Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 30 Nov 2010 12:59:21 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/30/t1291121853fhcok3pp03wvr5c.htm/, Retrieved Thu, 31 Oct 2024 22:59:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=103362, Retrieved Thu, 31 Oct 2024 22:59:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact211
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
F    D    [Multiple Regression] [] [2010-11-26 13:22:51] [8a9a6f7c332640af31ddca253a8ded58]
F    D        [Multiple Regression] [ws 8] [2010-11-30 12:59:21] [86130087148d9c8eb48f66f03eaf10c2] [Current]
Feedback Forum
2010-12-05 10:33:51 [00c625c7d009d84797af914265b614f9] [reply
Lage adjusted R² waarde. De assumpties voor dit model zijn niet voldaan.

Post a new message
Dataseries X:
101.76
102.37
102.38
102.86
102.87
102.92
102.95
103.02
104.08
104.16
104.24
104.33
104.73
104.86
105.03
105.62
105.63
105.63
105.94
106.61
107.69
107.78
107.93
108.48
108.14
108.48
108.48
108.89
108.93
109.21
109.47
109.80
111.73
111.85
112.12
112.15
112.17
112.67
112.80
113.44
113.53
114.53
114.51
115.05
116.67
117.07
116.92
117.00
117.02
117.35
117.36
117.82
117.88
118.24
118.50
118.80
119.76
120.09




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ 72.249.76.132







Multiple Linear Regression - Estimated Regression Equation
vrijetijdsbesteding[t] = + 110.49 -1.72600000000005M1[t] -1.34400000000001M2[t] -1.28000000000001M3[t] -0.76400000000001M4[t] -0.722000000000008M5[t] -0.384000000000008M6[t] -0.216000000000008M7[t] + 0.165999999999991M8[t] + 1.49600000000000M9[t] + 1.69999999999999M10[t] -0.187500000000006M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
vrijetijdsbesteding[t] =  +  110.49 -1.72600000000005M1[t] -1.34400000000001M2[t] -1.28000000000001M3[t] -0.76400000000001M4[t] -0.722000000000008M5[t] -0.384000000000008M6[t] -0.216000000000008M7[t] +  0.165999999999991M8[t] +  1.49600000000000M9[t] +  1.69999999999999M10[t] -0.187500000000006M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]vrijetijdsbesteding[t] =  +  110.49 -1.72600000000005M1[t] -1.34400000000001M2[t] -1.28000000000001M3[t] -0.76400000000001M4[t] -0.722000000000008M5[t] -0.384000000000008M6[t] -0.216000000000008M7[t] +  0.165999999999991M8[t] +  1.49600000000000M9[t] +  1.69999999999999M10[t] -0.187500000000006M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
vrijetijdsbesteding[t] = + 110.49 -1.72600000000005M1[t] -1.34400000000001M2[t] -1.28000000000001M3[t] -0.76400000000001M4[t] -0.722000000000008M5[t] -0.384000000000008M6[t] -0.216000000000008M7[t] + 0.165999999999991M8[t] + 1.49600000000000M9[t] + 1.69999999999999M10[t] -0.187500000000006M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)110.493.04983336.228200
M1-1.726000000000054.09178-0.42180.675120.33756
M2-1.344000000000014.09178-0.32850.7440520.372026
M3-1.280000000000014.09178-0.31280.755830.377915
M4-0.764000000000014.09178-0.18670.8527050.426352
M5-0.7220000000000084.09178-0.17650.8607140.430357
M6-0.3840000000000084.09178-0.09380.9256390.462819
M7-0.2160000000000084.09178-0.05280.9581290.479064
M80.1659999999999914.091780.04060.9678150.483907
M91.496000000000004.091780.36560.7163310.358166
M101.699999999999994.091780.41550.6797320.339866
M11-0.1875000000000064.313115-0.04350.9655130.482757

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 110.49 & 3.049833 & 36.2282 & 0 & 0 \tabularnewline
