Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 02 Aug 2010 13:51:46 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Aug/02/t1280757786wtzw7fewtj4qnpk.htm/, Retrieved Fri, 01 Nov 2024 00:08:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=78220, Retrieved Fri, 01 Nov 2024 00:08:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsVan Puyenbroeck Cassandra
Estimated Impact249
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [Tijdreeks 2 - Sta...] [2010-08-02 13:51:46] [0e5311d1fc10a1511b42f76588fb6510] [Current]
Feedback Forum

Post a new message
Dataseries X:
408
407
406
404
402
401
402
404
405
405
406
408
405
400
402
404
410
402
400
392
390
397
394
397
400
395
391
392
395
386
385
372
367
364
364
368
370
357
350
353
353
348
337
322
315
316
317
326
329
310
301
299
300
295
274
258
250
247
248
256
253
237
225
214
221
221
207
194
191
185
180
185
189
179
162
148
152
151
134
122
119
115
113
109




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78220&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78220&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78220&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1406.251.707825127659934
2402.251.258305739211793
34061.41421356237313
4402.752.217355782608355
54017.3936910042729418
6394.53.31662479035547
7394.54.041451884327389
8384.59.4692484742278623
9365.752.061552812808834
10357.58.8128693776015220
1134013.73559851869131
12318.55.0662280511902211
13309.7513.696106502701230
14281.7519.431503630273542
15250.254.031128874149279
16232.2516.720745597410839
17210.7512.971121771072827
18185.254.511
19169.518.156725108528441
20139.7514.430869689661830
211144.1633319989322710

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 406.25 & 1.70782512765993 & 4 \tabularnewline
2 & 402.25 & 1.25830573921179 & 3 \tabularnewline
3 & 406 & 1.4142135623731 & 3 \tabularnewline
4 & 402.75 & 2.21735578260835 & 5 \tabularnewline
5 & 401 & 7.39369100427294 & 18 \tabularnewline
6 & 394.5 & 3.3166247903554 & 7 \tabularnewline
7 & 394.5 & 4.04145188432738 & 9 \tabularnewline
8 & 384.5 & 9.46924847422786 & 23 \tabularnewline
9 & 365.75 & 2.06155281280883 & 4 \tabularnewline
10 & 357.5 & 8.81286937760152 & 20 \tabularnewline
11 & 340 & 13.735598518691 & 31 \tabularnewline
12 & 318.5 & 5.06622805119022 & 11 \tabularnewline
13 & 309.75 & 13.6961065027012 & 30 \tabularnewline
14 & 281.75 & 19.4315036302735 & 42 \tabularnewline
15 & 250.25 & 4.03112887414927 & 9 \tabularnewline
16 & 232.25 & 16.7207455974108 & 39 \tabularnewline
17 & 210.75 & 12.9711217710728 & 27 \tabularnewline
18 & 185.25 & 4.5 & 11 \tabularnewline
19 & 169.5 & 18.1567251085284 & 41 \tabularnewline
20 & 139.75 & 14.4308696896618 & 30 \tabularnewline
21 & 114 & 4.16333199893227 & 10 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78220&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]406.25[/C][C]1.70782512765993[/C][C]4[/C][/ROW]
[ROW][C]2[/C][C]402.25[/C][C]1.25830573921179[/C][C]3[/C][/ROW]
[ROW][C]3[/C][C]406[/C][C]1.4142135623731[/C][C]3[/C][/ROW]
[ROW][C]4[/C][C]402.75[/C][C]2.21735578260835[/C][C]5[/C][/ROW]
[ROW][C]5[/C][C]401[/C][C]7.39369100427294[/C][C]18[/C][/ROW]
[ROW][C]6[/C][C]394.5[/C][C]3.3166247903554[/C][C]7[/C][/ROW]
[ROW][C]7[/C][C]394.5[/C][C]4.04145188432738[/C][C]9[/C][/ROW]
[ROW][C]8[/C][C]384.5[/C][C]9.46924847422786[/C][C]23[/C][/ROW]
[ROW][C]9[/C][C]365.75[/C][C]2.06155281280883[/C][C]4[/C][/ROW]
[ROW][C]10[/C][C]357.5[/C][C]8.81286937760152[/C][C]20[/C][/ROW]
[ROW][C]11[/C][C]340[/C][C]13.735598518691[/C][C]31[/C][/ROW]
[ROW][C]12[/C][C]318.5[/C][C]5.06622805119022[/C][C]11[/C][/ROW]
[ROW][C]13[/C][C]309.75[/C][C]13.6961065027012[/C][C]30[/C][/ROW]
[ROW][C]14[/C][C]281.75[/C][C]19.4315036302735[/C][C]42[/C][/ROW]
[ROW][C]15[/C][C]250.25[/C][C]4.03112887414927[/C][C]9[/C][/ROW]
[ROW][C]16[/C][C]232.25[/C][C]16.7207455974108[/C][C]39[/C][/ROW]
[ROW][C]17[/C][C]210.75[/C][C]12.9711217710728[/C][C]27[/C][/ROW]
[ROW][C]18[/C][C]185.25[/C][C]4.5[/C][C]11[/C][/ROW]
[ROW][C]19[/C][C]169.5[/C][C]18.1567251085284[/C][C]41[/C][/ROW]
[ROW][C]20[/C][C]139.75[/C][C]14.4308696896618[/C][C]30[/C][/ROW]
[ROW][C]21[/C][C]114[/C][C]4.16333199893227[/C][C]10[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78220&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78220&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1406.251.707825127659934
2402.251.258305739211793
34061.41421356237313
4402.752.217355782608355
54017.3936910042729418
6394.53.31662479035547
7394.54.041451884327389
8384.59.4692484742278623
9365.752.061552812808834
10357.58.8128693776015220
1134013.73559851869131
12318.55.0662280511902211
13309.7513.696106502701230
14281.7519.431503630273542
15250.254.031128874149279
16232.2516.720745597410839
17210.7512.971121771072827
18185.254.511
19169.518.156725108528441
20139.7514.430869689661830
211144.1633319989322710







