422945245421e-05 & 2.74845890490841e-05 & 0.999986257705475 \tabularnewline
40 & 1.10798445726165e-05 & 2.2159689145233e-05 & 0.999988920155427 \tabularnewline
41 & 1.42840390632135e-05 & 2.8568078126427e-05 & 0.999985715960937 \tabularnewline
42 & 1.80269810085475e-05 & 3.60539620170949e-05 & 0.999981973018991 \tabularnewline
43 & 2.14153951718114e-05 & 4.28307903436228e-05 & 0.999978584604828 \tabularnewline
44 & 8.93547760008823e-05 & 0.000178709552001765 & 0.999910645224 \tabularnewline
45 & 0.000161426045944012 & 0.000322852091888024 & 0.999838573954056 \tabularnewline
46 & 0.000406550688378832 & 0.000813101376757663 & 0.999593449311621 \tabularnewline
47 & 0.000725364171506076 & 0.00145072834301215 & 0.999274635828494 \tabularnewline
48 & 0.00117808818925577 & 0.00235617637851154 & 0.998821911810744 \tabularnewline
49 & 0.00256899505418822 & 0.00513799010837644 & 0.997431004945812 \tabularnewline
50 & 0.00561989909278165 & 0.0112397981855633 & 0.994380100907218 \tabularnewline
51 & 0.0230269892963938 & 0.0460539785927875 & 0.976973010703606 \tabularnewline
52 & 0.0456533316938947 & 0.0913066633877893 & 0.954346668306105 \tabularnewline
53 & 0.264903719166368 & 0.529807438332735 & 0.735096280833632 \tabularnewline
54 & 0.448256108661023 & 0.896512217322047 & 0.551743891338977 \tabularnewline
55 & 0.536521110966516 & 0.926957778066967 & 0.463478889033484 \tabularnewline
56 & 0.532441042943978 & 0.935117914112043 & 0.467558957056022 \tabularnewline
57 & 0.558339011703674 & 0.883321976592653 & 0.441660988296326 \tabularnewline
58 & 0.56671094837165 & 0.8665781032567 & 0.43328905162835 \tabularnewline
59 & 0.5660850993607 & 0.8678298012786 & 0.4339149006393 \tabularnewline
60 & 0.555202804799044 & 0.889594390401912 & 0.444797195200956 \tabularnewline
61 & 0.588614169977937 & 0.822771660044125 & 0.411385830022063 \tabularnewline
62 & 0.601216267193847 & 0.797567465612306 & 0.398783732806153 \tabularnewline
63 & 0.659790553555775 & 0.680418892888451 & 0.340209446444225 \tabularnewline
64 & 0.67842829433498 & 0.64314341133004 & 0.32157170566502 \tabularnewline
65 & 0.770232145824056 & 0.459535708351888 & 0.229767854175944 \tabularnewline
66 & 0.7764529045484 & 0.447094190903199 & 0.223547095451599 \tabularnewline
67 & 0.810907429973651 & 0.378185140052698 & 0.189092570026349 \tabularnewline
68 & 0.771934256324262 & 0.456131487351476 & 0.228065743675738 \tabularnewline
69 & 0.772263187934954 & 0.455473624130093 & 0.227736812065047 \tabularnewline
70 & 0.731252621910795 & 0.53749475617841 & 0.268747378089205 \tabularnewline
71 & 0.713531459318741 & 0.572937081362518 & 0.286468540681259 \tabularnewline
72 & 0.704529052952395 & 0.59094189409521 & 0.295470947047605 \tabularnewline
73 & 0.644771198866965 & 0.71045760226607 & 0.355228801133035 \tabularnewline
74 & 0.578257867962317 & 0.843484264075367 & 0.421742132037683 \tabularnewline
75 & 0.915103238658292 & 0.169793522683415 & 0.0848967613417077 \tabularnewline
76 & 0.916398710416409 & 0.167202579167183 & 0.0836012895835914 \tabularnewline
77 & 0.860563518798332 & 0.278872962403336 & 0.139436481201668 \tabularnewline