M1 & -1.72600000000005 & 4.09178 & -0.4218 & 0.67512 & 0.33756 \tabularnewline
M2 & -1.34400000000001 & 4.09178 & -0.3285 & 0.744052 & 0.372026 \tabularnewline
M3 & -1.28000000000001 & 4.09178 & -0.3128 & 0.75583 & 0.377915 \tabularnewline
M4 & -0.76400000000001 & 4.09178 & -0.1867 & 0.852705 & 0.426352 \tabularnewline
M5 & -0.722000000000008 & 4.09178 & -0.1765 & 0.860714 & 0.430357 \tabularnewline
M6 & -0.384000000000008 & 4.09178 & -0.0938 & 0.925639 & 0.462819 \tabularnewline
M7 & -0.216000000000008 & 4.09178 & -0.0528 & 0.958129 & 0.479064 \tabularnewline
M8 & 0.165999999999991 & 4.09178 & 0.0406 & 0.967815 & 0.483907 \tabularnewline
M9 & 1.49600000000000 & 4.09178 & 0.3656 & 0.716331 & 0.358166 \tabularnewline
M10 & 1.69999999999999 & 4.09178 & 0.4155 & 0.679732 & 0.339866 \tabularnewline
M11 & -0.187500000000006 & 4.313115 & -0.0435 & 0.965513 & 0.482757 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]110.49[/C][C]3.049833[/C][C]36.2282[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]-1.72600000000005[/C][C]4.09178[/C][C]-0.4218[/C][C]0.67512[/C][C]0.33756[/C][/ROW]
[ROW][C]M2[/C][C]-1.34400000000001[/C][C]4.09178[/C][C]-0.3285[/C][C]0.744052[/C][C]0.372026[/C][/ROW]
[ROW][C]M3[/C][C]-1.28000000000001[/C][C]4.09178[/C][C]-0.3128[/C][C]0.75583[/C][C]0.377915[/C][/ROW]
[ROW][C]M4[/C][C]-0.76400000000001[/C][C]4.09178[/C][C]-0.1867[/C][C]0.852705[/C][C]0.426352[/C][/ROW]
[ROW][C]M5[/C][C]-0.722000000000008[/C][C]4.09178[/C][C]-0.1765[/C][C]0.860714[/C][C]0.430357[/C][/ROW]
[ROW][C]M6[/C][C]-0.384000000000008[/C][C]4.09178[/C][C]-0.0938[/C][C]0.925639[/C][C]0.462819[/C][/ROW]
[ROW][C]M7[/C][C]-0.216000000000008[/C][C]4.09178[/C][C]-0.0528[/C][C]0.958129[/C][C]0.479064[/C][/ROW]
[ROW][C]M8[/C][C]0.165999999999991[/C][C]4.09178[/C][C]0.0406[/C][C]0.967815[/C][C]0.483907[/C][/ROW]
[ROW][C]M9[/C][C]1.49600000000000[/C][C]4.09178[/C][C]0.3656[/C][C]0.716331[/C][C]0.358166[/C][/ROW]
[ROW][C]M10[/C][C]1.69999999999999[/C][C]4.09178[/C][C]0.4155[/C][C]0.679732[/C][C]0.339866[/C][/ROW]
[ROW][C]M11[/C][C]-0.187500000000006[/C][C]4.313115[/C][C]-0.0435[/C][C]0.965513[/C][C]0.482757[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)110.493.04983336.228200
M1-1.726000000000054.09178-0.42180.675120.33756
M2-1.344000000000014.09178-0.32850.7440520.372026
M3-1.280000000000014.09178-0.31280.755830.377915
M4-0.764000000000014.09178-0.18670.8527050.426352
M5-0.7220000000000084.09178-0.17650.8607140.430357
M6-0.3840000000000084.09178-0.09380.9256390.462819
M7-0.2160000000000084.09178-0.05280.9581290.479064
M80.1659999999999914.091780.04060.9678150.483907
M91.496000000000004.091780.36560.7163310.358166
M101.699999999999994.091780.41550.6797320.339866
M11-0.1875000000000064.313115-0.04350.9655130.482757







Multiple Linear Regression - Regression Statistics
Multiple R0.184116543409472
R-squared0.0338989015570519
Adjusted R-squared-0.197125274157566
F-TEST (value)0.146733134972536
F-TEST (DF numerator)11
F-TEST (DF denominator)46
p-value0.999225903166059
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6.09966569825223
Sum Squared Residuals1711.47239500000

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.184116543409472 \tabularnewline
R-squared & 0.0338989015570519 \tabularnewline
Adjusted R-squared & -0.197125274157566 \tabularnewline
F-TEST (value) & 0.146733134972536 \tabularnewline
F-TEST (DF numerator) & 11 \tabularnewline
