Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationSun, 14 Dec 2008 11:42:41 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/14/t1229280206ixjei7x9p3u038z.htm/, Retrieved Fri, 01 Nov 2024 00:11:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=33533, Retrieved Fri, 01 Nov 2024 00:11:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact219
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Standard Deviation-Mean Plot] [mean plot bel20] [2008-12-10 18:16:19] [74be16979710d4c4e7c6647856088456]
-    D    [Standard Deviation-Mean Plot] [standard deviatio...] [2008-12-14 18:42:41] [c8dc05b1cdf5010d9a4f2d773adefb82] [Current]
Feedback Forum

Post a new message
Dataseries X:
9005,73
9018,68
9349,44
9327,78
9753,63
10443,5
10853,87
10704,02
11052,23
10935,47
10714,03
10394,48
10817,9
11251,2
11281,26
10539,68
10483,39
10947,43
10580,27
10582,92
10654,41
11014,51
10967,87
10433,56
10665,78
10666,71
10682,74
10777,22
10052,6
10213,97
10546,82
10767,2
10444,5
10314,68
9042,56
9220,75
9721,84
9978,53
9923,81
9892,56
10500,98
10179,35
10080,48
9492,44
8616,49
8685,4
8160,67
8048,1
8641,21
8526,63
8474,21
7916,13
7977,64
8334,59
8623,36
9098,03
9154,34
9284,73
9492,49
9682,35
9762,12
10124,63
10540,05
10601,61
10323,73
10418,4
10092,96
10364,91
10152,09
10032,8
10204,59
10001,6
10411,75
10673,38
10539,51
10723,78
10682,06
10283,19
10377,18
10486,64
10545,38
10554,27
10532,54
10324,31
10695,25
10827,81
10872,48
10971,19
11145,65
11234,68
11333,88
10997,97
11036,89
11257,35
11533,59
11963,12
12185,15
12377,62
12512,89
12631,48
12268,53
12754,8
13407,75
13480,21
13673,28
13239,71
13557,69
13901,28
13200,58
13406,97
12538,12
12419,57
12193,88
12656,63
12812,48
12056,67
11322,38
11530,75
11114,08
9181,73
8614,55




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33533&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33533&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33533&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
110129.405783.6740938043062046.5
210796.2293.901398895493847.7
310282.9608333333584.1739787466551734.66
49440.05416666667837.4893913516252452.88
58767.1425572.5433907832191766.22
610218.2908333333241.515075699534839.49
710511.1658333333141.529685961403440.59
811155.8216666667345.8751141888521267.87
912999.1991666667606.8200690253821716.13
1012036.15333333331144.545816679614225.24

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 10129.405 & 783.674093804306 & 2046.5 \tabularnewline
2 & 10796.2 & 293.901398895493 & 847.7 \tabularnewline
3 & 10282.9608333333 & 584.173978746655 & 1734.66 \tabularnewline
4 & 9440.05416666667 & 837.489391351625 & 2452.88 \tabularnewline
5 & 8767.1425 & 572.543390783219 & 1766.22 \tabularnewline
6 & 10218.2908333333 & 241.515075699534 & 839.49 \tabularnewline
7 & 10511.1658333333 & 141.529685961403 & 440.59 \tabularnewline
8 & 11155.8216666667 & 345.875114188852 & 1267.87 \tabularnewline
9 & 12999.1991666667 & 606.820069025382 & 1716.13 \tabularnewline
10 & 12036.1533333333 & 1144.54581667961 & 4225.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33533&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]10129.405[/C][C]783.674093804306[/C][C]2046.5[/C][/ROW]
[ROW][C]2[/C][C]10796.2[/C][C]293.901398895493[/C][C]847.7[/C][/ROW]
[ROW][C]3[/C][C]10282.9608333333[/C][C]584.173978746655[/C][C]1734.66[/C][/ROW]
[ROW][C]4[/C][C]9440.05416666667[/C][C]837.489391351625[/C][C]2452.88[/C][/ROW]
[ROW][C]5[/C][C]8767.1425[/C][C]572.543390783219[/C][C]1766.22[/C][/ROW]
[ROW][C]6[/C][C]10218.2908333333[/C][C]241.515075699534[/C][C]839.49[/C][/ROW]
[ROW][C]7[/C][C]10511.1658333333[/C][C]141.529685961403[/C][C]440.59[/C][/ROW]
[ROW][C]8[/C][C]11155.8216666667[/C][C]345.875114188852[/C][C]1267.87[/C][/ROW]
[ROW][C]9[/C][C]12999.1991666667[/C][C]606.820069025382[/C][C]1716.13[/C][/ROW]
[ROW][C]10[/C][C]12036.1533333333[/C][C]1144.54581667961[/C][C]4225.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33533&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33533&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
110129.405783.6740938043062046.5
210796.2293.901398895493847.7
310282.9608333333584.1739787466551734.66
49440.05416666667837.4893913516252452.88
58767.1425572.5433907832191766.22
610218.2908333333241.515075699534839.49
710511.1658333333141.529685961403440.59
811155.8216666667345.8751141888521267.87
912999.1991666667606.8200690253821716.13
1012036.15333333331144.545816679614225.24







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha169.919792392197
beta0.0362328453169978
S.D.0.0891107084506889
T-STAT0.406604839608564
p-value0.6949586777025

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 169.919792392197 \tabularnewline
beta & 0.0362328453169978 \tabularnewline
S.D. & 0.0891107084506889 \tabularnewline
T-STAT & 0.406604839608564 \tabularnewline
p-value & 0.6949586777025 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33533&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]169.919792392197[/C][/ROW]
[ROW][C]beta[/C][C]0.0362328453169978[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0891107084506889[/C][/ROW]
[ROW][C]T-STAT[/C][C]0.406604839608564[/C][/ROW]
[ROW][C]p-value[/C][C]0.6949586777025[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33533&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33533&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha169.919792392197
beta0.0362328453169978
S.D.0.0891107084506889
T-STAT0.406604839608564
p-value0.6949586777025







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha2.81700201938225
beta0.360073564121071
S.D.2.01559130372558
T-STAT0.17864413458002
p-value0.862658310910488
Lambda0.639926435878929

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 2.81700201938225 \tabularnewline
beta & 0.360073564121071 \tabularnewline
S.D. & 2.01559130372558 \tabularnewline
T-STAT & 0.17864413458002 \tabularnewline
p-value & 0.862658310910488 \tabularnewline
Lambda & 0.639926435878929 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33533&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]2.81700201938225[/C][/ROW]
[ROW][C]beta[/C][C]0.360073564121071[/C][/ROW]
[ROW][C]S.D.[/C][C]2.01559130372558[/C][/ROW]
[ROW][C]T-STAT[/C][C]0.17864413458002[/C][/ROW]
[ROW][C]p-value[/C][C]0.862658310910488[/C][/ROW]
[ROW][C]Lambda[/C][C]0.639926435878929[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33533&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33533&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha2.81700201938225
beta0.360073564121071
S.D.2.01559130372558
T-STAT0.17864413458002
p-value0.862658310910488
Lambda0.639926435878929



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')