78 & 0.786220698066418 & 0.427558603867164 & 0.213779301933582 \tabularnewline
79 & 0.722731369121343 & 0.554537261757314 & 0.277268630878657 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0.368948764449247[/C][C]0.737897528898495[/C][C]0.631051235550753[/C][/ROW]
[ROW][C]6[/C][C]0.261620332472267[/C][C]0.523240664944534[/C][C]0.738379667527733[/C][/ROW]
[ROW][C]7[/C][C]0.154497907836687[/C][C]0.308995815673375[/C][C]0.845502092163313[/C][/ROW]
[ROW][C]8[/C][C]0.125424065898045[/C][C]0.250848131796089[/C][C]0.874575934101955[/C][/ROW]
[ROW][C]9[/C][C]0.101029093524877[/C][C]0.202058187049755[/C][C]0.898970906475123[/C][/ROW]
[ROW][C]10[/C][C]0.0849549478672675[/C][C]0.169909895734535[/C][C]0.915045052132732[/C][/ROW]
[ROW][C]11[/C][C]0.0911316196933064[/C][C]0.182263239386613[/C][C]0.908868380306694[/C][/ROW]
[ROW][C]12[/C][C]0.0543998155143366[/C][C]0.108799631028673[/C][C]0.945600184485663[/C][/ROW]
[ROW][C]13[/C][C]0.0340893221284545[/C][C]0.0681786442569089[/C][C]0.965910677871545[/C][/ROW]
[ROW][C]14[/C][C]0.0185466054427418[/C][C]0.0370932108854835[/C][C]0.981453394557258[/C][/ROW]
[ROW][C]15[/C][C]0.0166247296215336[/C][C]0.0332494592430672[/C][C]0.983375270378466[/C][/ROW]
[ROW][C]16[/C][C]0.0106200202438118[/C][C]0.0212400404876236[/C][C]0.989379979756188[/C][/ROW]
[ROW][C]17[/C][C]0.00566486809614084[/C][C]0.0113297361922817[/C][C]0.99433513190386[/C][/ROW]
[ROW][C]18[/C][C]0.00296579714161133[/C][C]0.00593159428322265[/C][C]0.997034202858389[/C][/ROW]
[ROW][C]19[/C][C]0.00178842957981642[/C][C]0.00357685915963284[/C][C]0.998211570420184[/C][/ROW]
[ROW][C]20[/C][C]0.00105165203266030[/C][C]0.00210330406532060[/C][C]0.99894834796734[/C][/ROW]
[ROW][C]21[/C][C]0.000634884822970905[/C][C]0.00126976964594181[/C][C]0.99936511517703[/C][/ROW]
[ROW][C]22[/C][C]0.000477772039778769[/C][C]0.000955544079557537[/C][C]0.999522227960221[/C][/ROW]
[ROW][C]23[/C][C]0.000228693802714116[/C][C]0.000457387605428232[/C][C]0.999771306197286[/C][/ROW]
[ROW][C]24[/C][C]0.000158530574959603[/C][C]0.000317061149919207[/C][C]0.99984146942504[/C][/ROW]
[ROW][C]25[/C][C]8.10193440992273e-05[/C][C]0.000162038688198455[/C][C]0.9999189806559[/C][/ROW]
[ROW][C]26[/C][C]4.07536771759618e-05[/C][C]8.15073543519236e-05[/C][C]0.999959246322824[/C][/ROW]
[ROW][C]27[/C][C]2.99827972827524e-05[/C][C]5.99655945655047e-05[/C][C]0.999970017202717[/C][/ROW]
[ROW][C]28[/C][C]1.35620895968121e-05[/C][C]2.71241791936243e-05[/C][C]0.999986437910403[/C][/ROW]
[ROW][C]29[/C][C]6.01379645653018e-06[/C][C]1.20275929130604e-05[/C][C]0.999993986203544[/C][/ROW]
[ROW][C]30[/C][C]2.79352468054690e-06[/C][C]5.58704936109381e-06[/C][C]0.99999720647532[/C][/ROW]
[ROW][C]31[/C][C]2.54323904516006e-06[/C][C]5.08647809032012e-06[/C][C]0.999997456760955[/C][/ROW]
[ROW][C]32[/C][C]2.56633217247007e-06[/C][C]5.13266434494014e-06[/C][C]0.999997433667828[/C][/ROW]
[ROW][C]33[/C][C]4.63878272254273e-06[/C][C]9.27756544508546e-06[/C][C]0.999995361217278[/C][/ROW]
[ROW][C]34[/C][C]2.54127187642527e-05[/C][C]5.08254375285053e-05[/C][C]0.999974587281236[/C][/ROW]
[ROW][C]35[/C][C]1.81297408992561e-05[/C][C]3.62594817985122e-05[/C][C]0.9999818702591[/C][/ROW]