F-TEST (DF denominator) & 46 \tabularnewline
p-value & 0.999225903166059 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 6.09966569825223 \tabularnewline
Sum Squared Residuals & 1711.47239500000 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.184116543409472[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0338989015570519[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.197125274157566[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]0.146733134972536[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]11[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]46[/C][/ROW]
[ROW][C]p-value[/C][C]0.999225903166059[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]6.09966569825223[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1711.47239500000[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.184116543409472
R-squared0.0338989015570519
Adjusted R-squared-0.197125274157566
F-TEST (value)0.146733134972536
F-TEST (DF numerator)11
F-TEST (DF denominator)46
p-value0.999225903166059
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6.09966569825223
Sum Squared Residuals1711.47239500000







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1101.76108.764000000000-7.00400000000016
2102.37109.146-6.77599999999999
3102.38109.21-6.83000000000001
4102.86109.726-6.866
5102.87109.768-6.898
6102.92110.106-7.186
7102.95110.274-7.324
8103.02110.656-7.636
9104.08111.986-7.906
10104.16112.19-8.03
11104.24110.3025-6.06250000000001
12104.33110.49-6.16000000000001
13104.73108.764-4.03399999999995
14104.86109.146-4.286
15105.03109.21-4.18
16105.62109.726-4.10599999999999
17105.63109.768-4.13800000000001
18105.63110.106-4.476
19105.94110.274-4.334
20106.61110.656-4.046
21107.69111.986-4.29600000000000
22107.78112.19-4.41
23107.93110.3025-2.37250000000000
24108.48110.49-2.01000000000000
25108.14108.764-0.623999999999958
26108.48109.146-0.665999999999992
27108.48109.21-0.729999999999993
28108.89109.726-0.835999999999997
29108.93109.768-0.837999999999994
30109.21110.106-0.896000000000004
31109.47110.274-0.804000000000003
32109.8110.656-0.856000000000001
33111.73111.986-0.255999999999998
34111.85112.19-0.340000000000002
35112.12110.30251.81750000000000
36112.15110.491.66000000000000
37112.17108.7643.40600000000004
38112.67109.1463.52400000000000
39112.8109.213.59
40113.44109.7263.714
41113.53109.7683.762
42114.53110.1064.42400000000000
43114.51110.2744.236
44115.05110.6564.394
45116.67111.9864.684
46117.07112.194.88
47116.92110.30256.6175
48117110.496.50999999999999
49117.02108.7648.25600000000004
50117.35109.1468.204
51117.36109.218.15
52117.82109.7268.094
53117.88109.7688.112
54118.24110.1068.134
55118.5110.2748.226
56118.8110.6568.144
57119.76111.9867.774
58120.09112.197.9

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 101.76 & 108.764000000000 & -7.00400000000016 \tabularnewline
2 & 102.37 & 109.146 & -6.77599999999999 \tabularnewline
3 & 102.38 & 109.21 & -6.83000000000001 \tabularnewline
4 & 102.86 & 109.726 & -6.866 \tabularnewline
5 & 102.87 & 109.768 & -6.898 \tabularnewline
6 & 102.92 & 110.106 & -7.186 \tabularnewline
7 & 102.95 & 110.274 & -7.324 \tabularnewline
8 & 103.02 & 110.656 & -7.636 \tabularnewline
9 & 104.08 & 111.986 & -7.906 \tabularnewline
10 & 104.16 & 112.19 & -8.03 \tabularnewline
11 & 104.24 & 110.3025 & -6.06250000000001 \tabularnewline
12 & 104.33 & 110.49 & -6.16000000000001 \tabularnewline
