Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationMon, 01 Nov 2010 16:37:26 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/01/t12886293819nf5qw2k5tl7400.htm/, Retrieved Fri, 01 Nov 2024 00:08:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=90984, Retrieved Fri, 01 Nov 2024 00:08:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact203
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Paired and Unpaired Two Samples Tests about the Mean] [Dagelijkse omzet ...] [2010-10-25 11:22:12] [b98453cac15ba1066b407e146608df68]
F RMPD  [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Workshop 5 Q7 short] [2010-10-30 16:52:41] [c7506ced21a6c0dca45d37c8a93c80e0]
F   PD      [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Workshop 5 Q7] [2010-11-01 16:37:26] [4c92126b39409bf78ea2674c8170c829] [Current]
Feedback Forum
2010-11-09 18:09:48 [411b43619fc9db329bbcdbf7261c55fb] [reply
De auteur heeft bij zijn berekening gebruikt gemaakt van de post1 resultaten (en niet het verschil van de post1-pre), dus hij vergelijkt niet het verschil op korte termijn bij zijn berekening. (bekijk http://www.freestatistics.org/blog/index.php?v=date/2010/Nov/07/t1289120439v9nbs9dy451l5w0.htm/ voor de berekening met de juiste data). Hij geeft ook de verkeerde conclusie. De auteur interpreteert zijn resultaat ook verkeerd, hij baseert zich net als bij oefening 6 op de grafiek met de boxplots (hij denkt dat de volgorde van de boxplots de sterkte van treatment weergeeft). Wanneer je de juiste data gebruikt zie je duidelijk dat hier CSWE de beste treatment is op korte termijn. (CSWE-C heeft een positief verschil (dus CSWE is beter dan C), dit verschil is significant, aangezien de p waarde klein (0,033) is. Bij WWE-C en WWE-CSWE is er geen verschil merkbaar (hoge p waarden).

Post a new message
Dataseries X:
'WWE'	0
'WWE'	0
'WWE'	1
'WWE'	0
'WWE'	1
'WWE'	0
'WWE'	0
'WWE'	1
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	1
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	1
'WWE'	0
'WWE'	1
'WWE'	0
'WWE'	1
'WWE'	1
'WWE'	1
'WWE'	0
'WWE'	1
'WWE'	1
'WWE'	1
'WWE'	0
'WWE'	1
'WWE'	1
'WWE'	0
'WWE'	0
'WWE'	1
'WWE'	1
'WWE'	0
'WWE'	0
'WWE'	0
'WWE'	0
'CSWE'	0
'CSWE'	0
'CSWE'	0
'CSWE'	1
'CSWE'	1
'CSWE'	0
'CSWE'	0
'CSWE'	0
'CSWE'	0
'CSWE'	1
'CSWE'	0
'CSWE'	1
'CSWE'	0
'CSWE'	1
'CSWE'	1
'CSWE'	1
'CSWE'	1
'CSWE'	1
'CSWE'	0
'CSWE'	1
'CSWE'	0
'CSWE'	0
'CSWE'	0
'CSWE'	1
'CSWE'	0
'CSWE'	0
'CSWE'	1
'CSWE'	1
'CSWE'	1
'CSWE'	0
'CSWE'	1
'CSWE'	1
'CSWE'	0
'CSWE'	0
'CSWE'	1
'CSWE'	0
'CSWE'	0
'CSWE'	0
'CSWE'	1
'CSWE'	1
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	1
'C'	1
'C'	0
'C'	0
'C'	1
'C'	1
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	1
'C'	1
'C'	1
'C'	0
'C'	0
'C'	1
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	1
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	0
'C'	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90984&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90984&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90984&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







ANOVA Model
Pre ~ Treatment
means0.2560.2190.134

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
Pre  ~  Treatment \tabularnewline
means & 0.256 & 0.219 & 0.134 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90984&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]Pre  ~  Treatment[/C][/ROW]
[ROW][C]means[/C][C]0.256[/C][C]0.219[/C][C]0.134[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90984&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90984&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
Pre ~ Treatment
means0.2560.2190.134







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
Treatment20.9580.4792.0630.132
Residuals11727.1670.232

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
Treatment & 2 & 0.958 & 0.479 & 2.063 & 0.132 \tabularnewline
Residuals & 117 & 27.167 & 0.232 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90984&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Treatment[/C][C]2[/C][C]0.958[/C][C]0.479[/C][C]2.063[/C][C]0.132[/C][/ROW]
[ROW][C]Residuals[/C][C]117[/C][C]27.167[/C][C]0.232[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90984&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90984&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
Treatment20.9580.4792.0630.132
Residuals11727.1670.232







Tukey Honest Significant Difference Comparisons
difflwruprp adj
CSWE-C0.219-0.0390.4760.113
WWE-C0.134-0.1220.390.431
WWE-CSWE-0.085-0.3390.1690.709

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
CSWE-C & 0.219 & -0.039 & 0.476 & 0.113 \tabularnewline
WWE-C & 0.134 & -0.122 & 0.39 & 0.431 \tabularnewline
WWE-CSWE & -0.085 & -0.339 & 0.169 & 0.709 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90984&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]CSWE-C[/C][C]0.219[/C][C]-0.039[/C][C]0.476[/C][C]0.113[/C][/ROW]
[ROW][C]WWE-C[/C][C]0.134[/C][C]-0.122[/C][C]0.39[/C][C]0.431[/C][/ROW]
[ROW][C]WWE-CSWE[/C][C]-0.085[/C][C]-0.339[/C][C]0.169[/C][C]0.709[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90984&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90984&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
CSWE-C0.219-0.0390.4760.113
WWE-C0.134-0.1220.390.431
WWE-CSWE-0.085-0.3390.1690.709







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group22.0630.132
117

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 2 & 2.063 & 0.132 \tabularnewline
  & 117 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=90984&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]2[/C][C]2.063[/C][C]0.132[/C][/ROW]
[ROW][C] [/C][C]117[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=90984&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=90984&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group22.0630.132
117



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = paired ; par6 = 0.0 ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')