[ROW][C]36[/C][C]1.60000599984670e-05[/C][C]3.20001199969339e-05[/C][C]0.999983999940002[/C][/ROW]
[ROW][C]37[/C][C]1.43141900879515e-05[/C][C]2.8628380175903e-05[/C][C]0.999985685809912[/C][/ROW]
[ROW][C]38[/C][C]1.09566436415800e-05[/C][C]2.19132872831601e-05[/C][C]0.999989043356358[/C][/ROW]
[ROW][C]39[/C][C]1.37422945245421e-05[/C][C]2.74845890490841e-05[/C][C]0.999986257705475[/C][/ROW]
[ROW][C]40[/C][C]1.10798445726165e-05[/C][C]2.2159689145233e-05[/C][C]0.999988920155427[/C][/ROW]
[ROW][C]41[/C][C]1.42840390632135e-05[/C][C]2.8568078126427e-05[/C][C]0.999985715960937[/C][/ROW]
[ROW][C]42[/C][C]1.80269810085475e-05[/C][C]3.60539620170949e-05[/C][C]0.999981973018991[/C][/ROW]
[ROW][C]43[/C][C]2.14153951718114e-05[/C][C]4.28307903436228e-05[/C][C]0.999978584604828[/C][/ROW]
[ROW][C]44[/C][C]8.93547760008823e-05[/C][C]0.000178709552001765[/C][C]0.999910645224[/C][/ROW]
[ROW][C]45[/C][C]0.000161426045944012[/C][C]0.000322852091888024[/C][C]0.999838573954056[/C][/ROW]
[ROW][C]46[/C][C]0.000406550688378832[/C][C]0.000813101376757663[/C][C]0.999593449311621[/C][/ROW]
[ROW][C]47[/C][C]0.000725364171506076[/C][C]0.00145072834301215[/C][C]0.999274635828494[/C][/ROW]
[ROW][C]48[/C][C]0.00117808818925577[/C][C]0.00235617637851154[/C][C]0.998821911810744[/C][/ROW]
[ROW][C]49[/C][C]0.00256899505418822[/C][C]0.00513799010837644[/C][C]0.997431004945812[/C][/ROW]
[ROW][C]50[/C][C]0.00561989909278165[/C][C]0.0112397981855633[/C][C]0.994380100907218[/C][/ROW]
[ROW][C]51[/C][C]0.0230269892963938[/C][C]0.0460539785927875[/C][C]0.976973010703606[/C][/ROW]
[ROW][C]52[/C][C]0.0456533316938947[/C][C]0.0913066633877893[/C][C]0.954346668306105[/C][/ROW]
[ROW][C]53[/C][C]0.264903719166368[/C][C]0.529807438332735[/C][C]0.735096280833632[/C][/ROW]
[ROW][C]54[/C][C]0.448256108661023[/C][C]0.896512217322047[/C][C]0.551743891338977[/C][/ROW]
[ROW][C]55[/C][C]0.536521110966516[/C][C]0.926957778066967[/C][C]0.463478889033484[/C][/ROW]
[ROW][C]56[/C][C]0.532441042943978[/C][C]0.935117914112043[/C][C]0.467558957056022[/C][/ROW]
[ROW][C]57[/C][C]0.558339011703674[/C][C]0.883321976592653[/C][C]0.441660988296326[/C][/ROW]
[ROW][C]58[/C][C]0.56671094837165[/C][C]0.8665781032567[/C][C]0.43328905162835[/C][/ROW]
[ROW][C]59[/C][C]0.5660850993607[/C][C]0.8678298012786[/C][C]0.4339149006393[/C][/ROW]
[ROW][C]60[/C][C]0.555202804799044[/C][C]0.889594390401912[/C][C]0.444797195200956[/C][/ROW]
[ROW][C]61[/C][C]0.588614169977937[/C][C]0.822771660044125[/C][C]0.411385830022063[/C][/ROW]
[ROW][C]62[/C][C]0.601216267193847[/C][C]0.797567465612306[/C][C]0.398783732806153[/C][/ROW]
[ROW][C]63[/C][C]0.659790553555775[/C][C]0.680418892888451[/C][C]0.340209446444225[/C][/ROW]
[ROW][C]64[/C][C]0.67842829433498[/C][C]0.64314341133004[/C][C]0.32157170566502[/C][/ROW]
[ROW][C]65[/C][C]0.770232145824056[/C][C]0.459535708351888[/C][C]0.229767854175944[/C][/ROW]
[ROW][C]66[/C][C]0.7764529045484[/C][C]0.447094190903199[/C][C]0.223547095451599[/C][/ROW]
[ROW][C]67[/C][C]0.810907429973651[/C][C]0.378185140052698[/C][C]0.189092570026349[/C][/ROW]
[ROW][C]68[/C][C]0.771934256324262[/C][C]0.456131487351476[/C][C]0.228065743675738[/C][/ROW]
