Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Module--
Title produced by softwareMultiple Regression
Date of computationFri, 18 Nov 2011 08:00:31 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/18/t1321622148k8hzhabp2slytsm.htm/, Retrieved Thu, 31 Oct 2024 23:58:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=145450, Retrieved Thu, 31 Oct 2024 23:58:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact207
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
- R PD  [Multiple Regression] [ws7 ] [2011-11-17 13:08:20] [22f8bc702946f784836540059d0d9516]
-    D    [Multiple Regression] [] [2011-11-17 14:35:34] [22f8bc702946f784836540059d0d9516]
-  M          [Multiple Regression] [Compendium 7] [2011-11-18 13:00:31] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
293403	111	74	91256	123
277108	70	69	86997	64
264020	76	76	55709	101
260646	109	60	75741	104
246100	81	89	92046	135
244051	67	111	84607	130
241329	54	57	73586	93
234730	106	116	162365	159
234509	125	122	70817	125
233482	68	90	59635	81
233406	96	85	109104	117
228548	106	65	120087	205
223914	104	89	72631	115
223696	88	82	104911	115
223004	87	84	85224	147
213765	84	56	58233	150
210554	81	73	117986	126
202204	44	79	67271	61
199512	75	59	55071	82
195304	93	47	114425	152
191467	76	75	79194	109
191381	87	71	101653	210
191276	112	90	81493	151
190410	84	107	64664	96
188967	86	75	63717	98
188780	98	85	72369	98
185139	121	83	86281	128
185039	94	73	63958	100
184217	69	45	73795	74
181853	87	93	96750	92
181379	92	123	83038	101
181344	75	114	65196	109
179562	76	89	62932	116
178863	86	78	57637	88
178140	56	91	70111	83
176789	115	66	123328	149
176460	97	55	38885	122
175877	95	81	54628	96
175568	106	80	74482	105
174107	49	71	76168	95
173587	70	70	71170	97
173260	41	78	37238	16
172684	87	112	101773	103
167845	105	77	103646	145
167131	71	69	37048	56
167105	56	32	85903	75
166790	49	59	43460	46
164767	51	87	90257	81
162810	49	76	70027	83
162336	111	84	111436	153
161678	75	59	65911	87
158980	84	75	105965	123
157250	84	106	61704	104
156833	79	73	48204	85
155383	83	75	60029	99
154991	63	87	52295	99
154730	78	82	82204	98
151503	93	83	56316	99
146455	65	68	95556	127
143937	98	66	78792	140
142339	75	67	125410	144
142146	108	88	76013	152
142141	73	87	91939	61
142069	66	88	57231	83
141933	90	75	51370	100
139350	70	79	99518	89
139144	57	76	56530	75
137793	70	78	56699	77
136911	95	86	74349	117
136548	89	62	83042	158
135171	80	61	71181	82
134043	54	69	55901	57
131876	27	83	38417	36
131122	56	50	65724	89
130539	60	47	48821	66
130533	64	76	85168	78
130232	102	83	55027	107
129100	38	60	73713	87
128655	75	70	79774	111
128066	42	48	42564	80
127619	49	50	36311	52
127324	79	87	56733	104
126683	71	123	63262	72
126681	39	90	94137	67
125971	61	45	38439	71
125366	69	22	34497	68
122433	51	91	58425	66
121135	50	51	42051	69
119291	83	38	64102	123
118958	52	68	54506	61
118807	56	81	55827	70
118372	72	35	66477	142
116900	42	36	28340	58
116775	30	83	73087	124
115199	84	54	51360	87
114928	44	72	53009	96
114397	70	65	55064	87
113337	58	37	63016	68
111664	55	59	38650	98
108715	64	35	40671	80
107342	77	53	82043	116
107335	48	61	49319	65
106539	36	68	77411	63
105615	57	70	202316	51
105410	62	72	89041	88
105324	42	71	26982	46
103012	30	37	29467	28
102531	46	63	40001	64
101324	81	104	70780	103
100885	39	29	49288	49
100672	38	69	50466	55
99946	106	80	99501	125
99768	24	62	15430	27
99246	27	63	37361	52
98599	48	55	36252	46
98030	30	41	31701	35
94763	94	75	56979	100
93340	41	63	43448	60
93125	30	29	50838	37
91185	57	66	21067	67
90961	42	78	63785	49
90938	40	51	37137	43
89318	75	78	44970	82
88817	70	60	46765	56
84944	54	72	54565	90
84572	43	82	72571	84
84256	97	58	59155	76
80953	49	27	56622	59
78800	20	66	33032	21
78776	30	18	26998	34
75812	28	57	35606	30
75426	3	19	47261	36
74398	41	30	31258	51
74112	28	54	174949	52
73567	37	31	23238	18
69471	22	63	22618	26
68948	31	47	35838	45
67746	18	35	62832	58
67507	101	112	78956	49
65029	21	61	32551	21
64320	16	56	62147	24
61857	23	30	25162	31
61499	28	75	36990	15
50999	2	66	63989	8
46660	12	13	6179	13
43287	13	64	43750	49
38214	16	21	8773	16
35523	0	53	52491	33
32750	1	22	22807	5
31414	18	9	14116	39
24188	8	7	5950	7
22938	12	0	1168	11
21054	4	0	855	4
17547	0	4	3926	3
14688	4	0	6023	5
7199	7	0	1644	6
969	0	0	0	0
455	0	0	0	0
203	0	0	0	0
98	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'AstonUniversity' @ aston.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Total_time_RFC[t] = + 17590.8912573238 + 682.915088331884Total_Blogged_Comp[t] + 516.993794267306`Total_long_PR(+120characters)`[t] + 0.154917291796053Total_characters_comp[t] + 369.206613680681Total_hyperl_comp[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Total_time_RFC[t] =  +  17590.8912573238 +  682.915088331884Total_Blogged_Comp[t] +  516.993794267306`Total_long_PR(+120characters)`[t] +  0.154917291796053Total_characters_comp[t] +  369.206613680681Total_hyperl_comp[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Total_time_RFC[t] =  +  17590.8912573238 +  682.915088331884Total_Blogged_Comp[t] +  516.993794267306`Total_long_PR(+120characters)`[t] +  0.154917291796053Total_characters_comp[t] +  369.206613680681Total_hyperl_comp[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Total_time_RFC[t] = + 17590.8912573238 + 682.915088331884Total_Blogged_Comp[t] + 516.993794267306`Total_long_PR(+120characters)`[t] + 0.154917291796053Total_characters_comp[t] + 369.206613680681Total_hyperl_comp[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)17590.89125732387141.5388492.46320.0148370.007419
Total_Blogged_Comp682.915088331884190.5751023.58340.000450.000225
`Total_long_PR(+120characters)`516.993794267306146.965543.51780.0005670.000284
Total_characters_comp0.1549172917960530.1303621.18840.2364610.118231
Total_hyperl_comp369.206613680681140.7791662.62260.0095750.004787

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 17590.8912573238 & 7141.538849 & 2.4632 & 0.014837 & 0.007419 \tabularnewline
Total_Blogged_Comp & 682.915088331884 & 190.575102 & 3.5834 & 0.00045 & 0.000225 \tabularnewline
`Total_long_PR(+120characters)` & 516.993794267306 & 146.96554 & 3.5178 & 0.000567 & 0.000284 \tabularnewline
Total_characters_comp & 0.154917291796053 & 0.130362 & 1.1884 & 0.236461 & 0.118231 \tabularnewline
Total_hyperl_comp & 369.206613680681 & 140.779166 & 2.6226 & 0.009575 & 0.004787 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]17590.8912573238[/C][C]7141.538849[/C][C]2.4632[/C][C]0.014837[/C][C]0.007419[/C][/ROW]
[ROW][C]Total_Blogged_Comp[/C][C]682.915088331884[/C][C]190.575102[/C][C]3.5834[/C][C]0.00045[/C][C]0.000225[/C][/ROW]
[ROW][C]`Total_long_PR(+120characters)`[/C][C]516.993794267306[/C][C]146.96554[/C][C]3.5178[/C][C]0.000567[/C][C]0.000284[/C][/ROW]
[ROW][C]Total_characters_comp[/C][C]0.154917291796053[/C][C]0.130362[/C][C]1.1884[/C][C]0.236461[/C][C]0.118231[/C][/ROW]
[ROW][C]Total_hyperl_comp[/C][C]369.206613680681[/C][C]140.779166[/C][C]2.6226[/C][C]0.009575[/C][C]0.004787[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)17590.89125732387141.5388492.46320.0148370.007419
Total_Blogged_Comp682.915088331884190.5751023.58340.000450.000225
`Total_long_PR(+120characters)`516.993794267306146.965543.51780.0005670.000284
Total_characters_comp0.1549172917960530.1303621.18840.2364610.118231
Total_hyperl_comp369.206613680681140.7791662.62260.0095750.004787







Multiple Linear Regression - Regression Statistics
Multiple R0.81741596254502
R-squared0.668168855823402
Adjusted R-squared0.659820902510783
F-TEST (value)80.0398410007149
F-TEST (DF numerator)4
F-TEST (DF denominator)159
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation37183.9090696502
Sum Squared Residuals219840251898.302

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.81741596254502 \tabularnewline
R-squared & 0.668168855823402 \tabularnewline
Adjusted R-squared & 0.659820902510783 \tabularnewline
F-TEST (value) & 80.0398410007149 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 159 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 37183.9090696502 \tabularnewline
Sum Squared Residuals & 219840251898.302 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.81741596254502[/C][/ROW]
[ROW][C]R-squared[/C][C]0.668168855823402[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.659820902510783[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]80.0398410007149[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]159[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]37183.9090696502[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]219840251898.302[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.81741596254502
R-squared0.668168855823402
Adjusted R-squared0.659820902510783
F-TEST (value)80.0398410007149
F-TEST (DF numerator)4
F-TEST (DF denominator)159
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation37183.9090696502
Sum Squared Residuals219840251898.302







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1293403191201.552700808102201.447299192
2277108138174.082154945138933.917845055
3264020154704.121725277109315.878274723
4260646173179.34196225387466.6580377467
5246100183021.87098954863078.1290104519
6244051181836.46042470862214.5395752918
7241329129672.91120689111656.08879311
8234730233808.168413205921.83158679451
9234509223150.12476262711358.8752373731
10233482149702.78715234283779.2128476577
11233406187194.48225466246211.517745338
12228548217875.39587233110672.6041276693
13223914188337.06652734735576.9334726525
14223696178792.19873334344903.8012666572
15223004187908.02614773835095.9738522616
16213765168309.70186143345455.298138567
17210554175445.66530733535108.3346926653
18202204121424.70946197880779.2905380223
19199512138118.54924230261393.4507576975
20195304179246.51919597916057.4808040207
21191467160779.01343828630687.9865617142
22191381206992.259671064-15611.2596710637
23191276208981.696160671-17705.696160671
24190410175735.50133384914674.4986661508
25188967161149.2366459927817.7633540103
26188780175854.50005726512925.4999427352
27185139203758.967274251-18619.9672742507
28185039166354.31805879418684.6819412057
29184217126730.16405471357486.8359452873
30181853174040.1832489487812.816751052
31181379194163.206136645-12784.2061366453
32181344178090.3240758183253.67592418227
33179562168082.10785460511479.8921453945
34178863158066.25475786520796.7452421352
35178140144386.12666284433753.8733371562
36176789204365.142038178-27576.1420381778
37176460163335.47927075113124.520729249
38175877168250.9787140857626.02128591522
39175568181644.638325913-6076.63832591317
40174107134634.65855975139472.3414402487
41173587148423.01822341825163.9817765817
4217326097592.041762573375667.9582374267
43172684188702.487647206-16018.4876472059
44167845198697.014299947-30852.0142999467
45167131128165.3805259138965.61947409
46167105113376.29376367153728.7062363295
47166790105272.57417812561517.425821875
48164767141286.12657727723480.8734227229
49162810131837.80107830972.1989219999
50162336210573.920002346-48237.9200023458
51161678141643.88575377520034.1142462249
52158980175558.517555143-16578.5175551426
53157250177713.605265311-20463.605265311
54156833148131.9255136518701.07448634915
55155383158898.363022531-3515.36302253086
56154991150245.856452354745.14354764983
57154730162168.828472639-7438.82847263937
58151503169288.256355549-17785.2563555494
59146455158828.466681383-12373.4666813832
60143937182533.329505981-38596.3295059806
61142339176042.037032286-33703.0370322857
62142146204736.308073447-62590.3080734472
63142141149186.697131766-7045.69713176584