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha17.2993335177467
beta-0.0301062366064285
S.D.0.0123123428790058
T-STAT-2.44520778070302
p-value0.0243922826927097

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 17.2993335177467 \tabularnewline
beta & -0.0301062366064285 \tabularnewline
S.D. & 0.0123123428790058 \tabularnewline
T-STAT & -2.44520778070302 \tabularnewline
p-value & 0.0243922826927097 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78220&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]17.2993335177467[/C][/ROW]
[ROW][C]beta[/C][C]-0.0301062366064285[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0123123428790058[/C][/ROW]
[ROW][C]T-STAT[/C][C]-2.44520778070302[/C][/ROW]
[ROW][C]p-value[/C][C]0.0243922826927097[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78220&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78220&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha17.2993335177467
beta-0.0301062366064285
S.D.0.0123123428790058
T-STAT-2.44520778070302
p-value0.0243922826927097







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha7.51063777360579
beta-1.01647685803229
S.D.0.472032070287234
T-STAT-2.15340635100017
p-value0.0443416496189166
Lambda2.01647685803229

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 7.51063777360579 \tabularnewline
beta & -1.01647685803229 \tabularnewline
S.D. & 0.472032070287234 \tabularnewline
T-STAT & -2.15340635100017 \tabularnewline
p-value & 0.0443416496189166 \tabularnewline
Lambda & 2.01647685803229 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78220&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]7.51063777360579[/C][/ROW]
[ROW][C]beta[/C][C]-1.01647685803229[/C][/ROW]
[ROW][C]S.D.[/C][C]0.472032070287234[/C][/ROW]
[ROW][C]T-STAT[/C][C]-2.15340635100017[/C][/ROW]
[ROW][C]p-value[/C][C]0.0443416496189166[/C][/ROW]
[ROW][C]Lambda[/C][C]2.01647685803229[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78220&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78220&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha7.51063777360579
beta-1.01647685803229
S.D.0.472032070287234
T-STAT-2.15340635100017
p-value0.0443416496189166
Lambda2.01647685803229



Parameters (Session):
par1 = 4 ;
Parameters (R input):
par1 = 4 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')