13 & 104.73 & 108.764 & -4.03399999999995 \tabularnewline
14 & 104.86 & 109.146 & -4.286 \tabularnewline
15 & 105.03 & 109.21 & -4.18 \tabularnewline
16 & 105.62 & 109.726 & -4.10599999999999 \tabularnewline
17 & 105.63 & 109.768 & -4.13800000000001 \tabularnewline
18 & 105.63 & 110.106 & -4.476 \tabularnewline
19 & 105.94 & 110.274 & -4.334 \tabularnewline
20 & 106.61 & 110.656 & -4.046 \tabularnewline
21 & 107.69 & 111.986 & -4.29600000000000 \tabularnewline
22 & 107.78 & 112.19 & -4.41 \tabularnewline
23 & 107.93 & 110.3025 & -2.37250000000000 \tabularnewline
24 & 108.48 & 110.49 & -2.01000000000000 \tabularnewline
25 & 108.14 & 108.764 & -0.623999999999958 \tabularnewline
26 & 108.48 & 109.146 & -0.665999999999992 \tabularnewline
27 & 108.48 & 109.21 & -0.729999999999993 \tabularnewline
28 & 108.89 & 109.726 & -0.835999999999997 \tabularnewline
29 & 108.93 & 109.768 & -0.837999999999994 \tabularnewline
30 & 109.21 & 110.106 & -0.896000000000004 \tabularnewline
31 & 109.47 & 110.274 & -0.804000000000003 \tabularnewline
32 & 109.8 & 110.656 & -0.856000000000001 \tabularnewline
33 & 111.73 & 111.986 & -0.255999999999998 \tabularnewline
34 & 111.85 & 112.19 & -0.340000000000002 \tabularnewline
35 & 112.12 & 110.3025 & 1.81750000000000 \tabularnewline
36 & 112.15 & 110.49 & 1.66000000000000 \tabularnewline
37 & 112.17 & 108.764 & 3.40600000000004 \tabularnewline
38 & 112.67 & 109.146 & 3.52400000000000 \tabularnewline
39 & 112.8 & 109.21 & 3.59 \tabularnewline
40 & 113.44 & 109.726 & 3.714 \tabularnewline
41 & 113.53 & 109.768 & 3.762 \tabularnewline
42 & 114.53 & 110.106 & 4.42400000000000 \tabularnewline
43 & 114.51 & 110.274 & 4.236 \tabularnewline
44 & 115.05 & 110.656 & 4.394 \tabularnewline
45 & 116.67 & 111.986 & 4.684 \tabularnewline
46 & 117.07 & 112.19 & 4.88 \tabularnewline
47 & 116.92 & 110.3025 & 6.6175 \tabularnewline
48 & 117 & 110.49 & 6.50999999999999 \tabularnewline
49 & 117.02 & 108.764 & 8.25600000000004 \tabularnewline
50 & 117.35 & 109.146 & 8.204 \tabularnewline
51 & 117.36 & 109.21 & 8.15 \tabularnewline
52 & 117.82 & 109.726 & 8.094 \tabularnewline
53 & 117.88 & 109.768 & 8.112 \tabularnewline
54 & 118.24 & 110.106 & 8.134 \tabularnewline
55 & 118.5 & 110.274 & 8.226 \tabularnewline
56 & 118.8 & 110.656 & 8.144 \tabularnewline
57 & 119.76 & 111.986 & 7.774 \tabularnewline
58 & 120.09 & 112.19 & 7.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]101.76[/C][C]108.764000000000[/C][C]-7.00400000000016[/C][/ROW]
[ROW][C]2[/C][C]102.37[/C][C]109.146[/C][C]-6.77599999999999[/C][/ROW]
[ROW][C]3[/C][C]102.38[/C][C]109.21[/C][C]-6.83000000000001[/C][/ROW]
[ROW][C]4[/C][C]102.86[/C][C]109.726[/C][C]-6.866[/C][/ROW]
[ROW][C]5[/C][C]102.87[/C][C]109.768[/C][C]-6.898[/C][/ROW]
[ROW][C]6[/C][C]102.92[/C][C]110.106[/C][C]-7.186[/C][/ROW]
[ROW][C]7[/C][C]102.95[/C][C]110.274[/C][C]-7.324[/C][/ROW]
[ROW][C]8[/C][C]103.02[/C][C]110.656[/C][C]-7.636[/C][/ROW]
[ROW][C]9[/C][C]104.08[/C][C]111.986[/C][C]-7.906[/C][/ROW]
[ROW][C]10[/C][C]104.16[/C][C]112.19[/C][C]-8.03[/C][/ROW]
[ROW][C]11[/C][C]104.24[/C][C]110.3025[/C][C]-6.06250000000001[/C][/ROW]
[ROW][C]12[/C][C]104.33[/C][C]110.49[/C][C]-6.16000000000001[/C][/ROW]
[ROW][C]13[/C][C]104.73[/C][C]108.764[/C][C]-4.03399999999995[/C][/ROW]
[ROW][C]14[/C][C]104.86[/C][C]109.146[/C][C]-4.286[/C][/ROW]
[ROW][C]15[/C][C]105.03[/C][C]109.21[/C][C]-4.18[/C][/ROW]
