Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationMon, 01 Nov 2010 15:56:30 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/01/t1288626935cklpf6doo7pqlg1.htm/, Retrieved Thu, 31 Oct 2024 22:48:09 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=90947, Retrieved Thu, 31 Oct 2024 22:48:09 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact210
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Paired and Unpaired Two Samples Tests about the Mean] [Dagelijkse omzet ...] [2010-10-25 11:22:12] [b98453cac15ba1066b407e146608df68]
-   PD  [Paired and Unpaired Two Samples Tests about the Mean] [question 5 T] [2010-10-29 12:27:53] [c1605865773cc027e55b238d879a644c]
-    D    [Paired and Unpaired Two Samples Tests about the Mean] [] [2010-11-01 09:41:08] [22937c5b58c14f6c22964f32d64ff823]
-    D      [Paired and Unpaired Two Samples Tests about the Mean] [] [2010-11-01 09:44:15] [22937c5b58c14f6c22964f32d64ff823]
F               [Paired and Unpaired Two Samples Tests about the Mean] [Workshop 5 Questi...] [2010-11-01 15:56:30] [514029464b0621595fe21c9fa38c7009] [Current]
-                 [Paired and Unpaired Two Samples Tests about the Mean] [] [2010-11-02 14:48:24] [dc0ae7e1387be9b795f5d6299e383759]
-                 [Paired and Unpaired Two Samples Tests about the Mean] [] [2010-11-02 14:48:24] [5278e0a58c5de897b31ce79607e774d7]
Feedback Forum
2010-11-06 13:39:32 [48eb36e2c01435ad7e4ea7854a9d98fe] [reply
We kunnen hier inderdaad de nulhypothese verwerpen en dus stellen dat de S- treatment op lange termijn wel degelijk effect heeft. De student heeft inderdaad correct opgemerkt dat dit een positieve evolutie is tegenover de korte termijn waar er geen invloed werd vastgesteld.

Echter dienen we wel op te merken dat we niet met zekerheid kunnen vaststellen dat deze positieve evolutie doorheen de tijd enkel te wijten is aan de treatment. Het thema waarover de test ging, werd ondertussen namelijk besproken gedurende de college's en men zou bijvoorbeeld kunnen veronderstellen dat ook dit voor een positieve evolutie van de resultaten zorgt.

Post a new message
Dataseries X:
0	0
0	0
0	0
0	0
1	1
1	1
0	1
1	1
1	1
1	1
0	1
0	1
0	1
1	1
0	NA
0	1
1	NA
1	1
0	1
0	NA
1	0
1	1
1	NA
0	1
1	1
1	1
1	1
1	1
0	NA
0	0
1	0
0	1
0	0
0	1
0	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90947&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90947&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90947&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk







Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.233333333333333
t-stat-2.24876399423758
df29
p-value0.0322941685086481
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.445547799170492,-0.0211188674961744]
F-test to compare two variances
F-stat1.17593704148326
df34
p-value0.66061270583474
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.570217719195969,2.37619052914639]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (paired) \tabularnewline
Difference: Mean1 - Mean2 & -0.233333333333333 \tabularnewline
t-stat & -2.24876399423758 \tabularnewline
df & 29 \tabularnewline
p-value & 0.0322941685086481 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.445547799170492,-0.0211188674961744] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 1.17593704148326 \tabularnewline
df & 34 \tabularnewline
p-value & 0.66061270583474 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.570217719195969,2.37619052914639] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90947&T=1

[TABLE]
[ROW][C]Two Sample t-test (paired)[/C][/ROW]
[ROW][C]Difference: Mean1 - Mean2[/C][C]-0.233333333333333[/C][/ROW]
[ROW][C]t-stat[/C][C]-2.24876399423758[/C][/ROW]
[ROW][C]df[/C][C]29[/C][/ROW]
[ROW][C]p-value[/C][C]0.0322941685086481[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.445547799170492,-0.0211188674961744][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]1.17593704148326[/C][/ROW]
[ROW][C]df[/C][C]34[/C][/ROW]
[ROW][C]p-value[/C][C]0.66061270583474[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.570217719195969,2.37619052914639][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90947&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90947&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.233333333333333
t-stat-2.24876399423758
df29
p-value0.0322941685086481
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.445547799170492,-0.0211188674961744]
F-test to compare two variances
F-stat1.17593704148326
df34
p-value0.66061270583474
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.570217719195969,2.37619052914639]







Welch Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.233333333333333
t-stat-2.24876399423758
df29
p-value0.0322941685086481
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.445547799170492,-0.0211188674961744]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (paired) \tabularnewline
Difference: Mean1 - Mean2 & -0.233333333333333 \tabularnewline
t-stat & -2.24876399423758 \tabularnewline
df & 29 \tabularnewline
p-value & 0.0322941685086481 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.445547799170492,-0.0211188674961744] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90947&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (paired)[/C][/ROW]
[ROW][C]Difference: Mean1 - Mean2[/C][C]-0.233333333333333[/C][/ROW]
[ROW][C]t-stat[/C][C]-2.24876399423758[/C][/ROW]
[ROW][C]df[/C][C]29[/C][/ROW]
[ROW][C]p-value[/C][C]0.0322941685086481[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.445547799170492,-0.0211188674961744][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90947&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90947&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (paired)
Difference: Mean1 - Mean2-0.233333333333333
t-stat-2.24876399423758
df29
p-value0.0322941685086481
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.445547799170492,-0.0211188674961744]







Wicoxon rank sum test with continuity correction (paired)
W12
p-value0.0393672406234953
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.242857142857143
p-value0.29654136245568
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.457142857142857
p-value0.00233790237474873

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (paired) \tabularnewline
W & 12 \tabularnewline
p-value & 0.0393672406234953 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.242857142857143 \tabularnewline
p-value & 0.29654136245568 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.457142857142857 \tabularnewline
p-value & 0.00233790237474873 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90947&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (paired)[/C][/ROW]
[ROW][C]W[/C][C]12[/C][/ROW]
[ROW][C]p-value[/C][C]0.0393672406234953[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.242857142857143[/C][/ROW]
[ROW][C]p-value[/C][C]0.29654136245568[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.457142857142857[/C][/ROW]
[ROW][C]p-value[/C][C]0.00233790237474873[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90947&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90947&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (paired)
W12
p-value0.0393672406234953
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.242857142857143
p-value0.29654136245568
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.457142857142857
p-value0.00233790237474873



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = paired ; par6 = 0.0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = paired ; par6 = 0.0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')