64142069147668.961445028-5599.96144502755
65141933162706.546424873-20773.5464248727
66139350154513.904850213-15163.9048502131
67139144132256.5501878386887.44981216157
68137793142933.028174362-5140.02817436244
69136911181644.410484226-44733.4104842256
70136548181623.23607031-45075.23607031
71135171145062.829843331-9891.82984333092
72134043119845.6863401814197.3136598203
7313187698182.979257904633693.0207420954
74131122124724.9986208596397.00137914096
75130539114795.358493515743.6415064997
76130533142581.097049659-12048.097049659
77130232178188.456670857-47956.4566708567
78129100118101.68599035510998.3140096445
79128655158339.39463522-29684.3946352205
80128066107219.45579455520846.5442054447
81127619101727.36599275325891.6340072467
82127324163706.053875055-36382.0538750546
83126683166051.353122377-39368.3531223772
84126681130074.313400736-3393.31340073551
85125971114681.96773827411289.0322617256
86125366106536.12737147918829.8726285207
87122433132884.675316684-10451.6753166841
88121135110093.01256283311041.9874371665
89119291149261.529492462-29970.5294924622
90118958119223.579201916-265.579201915817
91118807132203.664146307-13396.6641463071
92118372147581.336365958-29209.3363659581
9311690090689.441203865626210.5587961344
94116775138092.889033369-21317.8890333693
95115199142950.951064501-27751.9510645012
96114928128518.553965335-13590.5539653351
97114397139650.885213608-25253.8852136077
98113337111197.054558572139.94544143018
99111664127823.656445973-16159.6564459727
100108715115229.409979012-6514.40997901188
101107342153113.870712829-45771.8707128287
102107335113546.232750894-6211.23275089374
103106539112583.731584556-6044.73158455562
104105615142878.400995678-37263.4009956776
105105410143439.352503859-38029.352503859
106105324104143.3669567941180.63304320589
10710301272109.84731558430902.152684416
108102531111401.664224128-8870.66422412828
109101324175667.695138441-74343.695138441
11010088584944.087284416415940.9127155836
111100672107338.656218597-6666.6562185966
11299946192904.646322972-92958.6463229722
1139976878393.421003653521374.5789963465
1149924693586.81653131275659.18346868728
11598599101405.040073458-2806.04007345793
1169803077108.354018290420921.6459817096
11794763166307.137867884-71544.1378678843
11893340107044.262232567-13704.2622325671
1199312574607.493927545218517.5060724548
12091185118639.127416756-27454.1274167565
12190961114571.364447677-23610.3644476774
1229093892903.2261519311-1965.2261519311
12389318146376.611768949-57058.6117689494
12488817124334.852613555-35517.8526135546
12584944133373.516472605-48429.5164726045
12684572131605.589517623-47033.5895176225
12784256151043.129928948-66787.1299289476
1288095395567.4801340397-14614.4801340397
1297880078241.3503155052558.649684494782
1307877664119.714113144814656.2858868552
1317581282773.3435059637-6961.34350596371
1327542650075.502833476125350.4971665239
1337439884772.165711626-10374.165711626
13474112110931.547814874-36819.5478148742
1357356769131.2442208994435.75577910104
1366947178288.9235010064-8817.92350100638
1376894885226.1908451932-16278.1908451932
1386774679125.8925182626-11379.8925182625
13967507174791.393898185-107284.393898185
1406502976264.7812151467-11235.7812151467
1416432075957.7888111887-11637.7888111887
1426185764151.1860372497-2294.18603724973
1436149986755.5381294107-25256.5381294107
1445099965944.9673498129-14945.9673498129
1454666038263.71156663818396.28843336193
1464328784425.1458251766-41138.1458251766
1473821446640.797570065-8426.79757006506
1483552365307.1441686201-29784.1441686201
1493275035026.9015619324-2276.90156193242
1503141451122.1774202431-19708.1774202431
1512418830179.3727058013-5991.37270580132
1522293830028.0884646117-7090.08846461171
1532105421931.8323498597-877.832349859702
1541754721374.6915630264-3827.69156302639
1551468823101.6515275424-8413.65152754238
156719924841.2205854438-17642.2205854438
15796917590.8912573238-16621.8912573238
15845517590.8912573238-17135.8912573238
15920317590.8912573238-17387.8912573238
1609817590.8912573238-17492.8912573238
161017590.8912573238-17590.8912573238
162017590.8912573238-17590.8912573238
163017590.8912573238-17590.8912573238
164017590.8912573238-17590.8912573238

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 293403 & 191201.552700808 & 102201.447299192 \tabularnewline
2 & 277108 & 138174.082154945 & 138933.917845055 \tabularnewline
3 & 264020 & 154704.121725277 & 109315.878274723 \tabularnewline
4 & 260646 & 173179.341962253 & 87466.6580377467 \tabularnewline
5 & 246100 & 183021.870989548 & 63078.1290104519 \tabularnewline
6 & 244051 & 181836.460424708 & 62214.5395752918 \tabularnewline
7 & 241329 & 129672.91120689 & 111656.08879311 \tabularnewline
8 & 234730 & 233808.168413205 & 921.83158679451 \tabularnewline
9 & 234509 & 223150.124762627 & 11358.8752373731 \tabularnewline
10 & 233482 & 149702.787152342 & 83779.2128476577 \tabularnewline
11 & 233406 & 187194.482254662 & 46211.517745338 \tabularnewline
12 & 228548 & 217875.395872331 & 10672.6041276693 \tabularnewline
13 & 223914 & 188337.066527347 & 35576.9334726525 \tabularnewline
14 & 223696 & 178792.198733343 & 44903.8012666572 \tabularnewline
15 & 223004 & 187908.026147738 & 35095.9738522616 \tabularnewline
16 & 213765 & 168309.701861433 & 45455.298138567 \tabularnewline
17 & 210554 & 175445.665307335 & 35108.3346926653 \tabularnewline
18 & 202204 & 121424.709461978 & 80779.2905380223 \tabularnewline
19 & 199512 & 138118.549242302 & 61393.4507576975 \tabularnewline
20 & 195304 & 179246.519195979 & 16057.4808040207 \tabularnewline
21 & 191467 & 160779.013438286 & 30687.9865617142 \tabularnewline
22 & 191381 & 206992.259671064 & -15611.2596710637 \tabularnewline
23 & 191276 & 208981.696160671 & -17705.696160671 \tabularnewline
24 & 190410 & 175735.501333849 & 14674.4986661508 \tabularnewline
25 & 188967 & 161149.23664599 & 27817.7633540103 \tabularnewline
26 & 188780 & 175854.500057265 & 12925.4999427352 \tabularnewline
27 & 185139 & 203758.967274251 & -18619.9672742507 \tabularnewline
28 & 185039 & 166354.318058794 & 18684.6819412057 \tabularnewline
29 & 184217 & 126730.164054713 & 57486.8359452873 \tabularnewline
30 & 181853 & 174040.183248948 & 7812.816751052 \tabularnewline
31 & 181379 & 194163.206136645 & -12784.2061366453 \tabularnewline
32 & 181344 & 178090.324075818 & 3253.67592418227 \tabularnewline
33 & 179562 & 168082.107854605 & 11479.8921453945 \tabularnewline
34 & 178863 & 158066.254757865 & 20796.7452421352 \tabularnewline
35 & 178140 & 144386.126662844 & 33753.8733371562 \tabularnewline
36 & 176789 & 204365.142038178 & -27576.1420381778 \tabularnewline
37 & 176460 & 163335.479270751 & 13124.520729249 \tabularnewline
38 & 175877 & 168250.978714085 & 7626.02128591522 \tabularnewline
39 & 175568 & 181644.638325913 & -6076.63832591317 \tabularnewline
40 & 174107 & 134634.658559751 & 39472.3414402487 \tabularnewline
41 & 173587 & 148423.018223418 & 25163.9817765817 \tabularnewline
42 & 173260 & 97592.0417625733 & 75667.9582374267 \tabularnewline
43 & 172684 & 188702.487647206 & -16018.4876472059 \tabularnewline
44 & 167845 & 198697.014299947 & -30852.0142999467 \tabularnewline
45 & 167131 & 128165.38052591 & 38965.61947409 \tabularnewline
46 & 167105 & 113376.293763671 & 53728.7062363295 \tabularnewline
47 & 166790 & 105272.574178125 & 61517.425821875 \tabularnewline
48 & 164767 & 141286.126577277 & 23480.8734227229 \tabularnewline
49 & 162810 & 131837.801078 & 30972.1989219999 \tabularnewline
50 & 162336 & 210573.920002346 & -48237.9200023458 \tabularnewline
51 & 161678 & 141643.885753775 & 20034.1142462249 \tabularnewline
52 & 158980 & 175558.517555143 & -16578.5175551426 \tabularnewline
53 & 157250 & 177713.605265311 & -20463.605265311 \tabularnewline
54 & 156833 & 148131.925513651 & 8701.07448634915 \tabularnewline
55 & 155383 & 158898.363022531 & -3515.36302253086 \tabularnewline
56 & 154991 & 150245.85645235 & 4745.14354764983 \tabularnewline
57 & 154730 & 162168.828472639 & -7438.82847263937 \tabularnewline
58 & 151503 & 169288.256355549 & -17785.2563555494 \tabularnewline
59 & 146455 & 158828.466681383 & -12373.4666813832 \tabularnewline
60 & 143937 & 182533.329505981 & -38596.3295059806 \tabularnewline
61 & 142339 & 176042.037032286 & -33703.0370322857 \tabularnewline
62 & 142146 & 204736.308073447 & -62590.3080734472 \tabularnewline
63 & 142141 & 149186.697131766 & -7045.69713176584 \tabularnewline
64 & 142069 & 147668.961445028 & -5599.96144502755 \tabularnewline
65 & 141933 & 162706.546424873 & -20773.5464248727 \tabularnewline
66 & 139350 & 154513.904850213 & -15163.9048502131 \tabularnewline
67 & 139144 & 132256.550187838 & 6887.44981216157 \tabularnewline
68 & 137793 & 142933.028174362 & -5140.02817436244 \tabularnewline
69 & 136911 & 181644.410484226 & -44733.4104842256 \tabularnewline
70 & 136548 & 181623.23607031 & -45075.23607031 \tabularnewline
71 & 135171 & 145062.829843331 & -9891.82984333092 \tabularnewline
72 & 134043 & 119845.68634018 & 14197.3136598203 \tabularnewline
73 & 131876 & 98182.9792579046 & 33693.0207420954 \tabularnewline
74 & 131122 & 124724.998620859 & 6397.00137914096 \tabularnewline
75 & 130539 & 114795.3584935 & 15743.6415064997 \tabularnewline
76 & 130533 & 142581.097049659 & -12048.097049659 \tabularnewline
77 & 130232 & 178188.456670857 & -47956.4566708567 \tabularnewline
78 & 129100 & 118101.685990355 & 10998.3140096445 \tabularnewline
79 & 128655 & 158339.39463522 & -29684.3946352205 \tabularnewline
80 & 128066 & 107219.455794555 & 20846.5442054447 \tabularnewline
81 & 127619 & 101727.365992753 & 25891.6340072467 \tabularnewline
82 & 127324 & 163706.053875055 & -36382.0538750546 \tabularnewline
83 & 126683 & 166051.353122377 & -39368.3531223772 \tabularnewline
84 & 126681 & 130074.313400736 & -3393.31340073551 \tabularnewline
85 & 125971 & 114681.967738274 & 11289.0322617256 \tabularnewline
86 & 125366 & 106536.127371479 & 18829.8726285207 \tabularnewline
87 & 122433 & 132884.675316684 & -10451.6753166841 \tabularnewline
88 & 121135 & 110093.012562833 & 11041.9874371665 \tabularnewline
89 & 119291 & 149261.529492462 & -29970.5294924622 \tabularnewline
90 & 118958 & 119223.579201916 & -265.579201915817 \tabularnewline
91 & 118807 & 132203.664146307 & -13396.6641463071 \tabularnewline
92 & 118372 & 147581.336365958 & -29209.3363659581 \tabularnewline
93 & 116900 & 90689.4412038656 & 26210.5587961344 \tabularnewline
94 & 116775 & 138092.889033369 & -21317.8890333693 \tabularnewline
95 & 115199 & 142950.951064501 & -27751.9510645012 \tabularnewline
96 & 114928 & 128518.553965335 & -13590.5539653351 \tabularnewline
97 & 114397 & 139650.885213608 & -25253.8852136077 \tabularnewline
98 & 113337 & 111197.05455857 & 2139.94544143018 \tabularnewline
99 & 111664 & 127823.656445973 & -16159.6564459727 \tabularnewline
100 & 108715 & 115229.409979012 & -6514.40997901188 \tabularnewline
101 & 107342 & 153113.870712829 & -45771.8707128287 \tabularnewline
102 & 107335 & 113546.232750894 & -6211.23275089374 \tabularnewline
103 & 106539 & 112583.731584556 & -6044.73158455562 \tabularnewline
104 & 105615 & 142878.400995678 & -37263.4009956776 \tabularnewline
105 & 105410 & 143439.352503859 & -38029.352503859 \tabularnewline
106 & 105324 & 104143.366956794 & 1180.63304320589 \tabularnewline
107 & 103012 & 72109.847315584 & 30902.152684416 \tabularnewline
108 & 102531 & 111401.664224128 & -8870.66422412828 \tabularnewline
109 & 101324 & 175667.695138441 & -74343.695138441 \tabularnewline
110 & 100885 & 84944.0872844164 & 15940.9127155836 \tabularnewline