[ROW][C]16[/C][C]105.62[/C][C]109.726[/C][C]-4.10599999999999[/C][/ROW]
[ROW][C]17[/C][C]105.63[/C][C]109.768[/C][C]-4.13800000000001[/C][/ROW]
[ROW][C]18[/C][C]105.63[/C][C]110.106[/C][C]-4.476[/C][/ROW]
[ROW][C]19[/C][C]105.94[/C][C]110.274[/C][C]-4.334[/C][/ROW]
[ROW][C]20[/C][C]106.61[/C][C]110.656[/C][C]-4.046[/C][/ROW]
[ROW][C]21[/C][C]107.69[/C][C]111.986[/C][C]-4.29600000000000[/C][/ROW]
[ROW][C]22[/C][C]107.78[/C][C]112.19[/C][C]-4.41[/C][/ROW]
[ROW][C]23[/C][C]107.93[/C][C]110.3025[/C][C]-2.37250000000000[/C][/ROW]
[ROW][C]24[/C][C]108.48[/C][C]110.49[/C][C]-2.01000000000000[/C][/ROW]
[ROW][C]25[/C][C]108.14[/C][C]108.764[/C][C]-0.623999999999958[/C][/ROW]
[ROW][C]26[/C][C]108.48[/C][C]109.146[/C][C]-0.665999999999992[/C][/ROW]
[ROW][C]27[/C][C]108.48[/C][C]109.21[/C][C]-0.729999999999993[/C][/ROW]
[ROW][C]28[/C][C]108.89[/C][C]109.726[/C][C]-0.835999999999997[/C][/ROW]
[ROW][C]29[/C][C]108.93[/C][C]109.768[/C][C]-0.837999999999994[/C][/ROW]
[ROW][C]30[/C][C]109.21[/C][C]110.106[/C][C]-0.896000000000004[/C][/ROW]
[ROW][C]31[/C][C]109.47[/C][C]110.274[/C][C]-0.804000000000003[/C][/ROW]
[ROW][C]32[/C][C]109.8[/C][C]110.656[/C][C]-0.856000000000001[/C][/ROW]
[ROW][C]33[/C][C]111.73[/C][C]111.986[/C][C]-0.255999999999998[/C][/ROW]
[ROW][C]34[/C][C]111.85[/C][C]112.19[/C][C]-0.340000000000002[/C][/ROW]
[ROW][C]35[/C][C]112.12[/C][C]110.3025[/C][C]1.81750000000000[/C][/ROW]
[ROW][C]36[/C][C]112.15[/C][C]110.49[/C][C]1.66000000000000[/C][/ROW]
[ROW][C]37[/C][C]112.17[/C][C]108.764[/C][C]3.40600000000004[/C][/ROW]
[ROW][C]38[/C][C]112.67[/C][C]109.146[/C][C]3.52400000000000[/C][/ROW]
[ROW][C]39[/C][C]112.8[/C][C]109.21[/C][C]3.59[/C][/ROW]
[ROW][C]40[/C][C]113.44[/C][C]109.726[/C][C]3.714[/C][/ROW]
[ROW][C]41[/C][C]113.53[/C][C]109.768[/C][C]3.762[/C][/ROW]
[ROW][C]42[/C][C]114.53[/C][C]110.106[/C][C]4.42400000000000[/C][/ROW]
[ROW][C]43[/C][C]114.51[/C][C]110.274[/C][C]4.236[/C][/ROW]
[ROW][C]44[/C][C]115.05[/C][C]110.656[/C][C]4.394[/C][/ROW]
[ROW][C]45[/C][C]116.67[/C][C]111.986[/C][C]4.684[/C][/ROW]
[ROW][C]46[/C][C]117.07[/C][C]112.19[/C][C]4.88[/C][/ROW]
[ROW][C]47[/C][C]116.92[/C][C]110.3025[/C][C]6.6175[/C][/ROW]
[ROW][C]48[/C][C]117[/C][C]110.49[/C][C]6.50999999999999[/C][/ROW]
[ROW][C]49[/C][C]117.02[/C][C]108.764[/C][C]8.25600000000004[/C][/ROW]
[ROW][C]50[/C][C]117.35[/C][C]109.146[/C][C]8.204[/C][/ROW]
[ROW][C]51[/C][C]117.36[/C][C]109.21[/C][C]8.15[/C][/ROW]
[ROW][C]52[/C][C]117.82[/C][C]109.726[/C][C]8.094[/C][/ROW]
[ROW][C]53[/C][C]117.88[/C][C]109.768[/C][C]8.112[/C][/ROW]
[ROW][C]54[/C][C]118.24[/C][C]110.106[/C][C]8.134[/C][/ROW]
[ROW][C]55[/C][C]118.5[/C][C]110.274[/C][C]8.226[/C][/ROW]
[ROW][C]56[/C][C]118.8[/C][C]110.656[/C][C]8.144[/C][/ROW]
[ROW][C]57[/C][C]119.76[/C][C]111.986[/C][C]7.774[/C][/ROW]
[ROW][C]58[/C][C]120.09[/C][C]112.19[/C][C]7.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1101.76108.764000000000-7.00400000000016
2102.37109.146-6.77599999999999
3102.38109.21-6.83000000000001
4102.86109.726-6.866
5102.87109.768-6.898
6102.92110.106-7.186
7102.95110.274-7.324
8103.02110.656-7.636
9104.08111.986-7.906
10104.16112.19-8.03
11104.24110.3025-6.06250000000001
12104.33110.49-6.16000000000001
13104.73108.764-4.03399999999995
14104.86109.146-4.286
15105.03109.21-4.18
16105.62109.726-4.10599999999999
17105.63109.768-4.13800000000001
18105.63110.106-4.476
19105.94110.274-4.334
20106.61110.656-4.046