[ROW][C]69[/C][C]0.772263187934954[/C][C]0.455473624130093[/C][C]0.227736812065047[/C][/ROW]
[ROW][C]70[/C][C]0.731252621910795[/C][C]0.53749475617841[/C][C]0.268747378089205[/C][/ROW]
[ROW][C]71[/C][C]0.713531459318741[/C][C]0.572937081362518[/C][C]0.286468540681259[/C][/ROW]
[ROW][C]72[/C][C]0.704529052952395[/C][C]0.59094189409521[/C][C]0.295470947047605[/C][/ROW]
[ROW][C]73[/C][C]0.644771198866965[/C][C]0.71045760226607[/C][C]0.355228801133035[/C][/ROW]
[ROW][C]74[/C][C]0.578257867962317[/C][C]0.843484264075367[/C][C]0.421742132037683[/C][/ROW]
[ROW][C]75[/C][C]0.915103238658292[/C][C]0.169793522683415[/C][C]0.0848967613417077[/C][/ROW]
[ROW][C]76[/C][C]0.916398710416409[/C][C]0.167202579167183[/C][C]0.0836012895835914[/C][/ROW]
[ROW][C]77[/C][C]0.860563518798332[/C][C]0.278872962403336[/C][C]0.139436481201668[/C][/ROW]
[ROW][C]78[/C][C]0.786220698066418[/C][C]0.427558603867164[/C][C]0.213779301933582[/C][/ROW]
[ROW][C]79[/C][C]0.722731369121343[/C][C]0.554537261757314[/C][C]0.277268630878657[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.3689487644492470.7378975288984950.631051235550753
60.2616203324722670.5232406649445340.738379667527733
70.1544979078366870.3089958156733750.845502092163313
80.1254240658980450.2508481317960890.874575934101955
90.1010290935248770.2020581870497550.898970906475123
100.08495494786726750.1699098957345350.915045052132732
110.09113161969330640.1822632393866130.908868380306694
120.05439981551433660.1087996310286730.945600184485663
130.03408932212845450.06817864425690890.965910677871545
140.01854660544274180.03709321088548350.981453394557258
150.01662472962153360.03324945924306720.983375270378466
160.01062002024381180.02124004048762360.989379979756188
170.005664868096140840.01132973619228170.99433513190386
180.002965797141611330.005931594283222650.997034202858389
190.001788429579816420.003576859159632840.998211570420184
200.001051652032660300.002103304065320600.99894834796734
210.0006348848229709050.001269769645941810.99936511517703
220.0004777720397787690.0009555440795575370.999522227960221
230.0002286938027141160.0004573876054282320.999771306197286
240.0001585305749596030.0003170611499192070.99984146942504
258.10193440992273e-050.0001620386881984550.9999189806559
264.07536771759618e-058.15073543519236e-050.999959246322824
272.99827972827524e-055.99655945655047e-050.999970017202717
281.35620895968121e-052.71241791936243e-050.999986437910403
296.01379645653018e-061.20275929130604e-050.999993986203544
302.79352468054690e-065.58704936109381e-060.99999720647532
312.54323904516006e-065.08647809032012e-060.999997456760955
322.56633217247007e-065.13266434494014e-060.999997433667828
334.63878272254273e-069.27756544508546e-060.999995361217278
342.54127187642527e-055.08254375285053e-050.999974587281236
351.81297408992561e-053.62594817985122e-050.9999818702591
361.60000599984670e-053.20001199969339e-050.999983999940002
371.43141900879515e-052.8628380175903e-050.999985685809912
381.09566436415800e-052.19132872831601e-050.999989043356358
391.37422945245421e-052.74845890490841e-050.999986257705475
401.10798445726165e-052.2159689145233e-050.999988920155427