111 & 100672 & 107338.656218597 & -6666.6562185966 \tabularnewline
112 & 99946 & 192904.646322972 & -92958.6463229722 \tabularnewline
113 & 99768 & 78393.4210036535 & 21374.5789963465 \tabularnewline
114 & 99246 & 93586.8165313127 & 5659.18346868728 \tabularnewline
115 & 98599 & 101405.040073458 & -2806.04007345793 \tabularnewline
116 & 98030 & 77108.3540182904 & 20921.6459817096 \tabularnewline
117 & 94763 & 166307.137867884 & -71544.1378678843 \tabularnewline
118 & 93340 & 107044.262232567 & -13704.2622325671 \tabularnewline
119 & 93125 & 74607.4939275452 & 18517.5060724548 \tabularnewline
120 & 91185 & 118639.127416756 & -27454.1274167565 \tabularnewline
121 & 90961 & 114571.364447677 & -23610.3644476774 \tabularnewline
122 & 90938 & 92903.2261519311 & -1965.2261519311 \tabularnewline
123 & 89318 & 146376.611768949 & -57058.6117689494 \tabularnewline
124 & 88817 & 124334.852613555 & -35517.8526135546 \tabularnewline
125 & 84944 & 133373.516472605 & -48429.5164726045 \tabularnewline
126 & 84572 & 131605.589517623 & -47033.5895176225 \tabularnewline
127 & 84256 & 151043.129928948 & -66787.1299289476 \tabularnewline
128 & 80953 & 95567.4801340397 & -14614.4801340397 \tabularnewline
129 & 78800 & 78241.3503155052 & 558.649684494782 \tabularnewline
130 & 78776 & 64119.7141131448 & 14656.2858868552 \tabularnewline
131 & 75812 & 82773.3435059637 & -6961.34350596371 \tabularnewline
132 & 75426 & 50075.5028334761 & 25350.4971665239 \tabularnewline
133 & 74398 & 84772.165711626 & -10374.165711626 \tabularnewline
134 & 74112 & 110931.547814874 & -36819.5478148742 \tabularnewline
135 & 73567 & 69131.244220899 & 4435.75577910104 \tabularnewline
136 & 69471 & 78288.9235010064 & -8817.92350100638 \tabularnewline
137 & 68948 & 85226.1908451932 & -16278.1908451932 \tabularnewline
138 & 67746 & 79125.8925182626 & -11379.8925182625 \tabularnewline
139 & 67507 & 174791.393898185 & -107284.393898185 \tabularnewline
140 & 65029 & 76264.7812151467 & -11235.7812151467 \tabularnewline
141 & 64320 & 75957.7888111887 & -11637.7888111887 \tabularnewline
142 & 61857 & 64151.1860372497 & -2294.18603724973 \tabularnewline
143 & 61499 & 86755.5381294107 & -25256.5381294107 \tabularnewline
144 & 50999 & 65944.9673498129 & -14945.9673498129 \tabularnewline
145 & 46660 & 38263.7115666381 & 8396.28843336193 \tabularnewline
146 & 43287 & 84425.1458251766 & -41138.1458251766 \tabularnewline
147 & 38214 & 46640.797570065 & -8426.79757006506 \tabularnewline
148 & 35523 & 65307.1441686201 & -29784.1441686201 \tabularnewline
149 & 32750 & 35026.9015619324 & -2276.90156193242 \tabularnewline
150 & 31414 & 51122.1774202431 & -19708.1774202431 \tabularnewline
151 & 24188 & 30179.3727058013 & -5991.37270580132 \tabularnewline
152 & 22938 & 30028.0884646117 & -7090.08846461171 \tabularnewline
153 & 21054 & 21931.8323498597 & -877.832349859702 \tabularnewline
154 & 17547 & 21374.6915630264 & -3827.69156302639 \tabularnewline
155 & 14688 & 23101.6515275424 & -8413.65152754238 \tabularnewline
156 & 7199 & 24841.2205854438 & -17642.2205854438 \tabularnewline
157 & 969 & 17590.8912573238 & -16621.8912573238 \tabularnewline
158 & 455 & 17590.8912573238 & -17135.8912573238 \tabularnewline
159 & 203 & 17590.8912573238 & -17387.8912573238 \tabularnewline
160 & 98 & 17590.8912573238 & -17492.8912573238 \tabularnewline
161 & 0 & 17590.8912573238 & -17590.8912573238 \tabularnewline
162 & 0 & 17590.8912573238 & -17590.8912573238 \tabularnewline
163 & 0 & 17590.8912573238 & -17590.8912573238 \tabularnewline
164 & 0 & 17590.8912573238 & -17590.8912573238 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]293403[/C][C]191201.552700808[/C][C]102201.447299192[/C][/ROW]
[ROW][C]2[/C][C]277108[/C][C]138174.082154945[/C][C]138933.917845055[/C][/ROW]
[ROW][C]3[/C][C]264020[/C][C]154704.121725277[/C][C]109315.878274723[/C][/ROW]
[ROW][C]4[/C][C]260646[/C][C]173179.341962253[/C][C]87466.6580377467[/C][/ROW]
[ROW][C]5[/C][C]246100[/C][C]183021.870989548[/C][C]63078.1290104519[/C][/ROW]
[ROW][C]6[/C][C]244051[/C][C]181836.460424708[/C][C]62214.5395752918[/C][/ROW]
[ROW][C]7[/C][C]241329[/C][C]129672.91120689[/C][C]111656.08879311[/C][/ROW]
[ROW][C]8[/C][C]234730[/C][C]233808.168413205[/C][C]921.83158679451[/C][/ROW]
[ROW][C]9[/C][C]234509[/C][C]223150.124762627[/C][C]11358.8752373731[/C][/ROW]
[ROW][C]10[/C][C]233482[/C][C]149702.787152342[/C][C]83779.2128476577[/C][/ROW]
[ROW][C]11[/C][C]233406[/C][C]187194.482254662[/C][C]46211.517745338[/C][/ROW]
[ROW][C]12[/C][C]228548[/C][C]217875.395872331[/C][C]10672.6041276693[/C][/ROW]
[ROW][C]13[/C][C]223914[/C][C]188337.066527347[/C][C]35576.9334726525[/C][/ROW]
[ROW][C]14[/C][C]223696[/C][C]178792.198733343[/C][C]44903.8012666572[/C][/ROW]
[ROW][C]15[/C][C]223004[/C][C]187908.026147738[/C][C]35095.9738522616[/C][/ROW]
[ROW][C]16[/C][C]213765[/C][C]168309.701861433[/C][C]45455.298138567[/C][/ROW]
[ROW][C]17[/C][C]210554[/C][C]175445.665307335[/C][C]35108.3346926653[/C][/ROW]
[ROW][C]18[/C][C]202204[/C][C]121424.709461978[/C][C]80779.2905380223[/C][/ROW]
[ROW][C]19[/C][C]199512[/C][C]138118.549242302[/C][C]61393.4507576975[/C][/ROW]
[ROW][C]20[/C][C]195304[/C][C]179246.519195979[/C][C]16057.4808040207[/C][/ROW]
[ROW][C]21[/C][C]191467[/C][C]160779.013438286[/C][C]30687.9865617142[/C][/ROW]
[ROW][C]22[/C][C]191381[/C][C]206992.259671064[/C][C]-15611.2596710637[/C][/ROW]
[ROW][C]23[/C][C]191276[/C][C]208981.696160671[/C][C]-17705.696160671[/C][/ROW]
[ROW][C]24[/C][C]190410[/C][C]175735.501333849[/C][C]14674.4986661508[/C][/ROW]
[ROW][C]25[/C][C]188967[/C][C]161149.23664599[/C][C]27817.7633540103[/C][/ROW]
[ROW][C]26[/C][C]188780[/C][C]175854.500057265[/C][C]12925.4999427352[/C][/ROW]
[ROW][C]27[/C][C]185139[/C][C]203758.967274251[/C][C]-18619.9672742507[/C][/ROW]
[ROW][C]28[/C][C]185039[/C][C]166354.318058794[/C][C]18684.6819412057[/C][/ROW]
[ROW][C]29[/C][C]184217[/C][C]126730.164054713[/C][C]57486.8359452873[/C][/ROW]
[ROW][C]30[/C][C]181853[/C][C]174040.183248948[/C][C]7812.816751052[/C][/ROW]
[ROW][C]31[/C][C]181379[/C][C]194163.206136645[/C][C]-12784.2061366453[/C][/ROW]
[ROW][C]32[/C][C]181344[/C][C]178090.324075818[/C][C]3253.67592418227[/C][/ROW]
[ROW][C]33[/C][C]179562[/C][C]168082.107854605[/C][C]11479.8921453945[/C][/ROW]
[ROW][C]34[/C][C]178863[/C][C]158066.254757865[/C][C]20796.7452421352[/C][/ROW]
[ROW][C]35[/C][C]178140[/C][C]144386.126662844[/C][C]33753.8733371562[/C][/ROW]
[ROW][C]36[/C][C]176789[/C][C]204365.142038178[/C][C]-27576.1420381778[/C][/ROW]
[ROW][C]37[/C][C]176460[/C][C]163335.479270751[/C][C]13124.520729249[/C][/ROW]
[ROW][C]38[/C][C]175877[/C][C]168250.978714085[/C][C]7626.02128591522[/C][/ROW]
[ROW][C]39[/C][C]175568[/C][C]181644.638325913[/C][C]-6076.63832591317[/C][/ROW]
[ROW][C]40[/C][C]174107[/C][C]134634.658559751[/C][C]39472.3414402487[/C][/ROW]
[ROW][C]41[/C][C]173587[/C][C]148423.018223418[/C][C]25163.9817765817[/C][/ROW]
[ROW][C]42[/C][C]173260[/C][C]97592.0417625733[/C][C]75667.9582374267[/C][/ROW]
[ROW][C]43[/C][C]172684[/C][C]188702.487647206[/C][C]-16018.4876472059[/C][/ROW]
[ROW][C]44[/C][C]167845[/C][C]198697.014299947[/C][C]-30852.0142999467[/C][/ROW]
[ROW][C]45[/C][C]167131[/C][C]128165.38052591[/C][C]38965.61947409[/C][/ROW]
[ROW][C]46[/C][C]167105[/C][C]113376.293763671[/C][C]53728.7062363295[/C][/ROW]
[ROW][C]47[/C][C]166790[/C][C]105272.574178125[/C][C]61517.425821875[/C][/ROW]
[ROW][C]48[/C][C]164767[/C][C]141286.126577277[/C][C]23480.8734227229[/C][/ROW]
[ROW][C]49[/C][C]162810[/C][C]131837.801078[/C][C]30972.1989219999[/C][/ROW]
[ROW][C]50[/C][C]162336[/C][C]210573.920002346[/C][C]-48237.9200023458[/C][/ROW]
[ROW][C]51[/C][C]161678[/C][C]141643.885753775[/C][C]20034.1142462249[/C][/ROW]
[ROW][C]52[/C][C]158980[/C][C]175558.517555143[/C][C]-16578.5175551426[/C][/ROW]
[ROW][C]53[/C][C]157250[/C][C]177713.605265311[/C][C]-20463.605265311[/C][/ROW]
[ROW][C]54[/C][C]156833[/C][C]148131.925513651[/C][C]8701.07448634915[/C][/ROW]
[ROW][C]55[/C][C]155383[/C][C]158898.363022531[/C][C]-3515.36302253086[/C][/ROW]
[ROW][C]56[/C][C]154991[/C][C]150245.85645235[/C][C]4745.14354764983[/C][/ROW]
[ROW][C]57[/C][C]154730[/C][C]162168.828472639[/C][C]-7438.82847263937[/C][/ROW]
[ROW][C]58[/C][C]151503[/C][C]169288.256355549[/C][C]-17785.2563555494[/C][/ROW]
[ROW][C]59[/C][C]146455[/C][C]158828.466681383[/C][C]-12373.4666813832[/C][/ROW]
[ROW][C]60[/C][C]143937[/C][C]182533.329505981[/C][C]-38596.3295059806[/C][/ROW]
[ROW][C]61[/C][C]142339[/C][C]176042.037032286[/C][C]-33703.0370322857[/C][/ROW]
[ROW][C]62[/C][C]142146[/C][C]204736.308073447[/C][C]-62590.3080734472[/C][/ROW]
[ROW][C]63[/C][C]142141[/C][C]149186.697131766[/C][C]-7045.69713176584[/C][/ROW]
[ROW][C]64[/C][C]142069[/C][C]147668.961445028[/C][C]-5599.96144502755[/C][/ROW]
[ROW][C]65[/C][C]141933[/C][C]162706.546424873[/C][C]-20773.5464248727[/C][/ROW]
[ROW][C]66[/C][C]139350[/C][C]154513.904850213[/C][C]-15163.9048502131[/C][/ROW]
[ROW][C]67[/C][C]139144[/C][C]132256.550187838[/C][C]6887.44981216157[/C][/ROW]
[ROW][C]68[/C][C]137793[/C][C]142933.028174362[/C][C]-5140.02817436244[/C][/ROW]
[ROW][C]69[/C][C]136911[/C][C]181644.410484226[/C][C]-44733.4104842256[/C][/ROW]
[ROW][C]70[/C][C]136548[/C][C]181623.23607031[/C][C]-45075.23607031[/C][/ROW]
[ROW][C]71[/C][C]135171[/C][C]145062.829843331[/C][C]-9891.82984333092[/C][/ROW]
[ROW][C]72[/C][C]134043[/C][C]119845.68634018[/C][C]14197.3136598203[/C][/ROW]
[ROW][C]73[/C][C]131876[/C][C]98182.9792579046[/C][C]33693.0207420954[/C][/ROW]
[ROW][C]74[/C][C]131122[/C][C]124724.998620859[/C][C]6397.00137914096[/C][/ROW]
[ROW][C]75[/C][C]130539[/C][C]114795.3584935[/C][C]15743.6415064997[/C][/ROW]
[ROW][C]76[/C][C]130533[/C][C]142581.097049659[/C][C]-12048.097049659[/C][/ROW]
[ROW][C]77[/C][C]130232[/C][C]178188.456670857[/C][C]-47956.4566708567[/C][/ROW]
[ROW][C]78[/C][C]129100[/C][C]118101.685990355[/C][C]10998.3140096445[/C][/ROW]
[ROW][C]79[/C][C]128655[/C][C]158339.39463522[/C][C]-29684.3946352205[/C][/ROW]
[ROW][C]80[/C][C]128066[/C][C]107219.455794555[/C][C]20846.5442054447[/C][/ROW]
[ROW][C]81[/C][C]127619[/C][C]101727.365992753[/C][C]25891.6340072467[/C][/ROW]
[ROW][C]82[/C][C]127324[/C][C]163706.053875055[/C][C]-36382.0538750546[/C][/ROW]
[ROW][C]83[/C][C]126683[/C][C]166051.353122377[/C][C]-39368.3531223772[/C][/ROW]
[ROW][C]84[/C][C]126681[/C][C]130074.313400736[/C][C]-3393.31340073551[/C][/ROW]
[ROW][C]85[/C][C]125971[/C][C]114681.967738274[/C][C]11289.0322617256[/C][/ROW]
[ROW][C]86[/C][C]125366[/C][C]106536.127371479[/C][C]18829.8726285207[/C][/ROW]
[ROW][C]87[/C][C]122433[/C][C]132884.675316684[/C][C]-10451.6753166841[/C][/ROW]
[ROW][C]88[/C][C]121135[/C][C]110093.012562833[/C][C]11041.9874371665[/C][/ROW]
[ROW][C]89[/C][C]119291[/C][C]149261.529492462[/C][C]-29970.5294924622[/C][/ROW]
[ROW][C]90[/C][C]118958[/C][C]119223.579201916[/C][C]-265.579201915817[/C][/ROW]
[ROW][C]91[/C][C]118807[/C][C]132203.664146307[/C][C]-13396.6641463071[/C][/ROW]
[ROW][C]92[/C][C]118372[/C][C]147581.336365958[/C][C]-29209.3363659581[/C][/ROW]
[ROW][C]93[/C][C]116900[/C][C]90689.4412038656[/C][C]26210.5587961344[/C][/ROW]
[ROW][C]94[/C][C]116775[/C][C]138092.889033369[/C][C]-21317.8890333693[/C][/ROW]
[ROW][C]95[/C][C]115199[/C][C]142950.951064501[/C][C]-27751.9510645012[/C][/ROW]
[ROW][C]96[/C][C]114928[/C][C]128518.553965335[/C][C]-13590.5539653351[/C][/ROW]
[ROW][C]97[/C][C]114397[/C][C]139650.885213608[/C][C]-25253.8852136077[/C][/ROW]
[ROW][C]98[/C][C]113337[/C][C]111197.05455857[/C][C]2139.94544143018[/C][/ROW]
[ROW][C]99[/C][C]111664[/C][C]127823.656445973[/C][C]-16159.6564459727[/C][/ROW]