21107.69111.986-4.29600000000000
22107.78112.19-4.41
23107.93110.3025-2.37250000000000
24108.48110.49-2.01000000000000
25108.14108.764-0.623999999999958
26108.48109.146-0.665999999999992
27108.48109.21-0.729999999999993
28108.89109.726-0.835999999999997
29108.93109.768-0.837999999999994
30109.21110.106-0.896000000000004
31109.47110.274-0.804000000000003
32109.8110.656-0.856000000000001
33111.73111.986-0.255999999999998
34111.85112.19-0.340000000000002
35112.12110.30251.81750000000000
36112.15110.491.66000000000000
37112.17108.7643.40600000000004
38112.67109.1463.52400000000000
39112.8109.213.59
40113.44109.7263.714
41113.53109.7683.762
42114.53110.1064.42400000000000
43114.51110.2744.236
44115.05110.6564.394
45116.67111.9864.684
46117.07112.194.88
47116.92110.30256.6175
48117110.496.50999999999999
49117.02108.7648.25600000000004
50117.35109.1468.204
51117.36109.218.15
52117.82109.7268.094
53117.88109.7688.112
54118.24110.1068.134
55118.5110.2748.226
56118.8110.6568.144
57119.76111.9867.774
58120.09112.197.9







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
150.06458939293159950.1291787858631990.9354106070684
160.03598932640423930.07197865280847870.96401067359576
170.02138792061312290.04277584122624590.978612079386877
180.01361703943109090.02723407886218170.98638296056891
190.01010665553411590.02021331106823190.989893344465884
200.009631595843881550.01926319168776310.990368404156118
210.009964935208359160.01992987041671830.99003506479164
220.01125668687352900.02251337374705790.98874331312647
230.01108648416042240.02217296832084490.988913515839578
240.01214885168465930.02429770336931860.98785114831534
250.02093770492932280.04187540985864570.979062295070677
260.03255524120184080.06511048240368170.96744475879816
270.04716856738526820.09433713477053640.952831432614732
280.06593066240026470.1318613248005290.934069337599735
290.09233658435789510.1846731687157900.907663415642105
300.1406241889910670.2812483779821350.859375811008933
310.2102008347556150.420401669511230.789799165244385
320.3121240052418550.624248010483710.687875994758145
330.4443002680016020.8886005360032040.555699731998398
340.6133912004543090.7732175990913820.386608799545691
350.662892803744850.6742143925102990.337107196255150
360.7015942297724740.5968115404550530.298405770227526
370.7664522043236420.4670955913527170.233547795676358
380.8106911255053560.3786177489892880.189308874494644
390.8397690481917840.3204619036164320.160230951808216
400.8562063127194320.2875873745611370.143793687280568
410.866150001404470.2676999971910590.133849998595530
420.8532614021259330.2934771957481330.146738597874067
430.8380730308799970.3238539382400060.161926969120003

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
15 & 0.0645893929315995 & 0.129178785863199 & 0.9354106070684 \tabularnewline
16 & 0.0359893264042393 & 0.0719786528084787 & 0.96401067359576 \tabularnewline
17 & 0.0213879206131229 & 0.0427758412262459 & 0.978612079386877 \tabularnewline
18 & 0.0136170394310909 & 0.0272340788621817 & 0.98638296056891 \tabularnewline
19 & 0.0101066555341159 & 0.0202133110682319 & 0.989893344465884 \tabularnewline
20 & 0.00963159584388155 & 0.0192631916877631 & 0.990368404156118 \tabularnewline
21 & 0.00996493520835916 & 0.0199298704167183 & 0.99003506479164 \tabularnewline
22 & 0.0112566868735290 & 0.0225133737470579 & 0.98874331312647 \tabularnewline