411.42840390632135e-052.8568078126427e-050.999985715960937
421.80269810085475e-053.60539620170949e-050.999981973018991
432.14153951718114e-054.28307903436228e-050.999978584604828
448.93547760008823e-050.0001787095520017650.999910645224
450.0001614260459440120.0003228520918880240.999838573954056
460.0004065506883788320.0008131013767576630.999593449311621
470.0007253641715060760.001450728343012150.999274635828494
480.001178088189255770.002356176378511540.998821911810744
490.002568995054188220.005137990108376440.997431004945812
500.005619899092781650.01123979818556330.994380100907218
510.02302698929639380.04605397859278750.976973010703606
520.04565333169389470.09130666338778930.954346668306105
530.2649037191663680.5298074383327350.735096280833632
540.4482561086610230.8965122173220470.551743891338977
550.5365211109665160.9269577780669670.463478889033484
560.5324410429439780.9351179141120430.467558957056022
570.5583390117036740.8833219765926530.441660988296326
580.566710948371650.86657810325670.43328905162835
590.56608509936070.86782980127860.4339149006393
600.5552028047990440.8895943904019120.444797195200956
610.5886141699779370.8227716600441250.411385830022063
620.6012162671938470.7975674656123060.398783732806153
630.6597905535557750.6804188928884510.340209446444225
640.678428294334980.643143411330040.32157170566502
650.7702321458240560.4595357083518880.229767854175944
660.77645290454840.4470941909031990.223547095451599
670.8109074299736510.3781851400526980.189092570026349
680.7719342563242620.4561314873514760.228065743675738
690.7722631879349540.4554736241300930.227736812065047
700.7312526219107950.537494756178410.268747378089205
710.7135314593187410.5729370813625180.286468540681259
720.7045290529523950.590941894095210.295470947047605
730.6447711988669650.710457602266070.355228801133035
740.5782578679623170.8434842640753670.421742132037683
750.9151032386582920.1697935226834150.0848967613417077
760.9163987104164090.1672025791671830.0836012895835914
770.8605635187983320.2788729624033360.139436481201668
780.7862206980664180.4275586038671640.213779301933582
790.7227313691213430.5545372617573140.277268630878657







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level320.426666666666667NOK
5% type I error level380.506666666666667NOK
10% type I error level400.533333333333333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 32 & 0.426666666666667 & NOK \tabularnewline
5% type I error level & 38 & 0.506666666666667 & NOK \tabularnewline
10% type I error level & 40 & 0.533333333333333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33365&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]32[/C][C]0.426666666666667[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]38[/C][C]0.506666666666667[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]40[/C][C]0.533333333333333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33365&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33365&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level320.426666666666667NOK
5% type I error level380.506666666666667NOK
10% type I error level400.533333333333333NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}