[ROW][C]100[/C][C]108715[/C][C]115229.409979012[/C][C]-6514.40997901188[/C][/ROW]
[ROW][C]101[/C][C]107342[/C][C]153113.870712829[/C][C]-45771.8707128287[/C][/ROW]
[ROW][C]102[/C][C]107335[/C][C]113546.232750894[/C][C]-6211.23275089374[/C][/ROW]
[ROW][C]103[/C][C]106539[/C][C]112583.731584556[/C][C]-6044.73158455562[/C][/ROW]
[ROW][C]104[/C][C]105615[/C][C]142878.400995678[/C][C]-37263.4009956776[/C][/ROW]
[ROW][C]105[/C][C]105410[/C][C]143439.352503859[/C][C]-38029.352503859[/C][/ROW]
[ROW][C]106[/C][C]105324[/C][C]104143.366956794[/C][C]1180.63304320589[/C][/ROW]
[ROW][C]107[/C][C]103012[/C][C]72109.847315584[/C][C]30902.152684416[/C][/ROW]
[ROW][C]108[/C][C]102531[/C][C]111401.664224128[/C][C]-8870.66422412828[/C][/ROW]
[ROW][C]109[/C][C]101324[/C][C]175667.695138441[/C][C]-74343.695138441[/C][/ROW]
[ROW][C]110[/C][C]100885[/C][C]84944.0872844164[/C][C]15940.9127155836[/C][/ROW]
[ROW][C]111[/C][C]100672[/C][C]107338.656218597[/C][C]-6666.6562185966[/C][/ROW]
[ROW][C]112[/C][C]99946[/C][C]192904.646322972[/C][C]-92958.6463229722[/C][/ROW]
[ROW][C]113[/C][C]99768[/C][C]78393.4210036535[/C][C]21374.5789963465[/C][/ROW]
[ROW][C]114[/C][C]99246[/C][C]93586.8165313127[/C][C]5659.18346868728[/C][/ROW]
[ROW][C]115[/C][C]98599[/C][C]101405.040073458[/C][C]-2806.04007345793[/C][/ROW]
[ROW][C]116[/C][C]98030[/C][C]77108.3540182904[/C][C]20921.6459817096[/C][/ROW]
[ROW][C]117[/C][C]94763[/C][C]166307.137867884[/C][C]-71544.1378678843[/C][/ROW]
[ROW][C]118[/C][C]93340[/C][C]107044.262232567[/C][C]-13704.2622325671[/C][/ROW]
[ROW][C]119[/C][C]93125[/C][C]74607.4939275452[/C][C]18517.5060724548[/C][/ROW]
[ROW][C]120[/C][C]91185[/C][C]118639.127416756[/C][C]-27454.1274167565[/C][/ROW]
[ROW][C]121[/C][C]90961[/C][C]114571.364447677[/C][C]-23610.3644476774[/C][/ROW]
[ROW][C]122[/C][C]90938[/C][C]92903.2261519311[/C][C]-1965.2261519311[/C][/ROW]
[ROW][C]123[/C][C]89318[/C][C]146376.611768949[/C][C]-57058.6117689494[/C][/ROW]
[ROW][C]124[/C][C]88817[/C][C]124334.852613555[/C][C]-35517.8526135546[/C][/ROW]
[ROW][C]125[/C][C]84944[/C][C]133373.516472605[/C][C]-48429.5164726045[/C][/ROW]
[ROW][C]126[/C][C]84572[/C][C]131605.589517623[/C][C]-47033.5895176225[/C][/ROW]
[ROW][C]127[/C][C]84256[/C][C]151043.129928948[/C][C]-66787.1299289476[/C][/ROW]
[ROW][C]128[/C][C]80953[/C][C]95567.4801340397[/C][C]-14614.4801340397[/C][/ROW]
[ROW][C]129[/C][C]78800[/C][C]78241.3503155052[/C][C]558.649684494782[/C][/ROW]
[ROW][C]130[/C][C]78776[/C][C]64119.7141131448[/C][C]14656.2858868552[/C][/ROW]
[ROW][C]131[/C][C]75812[/C][C]82773.3435059637[/C][C]-6961.34350596371[/C][/ROW]
[ROW][C]132[/C][C]75426[/C][C]50075.5028334761[/C][C]25350.4971665239[/C][/ROW]
[ROW][C]133[/C][C]74398[/C][C]84772.165711626[/C][C]-10374.165711626[/C][/ROW]
[ROW][C]134[/C][C]74112[/C][C]110931.547814874[/C][C]-36819.5478148742[/C][/ROW]
[ROW][C]135[/C][C]73567[/C][C]69131.244220899[/C][C]4435.75577910104[/C][/ROW]
[ROW][C]136[/C][C]69471[/C][C]78288.9235010064[/C][C]-8817.92350100638[/C][/ROW]
[ROW][C]137[/C][C]68948[/C][C]85226.1908451932[/C][C]-16278.1908451932[/C][/ROW]
[ROW][C]138[/C][C]67746[/C][C]79125.8925182626[/C][C]-11379.8925182625[/C][/ROW]
[ROW][C]139[/C][C]67507[/C][C]174791.393898185[/C][C]-107284.393898185[/C][/ROW]
[ROW][C]140[/C][C]65029[/C][C]76264.7812151467[/C][C]-11235.7812151467[/C][/ROW]
[ROW][C]141[/C][C]64320[/C][C]75957.7888111887[/C][C]-11637.7888111887[/C][/ROW]
[ROW][C]142[/C][C]61857[/C][C]64151.1860372497[/C][C]-2294.18603724973[/C][/ROW]
[ROW][C]143[/C][C]61499[/C][C]86755.5381294107[/C][C]-25256.5381294107[/C][/ROW]
[ROW][C]144[/C][C]50999[/C][C]65944.9673498129[/C][C]-14945.9673498129[/C][/ROW]
[ROW][C]145[/C][C]46660[/C][C]38263.7115666381[/C][C]8396.28843336193[/C][/ROW]
[ROW][C]146[/C][C]43287[/C][C]84425.1458251766[/C][C]-41138.1458251766[/C][/ROW]
[ROW][C]147[/C][C]38214[/C][C]46640.797570065[/C][C]-8426.79757006506[/C][/ROW]
[ROW][C]148[/C][C]35523[/C][C]65307.1441686201[/C][C]-29784.1441686201[/C][/ROW]
[ROW][C]149[/C][C]32750[/C][C]35026.9015619324[/C][C]-2276.90156193242[/C][/ROW]
[ROW][C]150[/C][C]31414[/C][C]51122.1774202431[/C][C]-19708.1774202431[/C][/ROW]
[ROW][C]151[/C][C]24188[/C][C]30179.3727058013[/C][C]-5991.37270580132[/C][/ROW]
[ROW][C]152[/C][C]22938[/C][C]30028.0884646117[/C][C]-7090.08846461171[/C][/ROW]
[ROW][C]153[/C][C]21054[/C][C]21931.8323498597[/C][C]-877.832349859702[/C][/ROW]
[ROW][C]154[/C][C]17547[/C][C]21374.6915630264[/C][C]-3827.69156302639[/C][/ROW]
[ROW][C]155[/C][C]14688[/C][C]23101.6515275424[/C][C]-8413.65152754238[/C][/ROW]
[ROW][C]156[/C][C]7199[/C][C]24841.2205854438[/C][C]-17642.2205854438[/C][/ROW]
[ROW][C]157[/C][C]969[/C][C]17590.8912573238[/C][C]-16621.8912573238[/C][/ROW]
[ROW][C]158[/C][C]455[/C][C]17590.8912573238[/C][C]-17135.8912573238[/C][/ROW]
[ROW][C]159[/C][C]203[/C][C]17590.8912573238[/C][C]-17387.8912573238[/C][/ROW]
[ROW][C]160[/C][C]98[/C][C]17590.8912573238[/C][C]-17492.8912573238[/C][/ROW]
[ROW][C]161[/C][C]0[/C][C]17590.8912573238[/C][C]-17590.8912573238[/C][/ROW]
[ROW][C]162[/C][C]0[/C][C]17590.8912573238[/C][C]-17590.8912573238[/C][/ROW]
[ROW][C]163[/C][C]0[/C][C]17590.8912573238[/C][C]-17590.8912573238[/C][/ROW]
[ROW][C]164[/C][C]0[/C][C]17590.8912573238[/C][C]-17590.8912573238[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1293403191201.552700808102201.447299192
2277108138174.082154945138933.917845055
3264020154704.121725277109315.878274723
4260646173179.34196225387466.6580377467
5246100183021.87098954863078.1290104519
6244051181836.46042470862214.5395752918
7241329129672.91120689111656.08879311
8234730233808.168413205921.83158679451
9234509223150.12476262711358.8752373731
10233482149702.78715234283779.2128476577
11233406187194.48225466246211.517745338
12228548217875.39587233110672.6041276693
13223914188337.06652734735576.9334726525
14223696178792.19873334344903.8012666572
15223004187908.02614773835095.9738522616
16213765168309.70186143345455.298138567
17210554175445.66530733535108.3346926653
18202204121424.70946197880779.2905380223
19199512138118.54924230261393.4507576975
20195304179246.51919597916057.4808040207
21191467160779.01343828630687.9865617142
22191381206992.259671064-15611.2596710637
23191276208981.696160671-17705.696160671
24190410175735.50133384914674.4986661508
25188967161149.2366459927817.7633540103
26188780175854.50005726512925.4999427352
27185139203758.967274251-18619.9672742507
28185039166354.31805879418684.6819412057
29184217126730.16405471357486.8359452873
30181853174040.1832489487812.816751052
31181379194163.206136645-12784.2061366453
32181344178090.3240758183253.67592418227
33179562168082.10785460511479.8921453945
34178863158066.25475786520796.7452421352
35178140144386.12666284433753.8733371562
36176789204365.142038178-27576.1420381778
37176460163335.47927075113124.520729249
38175877168250.9787140857626.02128591522
39175568181644.638325913-6076.63832591317
40174107134634.65855975139472.3414402487
41173587148423.01822341825163.9817765817
4217326097592.041762573375667.9582374267
43172684188702.487647206-16018.4876472059
44167845198697.014299947-30852.0142999467
45167131128165.3805259138965.61947409
46167105113376.29376367153728.7062363295
47166790105272.57417812561517.425821875
48164767141286.12657727723480.8734227229
49162810131837.80107830972.1989219999
50162336210573.920002346-48237.9200023458
51161678141643.88575377520034.1142462249
52158980175558.517555143-16578.5175551426
53157250177713.605265311-20463.605265311
54156833148131.9255136518701.07448634915
55155383158898.363022531-3515.36302253086
56154991150245.856452354745.14354764983
57154730162168.828472639-7438.82847263937
58151503169288.256355549-17785.2563555494
59146455158828.466681383-12373.4666813832
60143937182533.329505981-38596.3295059806
61142339176042.037032286-33703.0370322857
62142146204736.308073447-62590.3080734472
63142141149186.697131766-7045.69713176584
64142069147668.961445028-5599.96144502755
65141933162706.546424873-20773.5464248727
66139350154513.904850213-15163.9048502131
67139144132256.5501878386887.44981216157
68137793142933.028174362-5140.02817436244
69136911181644.410484226-44733.4104842256
70136548181623.23607031-45075.23607031
71135171145062.829843331-9891.82984333092
72134043119845.6863401814197.3136598203
7313187698182.979257904633693.0207420954
74131122124724.9986208596397.00137914096
75130539114795.358493515743.6415064997
76130533142581.097049659-12048.097049659
77130232178188.456670857-47956.4566708567
78129100118101.68599035510998.3140096445
79128655158339.39463522-29684.3946352205
80128066107219.45579455520846.5442054447
81127619101727.36599275325891.6340072467
82127324163706.053875055-36382.0538750546
83126683166051.353122377-39368.3531223772
84126681130074.313400736-3393.31340073551
85125971114681.96773827411289.0322617256
86125366106536.12737147918829.8726285207
87122433132884.675316684-10451.6753166841
88121135110093.01256283311041.9874371665
89119291149261.529492462-29970.5294924622
90118958119223.579201916-265.579201915817
91118807132203.664146307-13396.6641463071
92118372147581.336365958-29209.3363659581
9311690090689.441203865626210.5587961344
94116775138092.889033369-21317.8890333693
95115199142950.951064501-27751.9510645012
96114928128518.553965335-13590.5539653351
97114397139650.885213608-25253.8852136077
98113337111197.054558572139.94544143018
99111664127823.656445973-16159.6564459727
100108715115229.409979012-6514.40997901188
101107342153113.870712829-45771.8707128287
102107335113546.232750894-6211.23275089374
103106539112583.731584556-6044.73158455562
104105615142878.400995678-37263.4009956776
105105410143439.352503859-38029.352503859
106105324104143.3669567941180.63304320589
10710301272109.84731558430902.152684416
108102531111401.664224128-8870.66422412828
109101324175667.695138441-74343.695138441
11010088584944.087284416415940.9127155836
111100672107338.656218597-6666.6562185966
11299946192904.646322972-92958.6463229722
1139976878393.421003653521374.5789963465
1149924693586.81653131275659.18346868728
11598599101405.040073458-2806.04007345793
1169803077108.354018290420921.6459817096
11794763166307.137867884-71544.1378678843
11893340107044.262232567-13704.2622325671
1199312574607.493927545218517.5060724548
12091185118639.127416756-27454.1274167565
12190961114571.364447677-23610.3644476774
1229093892903.2261519311-1965.2261519311
12389318146376.611768949-57058.6117689494
12488817124334.852613555-35517.8526135546
12584944133373.516472605-48429.5164726045
12684572131605.589517623-47033.5895176225
12784256151043.129928948-66787.1299289476
1288095395567.4801340397-14614.4801340397
1297880078241.3503155052558.649684494782
1307877664119.714113144814656.2858868552
1317581282773.3435059637-6961.34350596371
1327542650075.502833476125350.4971665239
1337439884772.165711626-10374.165711626
13474112110931.547814874-36819.5478148742
1357356769131.2442208994435.75577910104
1366947178288.9235010064-8817.92350100638
1376894885226.1908451932-16278.1908451932
1386774679125.8925182626-11379.8925182625
13967507174791.393898185-107284.393898185
1406502976264.7812151467-11235.7812151467
1416432075957.7888111887-11637.7888111887
1426185764151.1860372497-2294.18603724973
1436149986755.5381294107-25256.5381294107
1445099965944.9673498129-14945.9673498129
1454666038263.71156663818396.28843336193
1464328784425.1458251766-41138.1458251766
1473821446640.797570065-8426.79757006506
1483552365307.1441686201-29784.1441686201
1493275035026.9015619324-2276.90156193242
1503141451122.1774202431-19708.1774202431
1512418830179.3727058013-5991.37270580132
1522293830028.0884646117-7090.08846461171