23 & 0.0110864841604224 & 0.0221729683208449 & 0.988913515839578 \tabularnewline
24 & 0.0121488516846593 & 0.0242977033693186 & 0.98785114831534 \tabularnewline
25 & 0.0209377049293228 & 0.0418754098586457 & 0.979062295070677 \tabularnewline
26 & 0.0325552412018408 & 0.0651104824036817 & 0.96744475879816 \tabularnewline
27 & 0.0471685673852682 & 0.0943371347705364 & 0.952831432614732 \tabularnewline
28 & 0.0659306624002647 & 0.131861324800529 & 0.934069337599735 \tabularnewline
29 & 0.0923365843578951 & 0.184673168715790 & 0.907663415642105 \tabularnewline
30 & 0.140624188991067 & 0.281248377982135 & 0.859375811008933 \tabularnewline
31 & 0.210200834755615 & 0.42040166951123 & 0.789799165244385 \tabularnewline
32 & 0.312124005241855 & 0.62424801048371 & 0.687875994758145 \tabularnewline
33 & 0.444300268001602 & 0.888600536003204 & 0.555699731998398 \tabularnewline
34 & 0.613391200454309 & 0.773217599091382 & 0.386608799545691 \tabularnewline
35 & 0.66289280374485 & 0.674214392510299 & 0.337107196255150 \tabularnewline
36 & 0.701594229772474 & 0.596811540455053 & 0.298405770227526 \tabularnewline
37 & 0.766452204323642 & 0.467095591352717 & 0.233547795676358 \tabularnewline
38 & 0.810691125505356 & 0.378617748989288 & 0.189308874494644 \tabularnewline
39 & 0.839769048191784 & 0.320461903616432 & 0.160230951808216 \tabularnewline
40 & 0.856206312719432 & 0.287587374561137 & 0.143793687280568 \tabularnewline
41 & 0.86615000140447 & 0.267699997191059 & 0.133849998595530 \tabularnewline
42 & 0.853261402125933 & 0.293477195748133 & 0.146738597874067 \tabularnewline
43 & 0.838073030879997 & 0.323853938240006 & 0.161926969120003 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]15[/C][C]0.0645893929315995[/C][C]0.129178785863199[/C][C]0.9354106070684[/C][/ROW]
[ROW][C]16[/C][C]0.0359893264042393[/C][C]0.0719786528084787[/C][C]0.96401067359576[/C][/ROW]
[ROW][C]17[/C][C]0.0213879206131229[/C][C]0.0427758412262459[/C][C]0.978612079386877[/C][/ROW]
[ROW][C]18[/C][C]0.0136170394310909[/C][C]0.0272340788621817[/C][C]0.98638296056891[/C][/ROW]
[ROW][C]19[/C][C]0.0101066555341159[/C][C]0.0202133110682319[/C][C]0.989893344465884[/C][/ROW]
[ROW][C]20[/C][C]0.00963159584388155[/C][C]0.0192631916877631[/C][C]0.990368404156118[/C][/ROW]
[ROW][C]21[/C][C]0.00996493520835916[/C][C]0.0199298704167183[/C][C]0.99003506479164[/C][/ROW]
[ROW][C]22[/C][C]0.0112566868735290[/C][C]0.0225133737470579[/C][C]0.98874331312647[/C][/ROW]
[ROW][C]23[/C][C]0.0110864841604224[/C][C]0.0221729683208449[/C][C]0.988913515839578[/C][/ROW]
[ROW][C]24[/C][C]0.0121488516846593[/C][C]0.0242977033693186[/C][C]0.98785114831534[/C][/ROW]
[ROW][C]25[/C][C]0.0209377049293228[/C][C]0.0418754098586457[/C][C]0.979062295070677[/C][/ROW]
[ROW][C]26[/C][C]0.0325552412018408[/C][C]0.0651104824036817[/C][C]0.96744475879816[/C][/ROW]
[ROW][C]27[/C][C]0.0471685673852682[/C][C]0.0943371347705364[/C][C]0.952831432614732[/C][/ROW]
[ROW][C]28[/C][C]0.0659306624002647[/C][C]0.131861324800529[/C][C]0.934069337599735[/C][/ROW]
[ROW][C]29[/C][C]0.0923365843578951[/C][C]0.184673168715790[/C][C]0.907663415642105[/C][/ROW]
[ROW][C]30[/C][C]0.140624188991067[/C][C]0.281248377982135[/C][C]0.859375811008933[/C][/ROW]
[ROW][C]31[/C][C]0.210200834755615[/C][C]0.42040166951123[/C][C]0.789799165244385[/C][/ROW]
[ROW][C]32[/C][C]0.312124005241855[/C][C]0.62424801048371[/C][C]0.687875994758145[/C][/ROW]