1532105421931.8323498597-877.832349859702
1541754721374.6915630264-3827.69156302639
1551468823101.6515275424-8413.65152754238
156719924841.2205854438-17642.2205854438
15796917590.8912573238-16621.8912573238
15845517590.8912573238-17135.8912573238
15920317590.8912573238-17387.8912573238
1609817590.8912573238-17492.8912573238
161017590.8912573238-17590.8912573238
162017590.8912573238-17590.8912573238
163017590.8912573238-17590.8912573238
164017590.8912573238-17590.8912573238







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
80.1946895649963440.3893791299926870.805310435003656
90.2404161668140290.4808323336280590.75958383318597
100.1834666735593880.3669333471187770.816533326440612
110.1704616361210870.3409232722421740.829538363878913
120.1277275482370320.2554550964740640.872272451762968
130.1412391930644150.282478386128830.858760806935585
140.1502214414466420.3004428828932840.849778558553358
150.1141916264320030.2283832528640070.885808373567997
160.1088433679443920.2176867358887840.891156632055608
170.1469409994629220.2938819989258440.853059000537078
180.2465017475429610.4930034950859220.753498252457039
190.4012923796359650.802584759271930.598707620364035
200.458746552714940.917493105429880.54125344728506
210.5407380611997750.9185238776004510.459261938800225
220.4773678149774850.954735629954970.522632185022515
230.5502709060113840.8994581879772320.449729093988616
240.6229695588744940.7540608822510130.377030441125506
250.6915884205188740.6168231589622520.308411579481126
260.7542173152840920.4915653694318170.245782684715908
270.7944508824708980.4110982350582040.205549117529102
280.8167407292370430.3665185415259140.183259270762957
290.8766318091891230.2467363816217540.123368190810877
300.9081667619009260.1836664761981490.0918332380990744
310.9162485817421370.1675028365157270.0837514182578633
320.9098713352337550.1802573295324890.0901286647662446
330.9067722148967550.1864555702064910.0932277851032453
340.9138899885796580.1722200228406840.0861100114203418
350.9212217617892050.1575564764215910.0787782382107953
360.9424337819768070.1151324360463860.0575662180231928
370.9410725080188270.1178549839623460.0589274919811729
380.940123967572850.1197520648543010.0598760324271505
390.9403067813866820.1193864372266360.059693218613318
400.9545916038212830.09081679235743390.0454083961787169
410.9610883270386230.07782334592275320.0389116729613766
420.9793157445794720.04136851084105580.0206842554205279
430.981115775572180.03776844885563820.0188842244278191
440.984464632253150.03107073549370030.0155353677468502
450.9889862666166130.0220274667667740.011013733383387
460.995436528468050.009126943063900890.00456347153195044
470.9982111860356180.003577627928764760.00178881396438238
480.9987562575945860.00248748481082850.00124374240541425
490.9991588953020250.001682209395950460.000841104697975231
500.9994635478053730.001072904389254150.000536452194627075
510.9996593947517990.0006812104964025740.000340605248201287
520.9997298706202560.0005402587594885120.000270129379744256
530.9997423484609720.000515303078055430.000257651539027715
540.9997972898751850.0004054202496304350.000202710124815217
550.9998241659680430.0003516680639141960.000175834031957098
560.9998274268162130.0003451463675738460.000172573183786923
570.9998554948025450.000289010394909980.00014450519745499
580.9998638365735570.000272326852886890.000136163426443445
590.9998913034019320.0002173931961353930.000108696598067696
600.9999166174452780.0001667651094431928.33825547215961e-05
610.9999428301633350.0001143396733298765.71698366649382e-05
620.999964713058467.05738830809327e-053.52869415404664e-05
630.9999774248985064.51502029870444e-052.25751014935222e-05
640.9999780716473834.38567052333907e-052.19283526166953e-05
650.9999779744044774.4051191046917e-052.20255955234585e-05
660.9999818078845953.63842308091382e-051.81921154045691e-05
670.9999839408462393.21183075224047e-051.60591537612024e-05
680.9999850972661652.98054676702532e-051.49027338351266e-05
690.9999869833791572.60332416864141e-051.30166208432071e-05
700.9999890502993922.18994012164667e-051.09497006082333e-05
710.9999905573948031.88852103930162e-059.4426051965081e-06
720.9999933124966951.33750066102149e-056.68750330510744e-06
730.9999965138867356.97222653029453e-063.48611326514727e-06
740.9999965981204776.80375904651021e-063.40187952325511e-06
750.9999976757130914.64857381716466e-062.32428690858233e-06
760.9999978239879674.35202406554476e-062.17601203277238e-06
770.9999979153518584.16929628304943e-062.08464814152471e-06
780.999997820571064.35885788006158e-062.17942894003079e-06
790.999997571262374.85747525776282e-062.42873762888141e-06
800.9999977992505054.40149899013105e-062.20074949506553e-06
810.9999988413352272.31732954595224e-061.15866477297612e-06
820.9999986307781392.73844372253703e-061.36922186126852e-06
830.9999984772577233.04548455317129e-061.52274227658565e-06
840.9999984181435143.16371297201265e-061.58185648600633e-06
850.9999987182069782.56358604328498e-061.28179302164249e-06
860.9999993805380161.23892396825549e-066.19461984127743e-07
870.9999992364041481.52719170462379e-067.63595852311893e-07
880.9999993553175211.28936495769484e-066.44682478847422e-07
890.9999991935809391.61283812251102e-068.0641906125551e-07
900.9999992201400951.55971980926966e-067.79859904634832e-07
910.9999990433284231.91334315454419e-069.56671577272096e-07
920.9999986277127792.74457444187018e-061.37228722093509e-06
930.999999292616941.41476612134866e-067.07383060674332e-07
940.9999989017587782.19648244293128e-061.09824122146564e-06
950.9999987393812042.52123759159727e-061.26061879579864e-06
960.9999979399897554.12002048923884e-062.06001024461942e-06
970.9999972914294445.41714111242889e-062.70857055621445e-06
980.999997920926344.15814731991134e-062.07907365995567e-06
990.999996676211386.6475772389777e-063.32378861948885e-06
1000.9999966405791466.71884170805395e-063.35942085402697e-06
1010.999996075244147.84951172016046e-063.92475586008023e-06
1020.9999952354123779.52917524610037e-064.76458762305019e-06
1030.9999939608252321.20783495367284e-056.03917476836422e-06
1040.9999957229394268.5541211489058e-064.2770605744529e-06
1050.999994261931921.14761361595143e-055.73806807975716e-06
1060.999993435068441.3129863118003e-056.56493155900152e-06
1070.9999977648174774.47036504671597e-062.23518252335798e-06
1080.9999970128130875.97437382511691e-062.98718691255846e-06
1090.9999982307372783.53852544331712e-061.76926272165856e-06
1100.9999991266861371.74662772665759e-068.73313863328795e-07
1110.9999987504224242.49915515281635e-061.24957757640817e-06
1120.9999995312965549.37406891902838e-074.68703445951419e-07
1130.9999997488457895.02308422405256e-072.51154211202628e-07
1140.9999997074433815.85113237340878e-072.92556618670439e-07
1150.9999997379361435.24127713130404e-072.62063856565202e-07
1160.99999991826091.63478198765373e-078.17390993826866e-08
1170.9999999356374371.28725126316464e-076.4362563158232e-08
1180.9999998924624062.15075188190387e-071.07537594095194e-07
1190.999999963730547.2538918193019e-083.62694590965095e-08
1200.9999999316268331.36746334747369e-076.83731673736845e-08
1210.9999998820881752.35823650551688e-071.17911825275844e-07
1220.9999999001117741.99776451327027e-079.98882256635137e-08
1230.9999998544782452.9104351034864e-071.4552175517432e-07
1240.9999997544061864.91187627107736e-072.45593813553868e-07
1250.9999996893054016.21389197234052e-073.10694598617026e-07
1260.9999997312922175.37415566800641e-072.68707783400321e-07
1270.9999997080561645.83887672688143e-072.91943836344071e-07
1280.999999385878991.22824201960716e-066.14121009803579e-07
1290.9999993401952071.31960958535396e-066.59804792676978e-07
1300.9999996234726267.53054748393356e-073.76527374196678e-07
1310.999999459565581.08086883894312e-065.40434419471558e-07
1320.9999997246059765.50788048806152e-072.75394024403076e-07
1330.9999995554183458.89163310493937e-074.44581655246969e-07
1340.9999990246789941.95064201267678e-069.75321006338392e-07
1350.9999998520464122.95907176136891e-071.47953588068446e-07
1360.9999997453146655.09370670359953e-072.54685335179976e-07
1370.9999995306549579.38690085546629e-074.69345042773314e-07
1380.9999990005352311.99892953720059e-069.99464768600295e-07
1390.9999999999124731.75054763166218e-108.7527381583109e-11
1400.9999999997616934.76613468924103e-102.38306734462052e-10
1410.9999999993212941.35741130583611e-096.78705652918053e-10
1420.999999997319945.3601211624497e-092.68006058122485e-09
1430.9999999976101334.77973364568857e-092.38986682284428e-09
1440.9999999980288133.94237313887645e-091.97118656943823e-09
1450.9999999996197997.60402104953372e-103.80201052476686e-10
1460.9999999975345934.93081349158951e-092.46540674579475e-09
1470.9999999835827013.28345976938677e-081.64172988469339e-08
1480.9999999580111368.3977727652817e-084.19888638264085e-08
1490.9999998104830343.79033931485133e-071.89516965742567e-07
1500.999999963134767.37304790315753e-083.68652395157877e-08
1510.9999999843471783.1305644094324e-081.5652822047162e-08
1520.9999999999999666.8460977993347e-143.42304889966735e-14
1530.9999999999960477.90558385747638e-123.95279192873819e-12
1540.999999999576328.473589432404e-104.236794716202e-10
1550.9999999583572038.32855942084815e-084.16427971042408e-08
1560.9999963103164187.379367163672e-063.689683581836e-06

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 & 0.194689564996344 & 0.389379129992687 & 0.805310435003656 \tabularnewline
9 & 0.240416166814029 & 0.480832333628059 & 0.75958383318597 \tabularnewline
10 & 0.183466673559388 & 0.366933347118777 & 0.816533326440612 \tabularnewline
11 & 0.170461636121087 & 0.340923272242174 & 0.829538363878913 \tabularnewline
12 & 0.127727548237032 & 0.255455096474064 & 0.872272451762968 \tabularnewline
13 & 0.141239193064415 & 0.28247838612883 & 0.858760806935585 \tabularnewline
14 & 0.150221441446642 & 0.300442882893284 & 0.849778558553358 \tabularnewline
15 & 0.114191626432003 & 0.228383252864007 & 0.885808373567997 \tabularnewline
16 & 0.108843367944392 & 0.217686735888784 & 0.891156632055608 \tabularnewline
17 & 0.146940999462922 & 0.293881998925844 & 0.853059000537078 \tabularnewline
18 & 0.246501747542961 & 0.493003495085922 & 0.753498252457039 \tabularnewline
19 & 0.401292379635965 & 0.80258475927193 & 0.598707620364035 \tabularnewline
20 & 0.45874655271494 & 0.91749310542988 & 0.54125344728506 \tabularnewline
21 & 0.540738061199775 & 0.918523877600451 & 0.459261938800225 \tabularnewline
22 & 0.477367814977485 & 0.95473562995497 & 0.522632185022515 \tabularnewline
23 & 0.550270906011384 & 0.899458187977232 & 0.449729093988616 \tabularnewline
24 & 0.622969558874494 & 0.754060882251013 & 0.377030441125506 \tabularnewline
25 & 0.691588420518874 & 0.616823158962252 & 0.308411579481126 \tabularnewline
26 & 0.754217315284092 & 0.491565369431817 & 0.245782684715908 \tabularnewline
27 & 0.794450882470898 & 0.411098235058204 & 0.205549117529102 \tabularnewline
28 & 0.816740729237043 & 0.366518541525914 & 0.183259270762957 \tabularnewline
29 & 0.876631809189123 & 0.246736381621754 & 0.123368190810877 \tabularnewline
30 & 0.908166761900926 & 0.183666476198149 & 0.0918332380990744 \tabularnewline
31 & 0.916248581742137 & 0.167502836515727 & 0.0837514182578633 \tabularnewline
32 & 0.909871335233755 & 0.180257329532489 & 0.0901286647662446 \tabularnewline
33 & 0.906772214896755 & 0.186455570206491 & 0.0932277851032453 \tabularnewline
34 & 0.913889988579658 & 0.172220022840684 & 0.0861100114203418 \tabularnewline
35 & 0.921221761789205 & 0.157556476421591 & 0.0787782382107953 \tabularnewline
36 & 0.942433781976807 & 0.115132436046386 & 0.0575662180231928 \tabularnewline
37 & 0.941072508018827 & 0.117854983962346 & 0.0589274919811729 \tabularnewline
38 & 0.94012396757285 & 0.119752064854301 & 0.0598760324271505 \tabularnewline
39 & 0.940306781386682 & 0.119386437226636 & 0.059693218613318 \tabularnewline
40 & 0.954591603821283 & 0.0908167923574339 & 0.0454083961787169 \tabularnewline
41 & 0.961088327038623 & 0.0778233459227532 & 0.0389116729613766 \tabularnewline
42 & 0.979315744579472 & 0.0413685108410558 & 0.0206842554205279 \tabularnewline
43 & 0.98111577557218 & 0.0377684488556382 & 0.0188842244278191 \tabularnewline
44 & 0.98446463225315 & 0.0310707354937003 & 0.0155353677468502 \tabularnewline
45 & 0.988986266616613 & 0.022027466766774 & 0.011013733383387 \tabularnewline
46 & 0.99543652846805 & 0.00912694306390089 & 0.00456347153195044 \tabularnewline
47 & 0.998211186035618 & 0.00357762792876476 & 0.00178881396438238 \tabularnewline
48 & 0.998756257594586 & 0.0024874848108285 & 0.00124374240541425 \tabularnewline
49 & 0.999158895302025 & 0.00168220939595046 & 0.000841104697975231 \tabularnewline
50 & 0.999463547805373 & 0.00107290438925415 & 0.000536452194627075 \tabularnewline
51 & 0.999659394751799 & 0.000681210496402574 & 0.000340605248201287 \tabularnewline
52 & 0.999729870620256 & 0.000540258759488512 & 0.000270129379744256 \tabularnewline
53 & 0.999742348460972 & 0.00051530307805543 & 0.000257651539027715 \tabularnewline
54 & 0.999797289875185 & 0.000405420249630435 & 0.000202710124815217 \tabularnewline
55 & 0.999824165968043 & 0.000351668063914196 & 0.000175834031957098 \tabularnewline
56 & 0.999827426816213 & 0.000345146367573846 & 0.000172573183786923 \tabularnewline
57 & 0.999855494802545 & 0.00028901039490998 & 0.00014450519745499 \tabularnewline
58 & 0.999863836573557 & 0.00027232685288689 & 0.000136163426443445 \tabularnewline
59 & 0.999891303401932 & 0.000217393196135393 & 0.000108696598067696 \tabularnewline
60 & 0.999916617445278 & 0.000166765109443192 & 8.33825547215961e-05 \tabularnewline
61 & 0.999942830163335 & 0.000114339673329876 & 5.71698366649382e-05 \tabularnewline
62 & 0.99996471305846 & 7.05738830809327e-05 & 3.52869415404664e-05 \tabularnewline
63 & 0.999977424898506 & 4.51502029870444e-05 & 2.25751014935222e-05 \tabularnewline
64 & 0.999978071647383 & 4.38567052333907e-05 & 2.19283526166953e-05 \tabularnewline
65 & 0.999977974404477 & 4.4051191046917e-05 & 2.20255955234585e-05 \tabularnewline
66 & 0.999981807884595 & 3.63842308091382e-05 & 1.81921154045691e-05 \tabularnewline
67 & 0.999983940846239 & 3.21183075224047e-05 & 1.60591537612024e-05 \tabularnewline
68 & 0.999985097266165 & 2.98054676702532e-05 & 1.49027338351266e-05 \tabularnewline
69 & 0.999986983379157 & 2.60332416864141e-05 & 1.30166208432071e-05 \tabularnewline
70 & 0.999989050299392 & 2.18994012164667e-05 & 1.09497006082333e-05 \tabularnewline
71 & 0.999990557394803 & 1.88852103930162e-05 & 9.4426051965081e-06 \tabularnewline
72 & 0.999993312496695 & 1.33750066102149e-05 & 6.68750330510744e-06 \tabularnewline
73 & 0.999996513886735 & 6.97222653029453e-06 & 3.48611326514727e-06 \tabularnewline
74 & 0.999996598120477 & 6.80375904651021e-06 & 3.40187952325511e-06 \tabularnewline
75 & 0.999997675713091 & 4.64857381716466e-06 & 2.32428690858233e-06 \tabularnewline
76 & 0.999997823987967 & 4.35202406554476e-06 & 2.17601203277238e-06 \tabularnewline
77 & 0.999997915351858 & 4.16929628304943e-06 & 2.08464814152471e-06 \tabularnewline
78 & 0.99999782057106 & 4.35885788006158e-06 & 2.17942894003079e-06 \tabularnewline
79 & 0.99999757126237 & 4.85747525776282e-06 & 2.42873762888141e-06 \tabularnewline
80 & 0.999997799250505 & 4.40149899013105e-06 & 2.20074949506553e-06 \tabularnewline
81 & 0.999998841335227 & 2.31732954595224e-06 & 1.15866477297612e-06 \tabularnewline
82 & 0.999998630778139 & 2.73844372253703e-06 & 1.36922186126852e-06 \tabularnewline
83 & 0.999998477257723 & 3.04548455317129e-06 & 1.52274227658565e-06 \tabularnewline
84 & 0.999998418143514 & 3.16371297201265e-06 & 1.58185648600633e-06 \tabularnewline
85 & 0.999998718206978 & 2.56358604328498e-06 & 1.28179302164249e-06 \tabularnewline
86 & 0.999999380538016 & 1.23892396825549e-06 & 6.19461984127743e-07 \tabularnewline
87 & 0.999999236404148 & 1.52719170462379e-06 & 7.63595852311893e-07 \tabularnewline
88 & 0.999999355317521 & 1.28936495769484e-06 & 6.44682478847422e-07 \tabularnewline
89 & 0.999999193580939 & 1.61283812251102e-06 & 8.0641906125551e-07 \tabularnewline
90 & 0.999999220140095 & 1.55971980926966e-06 & 7.79859904634832e-07 \tabularnewline
91 & 0.999999043328423 & 1.91334315454419e-06 & 9.56671577272096e-07 \tabularnewline
92 & 0.999998627712779 & 2.74457444187018e-06 & 1.37228722093509e-06 \tabularnewline
93 & 0.99999929261694 & 1.41476612134866e-06 & 7.07383060674332e-07 \tabularnewline
94 & 0.999998901758778 & 2.19648244293128e-06 & 1.09824122146564e-06 \tabularnewline
95 & 0.999998739381204 & 2.52123759159727e-06 & 1.26061879579864e-06 \tabularnewline
96 & 0.999997939989755 & 4.12002048923884e-06 & 2.06001024461942e-06 \tabularnewline
97 & 0.999997291429444 & 5.41714111242889e-06 & 2.70857055621445e-06 \tabularnewline
98 & 0.99999792092634 & 4.15814731991134e-06 & 2.07907365995567e-06 \tabularnewline
99 & 0.99999667621138 & 6.6475772389777e-06 & 3.32378861948885e-06 \tabularnewline
100 & 0.999996640579146 & 6.71884170805395e-06 & 3.35942085402697e-06 \tabularnewline
101 & 0.99999607524414 & 7.84951172016046e-06 & 3.92475586008023e-06 \tabularnewline
102 & 0.999995235412377 & 9.52917524610037e-06 & 4.76458762305019e-06 \tabularnewline
103 & 0.999993960825232 & 1.20783495367284e-05 & 6.03917476836422e-06 \tabularnewline
104 & 0.999995722939426 & 8.5541211489058e-06 & 4.2770605744529e-06 \tabularnewline
105 & 0.99999426193192 & 1.14761361595143e-05 & 5.73806807975716e-06 \tabularnewline
106 & 0.99999343506844 & 1.3129863118003e-05 & 6.56493155900152e-06 \tabularnewline
107 & 0.999997764817477 & 4.47036504671597e-06 & 2.23518252335798e-06 \tabularnewline
108 & 0.999997012813087 & 5.97437382511691e-06 & 2.98718691255846e-06 \tabularnewline
109 & 0.999998230737278 & 3.53852544331712e-06 & 1.76926272165856e-06 \tabularnewline
110 & 0.999999126686137 & 1.74662772665759e-06 & 8.73313863328795e-07 \tabularnewline
111 & 0.999998750422424 & 2.49915515281635e-06 & 1.24957757640817e-06 \tabularnewline
112 & 0.999999531296554 & 9.37406891902838e-07 & 4.68703445951419e-07 \tabularnewline
113 & 0.999999748845789 & 5.02308422405256e-07 & 2.51154211202628e-07 \tabularnewline
114 & 0.999999707443381 & 5.85113237340878e-07 & 2.92556618670439e-07 \tabularnewline
115 & 0.999999737936143 & 5.24127713130404e-07 & 2.62063856565202e-07 \tabularnewline
116 & 0.9999999182609 & 1.63478198765373e-07 & 8.17390993826866e-08 \tabularnewline
117 & 0.999999935637437 & 1.28725126316464e-07 & 6.4362563158232e-08 \tabularnewline
118 & 0.999999892462406 & 2.15075188190387e-07 & 1.07537594095194e-07 \tabularnewline
119 & 0.99999996373054 & 7.2538918193019e-08 & 3.62694590965095e-08 \tabularnewline
120 & 0.999999931626833 & 1.36746334747369e-07 & 6.83731673736845e-08 \tabularnewline
121 & 0.999999882088175 & 2.35823650551688e-07 & 1.17911825275844e-07 \tabularnewline
122 & 0.999999900111774 & 1.99776451327027e-07 & 9.98882256635137e-08 \tabularnewline
123 & 0.999999854478245 & 2.9104351034864e-07 & 1.4552175517432e-07 \tabularnewline
124 & 0.999999754406186 & 4.91187627107736e-07 & 2.45593813553868e-07 \tabularnewline
125 & 0.999999689305401 & 6.21389197234052e-07 & 3.10694598617026e-07 \tabularnewline
126 & 0.999999731292217 & 5.37415566800641e-07 & 2.68707783400321e-07 \tabularnewline
127 & 0.999999708056164 & 5.83887672688143e-07 & 2.91943836344071e-07 \tabularnewline
128 & 0.99999938587899 & 1.22824201960716e-06 & 6.14121009803579e-07 \tabularnewline
129 & 0.999999340195207 & 1.31960958535396e-06 & 6.59804792676978e-07 \tabularnewline
130 & 0.999999623472626 & 7.53054748393356e-07 & 3.76527374196678e-07 \tabularnewline
131 & 0.99999945956558 & 1.08086883894312e-06 & 5.40434419471558e-07 \tabularnewline
132 & 0.999999724605976 & 5.50788048806152e-07 & 2.75394024403076e-07 \tabularnewline
133 & 0.999999555418345 & 8.89163310493937e-07 & 4.44581655246969e-07 \tabularnewline
134 & 0.999999024678994 & 1.95064201267678e-06 & 9.75321006338392e-07 \tabularnewline
135 & 0.999999852046412 & 2.95907176136891e-07 & 1.47953588068446e-07 \tabularnewline
136 & 0.999999745314665 & 5.09370670359953e-07 & 2.54685335179976e-07 \tabularnewline
137 & 0.999999530654957 & 9.38690085546629e-07 & 4.69345042773314e-07 \tabularnewline
138 & 0.999999000535231 & 1.99892953720059e-06 & 9.99464768600295e-07 \tabularnewline
139 & 0.999999999912473 & 1.75054763166218e-10 & 8.7527381583109e-11 \tabularnewline
140 & 0.999999999761693 & 4.76613468924103e-10 & 2.38306734462052e-10 \tabularnewline
141 & 0.999999999321294 & 1.35741130583611e-09 & 6.78705652918053e-10 \tabularnewline
142 & 0.99999999731994 & 5.3601211624497e-09 & 2.68006058122485e-09 \tabularnewline
143 & 0.999999997610133 & 4.77973364568857e-09 & 2.38986682284428e-09 \tabularnewline
144 & 0.999999998028813 & 3.94237313887645e-09 & 1.97118656943823e-09 \tabularnewline
145 & 0.999999999619799 & 7.60402104953372e-10 & 3.80201052476686e-10 \tabularnewline
146 & 0.999999997534593 & 4.93081349158951e-09 & 2.46540674579475e-09 \tabularnewline
147 & 0.999999983582701 & 3.28345976938677e-08 & 1.64172988469339e-08 \tabularnewline
148 & 0.999999958011136 & 8.3977727652817e-08 & 4.19888638264085e-08 \tabularnewline
149 & 0.999999810483034 & 3.79033931485133e-07 & 1.89516965742567e-07 \tabularnewline
150 & 0.99999996313476 & 7.37304790315753e-08 & 3.68652395157877e-08 \tabularnewline
151 & 0.999999984347178 & 3.1305644094324e-08 & 1.5652822047162e-08 \tabularnewline
152 & 0.999999999999966 & 6.8460977993347e-14 & 3.42304889966735e-14 \tabularnewline
153 & 0.999999999996047 & 7.90558385747638e-12 & 3.95279192873819e-12 \tabularnewline
154 & 0.99999999957632 & 8.473589432404e-10 & 4.236794716202e-10 \tabularnewline
155 & 0.999999958357203 & 8.32855942084815e-08 & 4.16427971042408e-08 \tabularnewline
156 & 0.999996310316418 & 7.379367163672e-06 & 3.689683581836e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C]0.194689564996344[/C][C]0.389379129992687[/C][C]0.805310435003656[/C][/ROW]
[ROW][C]9[/C][C]0.240416166814029[/C][C]0.480832333628059[/C][C]0.75958383318597[/C][/ROW]
[ROW][C]10[/C][C]0.183466673559388[/C][C]0.366933347118777[/C][C]0.816533326440612[/C][/ROW]
[ROW][C]11[/C][C]0.170461636121087[/C][C]0.340923272242174[/C][C]0.829538363878913[/C][/ROW]
[ROW][C]12[/C][C]0.127727548237032[/C][C]0.255455096474064[/C][C]0.872272451762968[/C][/ROW]
[ROW][C]13[/C][C]0.141239193064415[/C][C]0.28247838612883[/C][C]0.858760806935585[/C][/ROW]
[ROW][C]14[/C][C]0.150221441446642[/C][C]0.300442882893284[/C][C]0.849778558553358[/C][/ROW]
[ROW][C]15[/C][C]0.114191626432003[/C][C]0.228383252864007[/C][C]0.885808373567997[/C][/ROW]
[ROW][C]16[/C][C]0.108843367944392[/C][C]0.217686735888784[/C][C]0.891156632055608[/C][/ROW]
[ROW][C]17[/C][C]0.146940999462922[/C][C]0.293881998925844[/C][C]0.853059000537078[/C][/ROW]
[ROW][C]18[/C][C]0.246501747542961[/C][C]0.493003495085922[/C][C]0.753498252457039[/C][/ROW]
[ROW][C]19[/C][C]0.401292379635965[/C][C]0.80258475927193[/C][C]0.598707620364035[/C][/ROW]
[ROW][C]20[/C][C]0.45874655271494[/C][C]0.91749310542988[/C][C]0.54125344728506[/C][/ROW]
[ROW][C]21[/C][C]0.540738061199775[/C][C]0.918523877600451[/C][C]0.459261938800225[/C][/ROW]