[ROW][C]33[/C][C]0.444300268001602[/C][C]0.888600536003204[/C][C]0.555699731998398[/C][/ROW]
[ROW][C]34[/C][C]0.613391200454309[/C][C]0.773217599091382[/C][C]0.386608799545691[/C][/ROW]
[ROW][C]35[/C][C]0.66289280374485[/C][C]0.674214392510299[/C][C]0.337107196255150[/C][/ROW]
[ROW][C]36[/C][C]0.701594229772474[/C][C]0.596811540455053[/C][C]0.298405770227526[/C][/ROW]
[ROW][C]37[/C][C]0.766452204323642[/C][C]0.467095591352717[/C][C]0.233547795676358[/C][/ROW]
[ROW][C]38[/C][C]0.810691125505356[/C][C]0.378617748989288[/C][C]0.189308874494644[/C][/ROW]
[ROW][C]39[/C][C]0.839769048191784[/C][C]0.320461903616432[/C][C]0.160230951808216[/C][/ROW]
[ROW][C]40[/C][C]0.856206312719432[/C][C]0.287587374561137[/C][C]0.143793687280568[/C][/ROW]
[ROW][C]41[/C][C]0.86615000140447[/C][C]0.267699997191059[/C][C]0.133849998595530[/C][/ROW]
[ROW][C]42[/C][C]0.853261402125933[/C][C]0.293477195748133[/C][C]0.146738597874067[/C][/ROW]
[ROW][C]43[/C][C]0.838073030879997[/C][C]0.323853938240006[/C][C]0.161926969120003[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
150.06458939293159950.1291787858631990.9354106070684
160.03598932640423930.07197865280847870.96401067359576
170.02138792061312290.04277584122624590.978612079386877
180.01361703943109090.02723407886218170.98638296056891
190.01010665553411590.02021331106823190.989893344465884
200.009631595843881550.01926319168776310.990368404156118
210.009964935208359160.01992987041671830.99003506479164
220.01125668687352900.02251337374705790.98874331312647
230.01108648416042240.02217296832084490.988913515839578
240.01214885168465930.02429770336931860.98785114831534
250.02093770492932280.04187540985864570.979062295070677
260.03255524120184080.06511048240368170.96744475879816
270.04716856738526820.09433713477053640.952831432614732
280.06593066240026470.1318613248005290.934069337599735
290.09233658435789510.1846731687157900.907663415642105
300.1406241889910670.2812483779821350.859375811008933
310.2102008347556150.420401669511230.789799165244385
320.3121240052418550.624248010483710.687875994758145
330.4443002680016020.8886005360032040.555699731998398
340.6133912004543090.7732175990913820.386608799545691
350.662892803744850.6742143925102990.337107196255150
360.7015942297724740.5968115404550530.298405770227526
370.7664522043236420.4670955913527170.233547795676358
380.8106911255053560.3786177489892880.189308874494644
390.8397690481917840.3204619036164320.160230951808216
400.8562063127194320.2875873745611370.143793687280568
410.866150001404470.2676999971910590.133849998595530
420.8532614021259330.2934771957481330.146738597874067
430.8380730308799970.3238539382400060.161926969120003







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level90.310344827586207NOK
10% type I error level120.413793103448276NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 9 & 0.310344827586207 & NOK \tabularnewline
10% type I error level & 12 & 0.413793103448276 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103362&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]9[/C][C]0.310344827586207[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]12[/C][C]0.413793103448276[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103362&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103362&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level90.310344827586207NOK
10% type I error level120.413793103448276NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}