[ROW][C]22[/C][C]0.477367814977485[/C][C]0.95473562995497[/C][C]0.522632185022515[/C][/ROW]
[ROW][C]23[/C][C]0.550270906011384[/C][C]0.899458187977232[/C][C]0.449729093988616[/C][/ROW]
[ROW][C]24[/C][C]0.622969558874494[/C][C]0.754060882251013[/C][C]0.377030441125506[/C][/ROW]
[ROW][C]25[/C][C]0.691588420518874[/C][C]0.616823158962252[/C][C]0.308411579481126[/C][/ROW]
[ROW][C]26[/C][C]0.754217315284092[/C][C]0.491565369431817[/C][C]0.245782684715908[/C][/ROW]
[ROW][C]27[/C][C]0.794450882470898[/C][C]0.411098235058204[/C][C]0.205549117529102[/C][/ROW]
[ROW][C]28[/C][C]0.816740729237043[/C][C]0.366518541525914[/C][C]0.183259270762957[/C][/ROW]
[ROW][C]29[/C][C]0.876631809189123[/C][C]0.246736381621754[/C][C]0.123368190810877[/C][/ROW]
[ROW][C]30[/C][C]0.908166761900926[/C][C]0.183666476198149[/C][C]0.0918332380990744[/C][/ROW]
[ROW][C]31[/C][C]0.916248581742137[/C][C]0.167502836515727[/C][C]0.0837514182578633[/C][/ROW]
[ROW][C]32[/C][C]0.909871335233755[/C][C]0.180257329532489[/C][C]0.0901286647662446[/C][/ROW]
[ROW][C]33[/C][C]0.906772214896755[/C][C]0.186455570206491[/C][C]0.0932277851032453[/C][/ROW]
[ROW][C]34[/C][C]0.913889988579658[/C][C]0.172220022840684[/C][C]0.0861100114203418[/C][/ROW]
[ROW][C]35[/C][C]0.921221761789205[/C][C]0.157556476421591[/C][C]0.0787782382107953[/C][/ROW]
[ROW][C]36[/C][C]0.942433781976807[/C][C]0.115132436046386[/C][C]0.0575662180231928[/C][/ROW]
[ROW][C]37[/C][C]0.941072508018827[/C][C]0.117854983962346[/C][C]0.0589274919811729[/C][/ROW]
[ROW][C]38[/C][C]0.94012396757285[/C][C]0.119752064854301[/C][C]0.0598760324271505[/C][/ROW]
[ROW][C]39[/C][C]0.940306781386682[/C][C]0.119386437226636[/C][C]0.059693218613318[/C][/ROW]
[ROW][C]40[/C][C]0.954591603821283[/C][C]0.0908167923574339[/C][C]0.0454083961787169[/C][/ROW]
[ROW][C]41[/C][C]0.961088327038623[/C][C]0.0778233459227532[/C][C]0.0389116729613766[/C][/ROW]
[ROW][C]42[/C][C]0.979315744579472[/C][C]0.0413685108410558[/C][C]0.0206842554205279[/C][/ROW]
[ROW][C]43[/C][C]0.98111577557218[/C][C]0.0377684488556382[/C][C]0.0188842244278191[/C][/ROW]
[ROW][C]44[/C][C]0.98446463225315[/C][C]0.0310707354937003[/C][C]0.0155353677468502[/C][/ROW]
[ROW][C]45[/C][C]0.988986266616613[/C][C]0.022027466766774[/C][C]0.011013733383387[/C][/ROW]
[ROW][C]46[/C][C]0.99543652846805[/C][C]0.00912694306390089[/C][C]0.00456347153195044[/C][/ROW]
[ROW][C]47[/C][C]0.998211186035618[/C][C]0.00357762792876476[/C][C]0.00178881396438238[/C][/ROW]
[ROW][C]48[/C][C]0.998756257594586[/C][C]0.0024874848108285[/C][C]0.00124374240541425[/C][/ROW]
[ROW][C]49[/C][C]0.999158895302025[/C][C]0.00168220939595046[/C][C]0.000841104697975231[/C][/ROW]
[ROW][C]50[/C][C]0.999463547805373[/C][C]0.00107290438925415[/C][C]0.000536452194627075[/C][/ROW]
[ROW][C]51[/C][C]0.999659394751799[/C][C]0.000681210496402574[/C][C]0.000340605248201287[/C][/ROW]
[ROW][C]52[/C][C]0.999729870620256[/C][C]0.000540258759488512[/C][C]0.000270129379744256[/C][/ROW]
[ROW][C]53[/C][C]0.999742348460972[/C][C]0.00051530307805543[/C][C]0.000257651539027715[/C][/ROW]
[ROW][C]54[/C][C]0.999797289875185[/C][C]0.000405420249630435[/C][C]0.000202710124815217[/C][/ROW]
[ROW][C]55[/C][C]0.999824165968043[/C][C]0.000351668063914196[/C][C]0.000175834031957098[/C][/ROW]
[ROW][C]56[/C][C]0.999827426816213[/C][C]0.000345146367573846[/C][C]0.000172573183786923[/C][/ROW]
[ROW][C]57[/C][C]0.999855494802545[/C][C]0.00028901039490998[/C][C]0.00014450519745499[/C][/ROW]
[ROW][C]58[/C][C]0.999863836573557[/C][C]0.00027232685288689[/C][C]0.000136163426443445[/C][/ROW]
[ROW][C]59[/C][C]0.999891303401932[/C][C]0.000217393196135393[/C][C]0.000108696598067696[/C][/ROW]
[ROW][C]60[/C][C]0.999916617445278[/C][C]0.000166765109443192[/C][C]8.33825547215961e-05[/C][/ROW]
[ROW][C]61[/C][C]0.999942830163335[/C][C]0.000114339673329876[/C][C]5.71698366649382e-05[/C][/ROW]
[ROW][C]62[/C][C]0.99996471305846[/C][C]7.05738830809327e-05[/C][C]3.52869415404664e-05[/C][/ROW]
[ROW][C]63[/C][C]0.999977424898506[/C][C]4.51502029870444e-05[/C][C]2.25751014935222e-05[/C][/ROW]
[ROW][C]64[/C][C]0.999978071647383[/C][C]4.38567052333907e-05[/C][C]2.19283526166953e-05[/C][/ROW]
[ROW][C]65[/C][C]0.999977974404477[/C][C]4.4051191046917e-05[/C][C]2.20255955234585e-05[/C][/ROW]
[ROW][C]66[/C][C]0.999981807884595[/C][C]3.63842308091382e-05[/C][C]1.81921154045691e-05[/C][/ROW]
[ROW][C]67[/C][C]0.999983940846239[/C][C]3.21183075224047e-05[/C][C]1.60591537612024e-05[/C][/ROW]
[ROW][C]68[/C][C]0.999985097266165[/C][C]2.98054676702532e-05[/C][C]1.49027338351266e-05[/C][/ROW]
[ROW][C]69[/C][C]0.999986983379157[/C][C]2.60332416864141e-05[/C][C]1.30166208432071e-05[/C][/ROW]
[ROW][C]70[/C][C]0.999989050299392[/C][C]2.18994012164667e-05[/C][C]1.09497006082333e-05[/C][/ROW]
[ROW][C]71[/C][C]0.999990557394803[/C][C]1.88852103930162e-05[/C][C]9.4426051965081e-06[/C][/ROW]
[ROW][C]72[/C][C]0.999993312496695[/C][C]1.33750066102149e-05[/C][C]6.68750330510744e-06[/C][/ROW]
[ROW][C]73[/C][C]0.999996513886735[/C][C]6.97222653029453e-06[/C][C]3.48611326514727e-06[/C][/ROW]
[ROW][C]74[/C][C]0.999996598120477[/C][C]6.80375904651021e-06[/C][C]3.40187952325511e-06[/C][/ROW]
[ROW][C]75[/C][C]0.999997675713091[/C][C]4.64857381716466e-06[/C][C]2.32428690858233e-06[/C][/ROW]
[ROW][C]76[/C][C]0.999997823987967[/C][C]4.35202406554476e-06[/C][C]2.17601203277238e-06[/C][/ROW]
[ROW][C]77[/C][C]0.999997915351858[/C][C]4.16929628304943e-06[/C][C]2.08464814152471e-06[/C][/ROW]
[ROW][C]78[/C][C]0.99999782057106[/C][C]4.35885788006158e-06[/C][C]2.17942894003079e-06[/C][/ROW]
[ROW][C]79[/C][C]0.99999757126237[/C][C]4.85747525776282e-06[/C][C]2.42873762888141e-06[/C][/ROW]
[ROW][C]80[/C][C]0.999997799250505[/C][C]4.40149899013105e-06[/C][C]2.20074949506553e-06[/C][/ROW]
[ROW][C]81[/C][C]0.999998841335227[/C][C]2.31732954595224e-06[/C][C]1.15866477297612e-06[/C][/ROW]
[ROW][C]82[/C][C]0.999998630778139[/C][C]2.73844372253703e-06[/C][C]1.36922186126852e-06[/C][/ROW]
[ROW][C]83[/C][C]0.999998477257723[/C][C]3.04548455317129e-06[/C][C]1.52274227658565e-06[/C][/ROW]
[ROW][C]84[/C][C]0.999998418143514[/C][C]3.16371297201265e-06[/C][C]1.58185648600633e-06[/C][/ROW]
[ROW][C]85[/C][C]0.999998718206978[/C][C]2.56358604328498e-06[/C][C]1.28179302164249e-06[/C][/ROW]
[ROW][C]86[/C][C]0.999999380538016[/C][C]1.23892396825549e-06[/C][C]6.19461984127743e-07[/C][/ROW]
[ROW][C]87[/C][C]0.999999236404148[/C][C]1.52719170462379e-06[/C][C]7.63595852311893e-07[/C][/ROW]
[ROW][C]88[/C][C]0.999999355317521[/C][C]1.28936495769484e-06[/C][C]6.44682478847422e-07[/C][/ROW]
[ROW][C]89[/C][C]0.999999193580939[/C][C]1.61283812251102e-06[/C][C]8.0641906125551e-07[/C][/ROW]
[ROW][C]90[/C][C]0.999999220140095[/C][C]1.55971980926966e-06[/C][C]7.79859904634832e-07[/C][/ROW]
[ROW][C]91[/C][C]0.999999043328423[/C][C]1.91334315454419e-06[/C][C]9.56671577272096e-07[/C][/ROW]
[ROW][C]92[/C][C]0.999998627712779[/C][C]2.74457444187018e-06[/C][C]1.37228722093509e-06[/C][/ROW]
[ROW][C]93[/C][C]0.99999929261694[/C][C]1.41476612134866e-06[/C][C]7.07383060674332e-07[/C][/ROW]
[ROW][C]94[/C][C]0.999998901758778[/C][C]2.19648244293128e-06[/C][C]1.09824122146564e-06[/C][/ROW]
[ROW][C]95[/C][C]0.999998739381204[/C][C]2.52123759159727e-06[/C][C]1.26061879579864e-06[/C][/ROW]
[ROW][C]96[/C][C]0.999997939989755[/C][C]4.12002048923884e-06[/C][C]2.06001024461942e-06[/C][/ROW]
[ROW][C]97[/C][C]0.999997291429444[/C][C]5.41714111242889e-06[/C][C]2.70857055621445e-06[/C][/ROW]
[ROW][C]98[/C][C]0.99999792092634[/C][C]4.15814731991134e-06[/C][C]2.07907365995567e-06[/C][/ROW]
[ROW][C]99[/C][C]0.99999667621138[/C][C]6.6475772389777e-06[/C][C]3.32378861948885e-06[/C][/ROW]
[ROW][C]100[/C][C]0.999996640579146[/C][C]6.71884170805395e-06[/C][C]3.35942085402697e-06[/C][/ROW]
[ROW][C]101[/C][C]0.99999607524414[/C][C]7.84951172016046e-06[/C][C]3.92475586008023e-06[/C][/ROW]
[ROW][C]102[/C][C]0.999995235412377[/C][C]9.52917524610037e-06[/C][C]4.76458762305019e-06[/C][/ROW]
[ROW][C]103[/C][C]0.999993960825232[/C][C]1.20783495367284e-05[/C][C]6.03917476836422e-06[/C][/ROW]
[ROW][C]104[/C][C]0.999995722939426[/C][C]8.5541211489058e-06[/C][C]4.2770605744529e-06[/C][/ROW]
[ROW][C]105[/C][C]0.99999426193192[/C][C]1.14761361595143e-05[/C][C]5.73806807975716e-06[/C][/ROW]
[ROW][C]106[/C][C]0.99999343506844[/C][C]1.3129863118003e-05[/C][C]6.56493155900152e-06[/C][/ROW]
[ROW][C]107[/C][C]0.999997764817477[/C][C]4.47036504671597e-06[/C][C]2.23518252335798e-06[/C][/ROW]
[ROW][C]108[/C][C]0.999997012813087[/C][C]5.97437382511691e-06[/C][C]2.98718691255846e-06[/C][/ROW]
[ROW][C]109[/C][C]0.999998230737278[/C][C]3.53852544331712e-06[/C][C]1.76926272165856e-06[/C][/ROW]
[ROW][C]110[/C][C]0.999999126686137[/C][C]1.74662772665759e-06[/C][C]8.73313863328795e-07[/C][/ROW]
[ROW][C]111[/C][C]0.999998750422424[/C][C]2.49915515281635e-06[/C][C]1.24957757640817e-06[/C][/ROW]
[ROW][C]112[/C][C]0.999999531296554[/C][C]9.37406891902838e-07[/C][C]4.68703445951419e-07[/C][/ROW]
[ROW][C]113[/C][C]0.999999748845789[/C][C]5.02308422405256e-07[/C][C]2.51154211202628e-07[/C][/ROW]
[ROW][C]114[/C][C]0.999999707443381[/C][C]5.85113237340878e-07[/C][C]2.92556618670439e-07[/C][/ROW]
[ROW][C]115[/C][C]0.999999737936143[/C][C]5.24127713130404e-07[/C][C]2.62063856565202e-07[/C][/ROW]
[ROW][C]116[/C][C]0.9999999182609[/C][C]1.63478198765373e-07[/C][C]8.17390993826866e-08[/C][/ROW]
[ROW][C]117[/C][C]0.999999935637437[/C][C]1.28725126316464e-07[/C][C]6.4362563158232e-08[/C][/ROW]
[ROW][C]118[/C][C]0.999999892462406[/C][C]2.15075188190387e-07[/C][C]1.07537594095194e-07[/C][/ROW]
[ROW][C]119[/C][C]0.99999996373054[/C][C]7.2538918193019e-08[/C][C]3.62694590965095e-08[/C][/ROW]
[ROW][C]120[/C][C]0.999999931626833[/C][C]1.36746334747369e-07[/C][C]6.83731673736845e-08[/C][/ROW]
[ROW][C]121[/C][C]0.999999882088175[/C][C]2.35823650551688e-07[/C][C]1.17911825275844e-07[/C][/ROW]
[ROW][C]122[/C][C]0.999999900111774[/C][C]1.99776451327027e-07[/C][C]9.98882256635137e-08[/C][/ROW]
[ROW][C]123[/C][C]0.999999854478245[/C][C]2.9104351034864e-07[/C][C]1.4552175517432e-07[/C][/ROW]
[ROW][C]124[/C][C]0.999999754406186[/C][C]4.91187627107736e-07[/C][C]2.45593813553868e-07[/C][/ROW]
[ROW][C]125[/C][C]0.999999689305401[/C][C]6.21389197234052e-07[/C][C]3.10694598617026e-07[/C][/ROW]
[ROW][C]126[/C][C]0.999999731292217[/C][C]5.37415566800641e-07[/C][C]2.68707783400321e-07[/C][/ROW]
[ROW][C]127[/C][C]0.999999708056164[/C][C]5.83887672688143e-07[/C][C]2.91943836344071e-07[/C][/ROW]
[ROW][C]128[/C][C]0.99999938587899[/C][C]1.22824201960716e-06[/C][C]6.14121009803579e-07[/C][/ROW]
[ROW][C]129[/C][C]0.999999340195207[/C][C]1.31960958535396e-06[/C][C]6.59804792676978e-07[/C][/ROW]
[ROW][C]130[/C][C]0.999999623472626[/C][C]7.53054748393356e-07[/C][C]3.76527374196678e-07[/C][/ROW]
[ROW][C]131[/C][C]0.99999945956558[/C][C]1.08086883894312e-06[/C][C]5.40434419471558e-07[/C][/ROW]
[ROW][C]132[/C][C]0.999999724605976[/C][C]5.50788048806152e-07[/C][C]2.75394024403076e-07[/C][/ROW]
[ROW][C]133[/C][C]0.999999555418345[/C][C]8.89163310493937e-07[/C][C]4.44581655246969e-07[/C][/ROW]
[ROW][C]134[/C][C]0.999999024678994[/C][C]1.95064201267678e-06[/C][C]9.75321006338392e-07[/C][/ROW]
[ROW][C]135[/C][C]0.999999852046412[/C][C]2.95907176136891e-07[/C][C]1.47953588068446e-07[/C][/ROW]
[ROW][C]136[/C][C]0.999999745314665[/C][C]5.09370670359953e-07[/C][C]2.54685335179976e-07[/C][/ROW]
[ROW][C]137[/C][C]0.999999530654957[/C][C]9.38690085546629e-07[/C][C]4.69345042773314e-07[/C][/ROW]
[ROW][C]138[/C][C]0.999999000535231[/C][C]1.99892953720059e-06[/C][C]9.99464768600295e-07[/C][/ROW]
[ROW][C]139[/C][C]0.999999999912473[/C][C]1.75054763166218e-10[/C][C]8.7527381583109e-11[/C][/ROW]
[ROW][C]140[/C][C]0.999999999761693[/C][C]4.76613468924103e-10[/C][C]2.38306734462052e-10[/C][/ROW]
[ROW][C]141[/C][C]0.999999999321294[/C][C]1.35741130583611e-09[/C][C]6.78705652918053e-10[/C][/ROW]
[ROW][C]142[/C][C]0.99999999731994[/C][C]5.3601211624497e-09[/C][C]2.68006058122485e-09[/C][/ROW]
[ROW][C]143[/C][C]0.999999997610133[/C][C]4.77973364568857e-09[/C][C]2.38986682284428e-09[/C][/ROW]
[ROW][C]144[/C][C]0.999999998028813[/C][C]3.94237313887645e-09[/C][C]1.97118656943823e-09[/C][/ROW]
[ROW][C]145[/C][C]0.999999999619799[/C][C]7.60402104953372e-10[/C][C]3.80201052476686e-10[/C][/ROW]
[ROW][C]146[/C][C]0.999999997534593[/C][C]4.93081349158951e-09[/C][C]2.46540674579475e-09[/C][/ROW]
[ROW][C]147[/C][C]0.999999983582701[/C][C]3.28345976938677e-08[/C][C]1.64172988469339e-08[/C][/ROW]
[ROW][C]148[/C][C]0.999999958011136[/C][C]8.3977727652817e-08[/C][C]4.19888638264085e-08[/C][/ROW]
[ROW][C]149[/C][C]0.999999810483034[/C][C]3.79033931485133e-07[/C][C]1.89516965742567e-07[/C][/ROW]
[ROW][C]150[/C][C]0.99999996313476[/C][C]7.37304790315753e-08[/C][C]3.68652395157877e-08[/C][/ROW]
[ROW][C]151[/C][C]0.999999984347178[/C][C]3.1305644094324e-08[/C][C]1.5652822047162e-08[/C][/ROW]
[ROW][C]152[/C][C]0.999999999999966[/C][C]6.8460977993347e-14[/C][C]3.42304889966735e-14[/C][/ROW]
[ROW][C]153[/C][C]0.999999999996047[/C][C]7.90558385747638e-12[/C][C]3.95279192873819e-12[/C][/ROW]
[ROW][C]154[/C][C]0.99999999957632[/C][C]8.473589432404e-10[/C][C]4.236794716202e-10[/C][/ROW]
[ROW][C]155[/C][C]0.999999958357203[/C][C]8.32855942084815e-08[/C][C]4.16427971042408e-08[/C][/ROW]
[ROW][C]156[/C][C]0.999996310316418[/C][C]7.379367163672e-06[/C][C]3.689683581836e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
80.1946895649963440.3893791299926870.805310435003656
90.2404161668140290.4808323336280590.75958383318597
100.1834666735593880.3669333471187770.816533326440612
110.1704616361210870.3409232722421740.829538363878913
120.1277275482370320.2554550964740640.872272451762968
130.1412391930644150.282478386128830.858760806935585
140.1502214414466420.3004428828932840.849778558553358
150.1141916264320030.2283832528640070.885808373567997
160.1088433679443920.2176867358887840.891156632055608
170.1469409994629220.2938819989258440.853059000537078
180.2465017475429610.4930034950859220.753498252457039
190.4012923796359650.802584759271930.598707620364035
200.458746552714940.917493105429880.54125344728506
210.5407380611997750.9185238776004510.459261938800225
220.4773678149774850.954735629954970.522632185022515
230.5502709060113840.8994581879772320.449729093988616
240.6229695588744940.7540608822510130.377030441125506
250.6915884205188740.6168231589622520.308411579481126
260.7542173152840920.4915653694318170.245782684715908
270.7944508824708980.4110982350582040.205549117529102
280.8167407292370430.3665185415259140.183259270762957
290.8766318091891230.2467363816217540.123368190810877
300.9081667619009260.1836664761981490.0918332380990744
310.9162485817421370.1675028365157270.0837514182578633
320.9098713352337550.1802573295324890.0901286647662446
330.9067722148967550.1864555702064910.0932277851032453
340.9138899885796580.1722200228406840.0861100114203418
350.9212217617892050.1575564764215910.0787782382107953
360.9424337819768070.1151324360463860.0575662180231928
370.9410725080188270.1178549839623460.0589274919811729
380.940123967572850.1197520648543010.0598760324271505
390.9403067813866820.1193864372266360.059693218613318
400.9545916038212830.09081679235743390.0454083961787169
410.9610883270386230.07782334592275320.0389116729613766
420.9793157445794720.04136851084105580.0206842554205279
430.981115775572180.03776844885563820.0188842244278191
440.984464632253150.03107073549370030.0155353677468502
450.9889862666166130.0220274667667740.011013733383387
460.995436528468050.009126943063900890.00456347153195044
470.9982111860356180.003577627928764760.00178881396438238
480.9987562575945860.00248748481082850.00124374240541425
490.9991588953020250.001682209395950460.000841104697975231
500.9994635478053730.001072904389254150.000536452194627075
510.9996593947517990.0006812104964025740.000340605248201287
520.9997298706202560.0005402587594885120.000270129379744256
530.9997423484609720.000515303078055430.000257651539027715
540.9997972898751850.0004054202496304350.000202710124815217
550.9998241659680430.0003516680639141960.000175834031957098
560.9998274268162130.0003451463675738460.000172573183786923
570.9998554948025450.000289010394909980.00014450519745499
580.9998638365735570.000272326852886890.000136163426443445
590.9998913034019320.0002173931961353930.000108696598067696
600.9999166174452780.0001667651094431928.33825547215961e-05
610.9999428301633350.0001143396733298765.71698366649382e-05
620.999964713058467.05738830809327e-053.52869415404664e-05
630.9999774248985064.51502029870444e-052.25751014935222e-05
640.9999780716473834.38567052333907e-052.19283526166953e-05
650.9999779744044774.4051191046917e-052.20255955234585e-05
660.9999818078845953.63842308091382e-051.81921154045691e-05
670.9999839408462393.21183075224047e-051.60591537612024e-05
680.9999850972661652.98054676702532e-051.49027338351266e-05
690.9999869833791572.60332416864141e-051.30166208432071e-05
700.9999890502993922.18994012164667e-051.09497006082333e-05
710.9999905573948031.88852103930162e-059.4426051965081e-06
720.9999933124966951.33750066102149e-056.68750330510744e-06
730.9999965138867356.97222653029453e-063.48611326514727e-06
740.9999965981204776.80375904651021e-063.40187952325511e-06
750.9999976757130914.64857381716466e-062.32428690858233e-06
760.9999978239879674.35202406554476e-062.17601203277238e-06
770.9999979153518584.16929628304943e-062.08464814152471e-06
780.999997820571064.35885788006158e-062.17942894003079e-06
790.999997571262374.85747525776282e-062.42873762888141e-06
800.9999977992505054.40149899013105e-062.20074949506553e-06
810.9999988413352272.31732954595224e-061.15866477297612e-06
820.9999986307781392.73844372253703e-061.36922186126852e-06
830.9999984772577233.04548455317129e-061.52274227658565e-06
840.9999984181435143.16371297201265e-061.58185648600633e-06
850.9999987182069782.56358604328498e-061.28179302164249e-06
860.9999993805380161.23892396825549e-066.19461984127743e-07
870.9999992364041481.52719170462379e-067.63595852311893e-07
880.9999993553175211.28936495769484e-066.44682478847422e-07
890.9999991935809391.61283812251102e-068.0641906125551e-07
900.9999992201400951.55971980926966e-067.79859904634832e-07
910.9999990433284231.91334315454419e-069.56671577272096e-07
920.9999986277127792.74457444187018e-061.37228722093509e-06
930.999999292616941.41476612134866e-067.07383060674332e-07
940.9999989017587782.19648244293128e-061.09824122146564e-06
950.9999987393812042.52123759159727e-061.26061879579864e-06
960.9999979399897554.12002048923884e-062.06001024461942e-06
970.9999972914294445.41714111242889e-062.70857055621445e-06
980.999997920926344.15814731991134e-062.07907365995567e-06
990.999996676211386.6475772389777e-063.32378861948885e-06
1000.9999966405791466.71884170805395e-063.35942085402697e-06
1010.999996075244147.84951172016046e-063.92475586008023e-06
1020.9999952354123779.52917524610037e-064.76458762305019e-06
1030.9999939608252321.20783495367284e-056.03917476836422e-06
1040.9999957229394268.5541211489058e-064.2770605744529e-06
1050.999994261931921.14761361595143e-055.73806807975716e-06
1060.999993435068441.3129863118003e-056.56493155900152e-06
1070.9999977648174774.47036504671597e-062.23518252335798e-06
1080.9999970128130875.97437382511691e-062.98718691255846e-06
1090.9999982307372783.53852544331712e-061.76926272165856e-06
1100.9999991266861371.74662772665759e-068.73313863328795e-07
1110.9999987504224242.49915515281635e-061.24957757640817e-06
1120.9999995312965549.37406891902838e-074.68703445951419e-07
1130.9999997488457895.02308422405256e-072.51154211202628e-07
1140.9999997074433815.85113237340878e-072.92556618670439e-07
1150.9999997379361435.24127713130404e-072.62063856565202e-07
1160.99999991826091.63478198765373e-078.17390993826866e-08
1170.9999999356374371.28725126316464e-076.4362563158232e-08
1180.9999998924624062.15075188190387e-071.07537594095194e-07
1190.999999963730547.2538918193019e-083.62694590965095e-08
1200.9999999316268331.36746334747369e-076.83731673736845e-08
1210.9999998820881752.35823650551688e-071.17911825275844e-07
1220.9999999001117741.99776451327027e-079.98882256635137e-08
1230.9999998544782452.9104351034864e-071.4552175517432e-07
1240.9999997544061864.91187627107736e-072.45593813553868e-07
1250.9999996893054016.21389197234052e-073.10694598617026e-07
1260.9999997312922175.37415566800641e-072.68707783400321e-07
1270.9999997080561645.83887672688143e-072.91943836344071e-07
1280.999999385878991.22824201960716e-066.14121009803579e-07
1290.9999993401952071.31960958535396e-066.59804792676978e-07
1300.9999996234726267.53054748393356e-073.76527374196678e-07
1310.999999459565581.08086883894312e-065.40434419471558e-07
1320.9999997246059765.50788048806152e-072.75394024403076e-07
1330.9999995554183458.89163310493937e-074.44581655246969e-07
1340.9999990246789941.95064201267678e-069.75321006338392e-07
1350.9999998520464122.95907176136891e-071.47953588068446e-07
1360.9999997453146655.09370670359953e-072.54685335179976e-07
1370.9999995306549579.38690085546629e-074.69345042773314e-07
1380.9999990005352311.99892953720059e-069.99464768600295e-07
1390.9999999999124731.75054763166218e-108.7527381583109e-11
1400.9999999997616934.76613468924103e-102.38306734462052e-10
1410.9999999993212941.35741130583611e-096.78705652918053e-10
1420.999999997319945.3601211624497e-092.68006058122485e-09
1430.9999999976101334.77973364568857e-092.38986682284428e-09
1440.9999999980288133.94237313887645e-091.97118656943823e-09
1450.9999999996197997.60402104953372e-103.80201052476686e-10
1460.9999999975345934.93081349158951e-092.46540674579475e-09
1470.9999999835827013.28345976938677e-081.64172988469339e-08
1480.9999999580111368.3977727652817e-084.19888638264085e-08
1490.9999998104830343.79033931485133e-071.89516965742567e-07
1500.999999963134767.37304790315753e-083.68652395157877e-08
1510.9999999843471783.1305644094324e-081.5652822047162e-08
1520.9999999999999666.8460977993347e-143.42304889966735e-14
1530.9999999999960477.90558385747638e-123.95279192873819e-12
1540.999999999576328.473589432404e-104.236794716202e-10
1550.9999999583572038.32855942084815e-084.16427971042408e-08
1560.9999963103164187.379367163672e-063.689683581836e-06







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1110.74496644295302NOK
5% type I error level1150.771812080536913NOK
10% type I error level1170.785234899328859NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 111 & 0.74496644295302 & NOK \tabularnewline
5% type I error level & 115 & 0.771812080536913 & NOK \tabularnewline
10% type I error level & 117 & 0.785234899328859 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145450&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]111[/C][C]0.74496644295302[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]115[/C][C]0.771812080536913[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]117[/C][C]0.785234899328859[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145450&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145450&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1110.74496644295302NOK
5% type I error level1150.771812080536913NOK
10% type I error level1170.785234899328859NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}