Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 21 Nov 2011 15:39:22 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/21/t132190804802jjhcy50r03d73.htm/, Retrieved Fri, 01 Nov 2024 00:37:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=145979, Retrieved Fri, 01 Nov 2024 00:37:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
-   PD    [Multiple Regression] [graph1] [2011-11-21 20:39:22] [888ed98a09d01be7e0be9dfdea403736] [Current]
-   P       [Multiple Regression] [graf1] [2011-11-21 20:51:07] [8fcdd1f5b88bf5ac5d2a0b8a91219b89]
-   P         [Multiple Regression] [graf2] [2011-11-21 21:37:33] [8fcdd1f5b88bf5ac5d2a0b8a91219b89]
- R  D        [Multiple Regression] [] [2011-12-16 13:48:26] [8fcdd1f5b88bf5ac5d2a0b8a91219b89]
-    D          [Multiple Regression] [] [2011-12-16 14:03:46] [8fcdd1f5b88bf5ac5d2a0b8a91219b89]
-  M            [Multiple Regression] [] [2011-12-16 14:05:00] [8fcdd1f5b88bf5ac5d2a0b8a91219b89]
-    D          [Multiple Regression] [] [2011-12-16 14:07:35] [8fcdd1f5b88bf5ac5d2a0b8a91219b89]
Feedback Forum

Post a new message
Dataseries X:
170588	95556	114468
86621	54565	88594
118522	63016	74151
152510	79774	77921
86206	31258	53212
37257	52491	34956
306055	91256	149703
32750	22807	6853
116502	77411	58907
130539	48821	67067
164604	52295	110563
128274	63262	58126
104367	50466	57113
193024	62932	77993
141574	38439	68091
254150	70817	124676
181110	105965	109522
198432	73795	75865
113853	82043	79746
159940	74349	77844
166822	82204	98681
286675	55709	105531
95297	37137	51428
108278	70780	65703
146342	55027	72562
146684	56699	81728
163569	65911	95580
162716	56316	98278
106888	26982	46629
188150	54628	115189
189401	96750	124865
129484	53009	59392
204030	64664	127818
68538	36990	17821
243625	85224	154076
167255	37048	64881
264528	59635	136506
122024	42051	66524
80964	26998	45988
209795	63717	107445
224911	55071	102772
115971	40001	46657
138191	54506	97563
81106	35838	36663
93125	50838	55369
307743	86997	77921
78800	33032	56968
158835	61704	77519
223590	117986	129805
131108	56733	72761
128734	55064	81278
24188	5950	15049
257677	84607	113935
65029	32551	25109
98066	31701	45824
173587	71170	89644
180042	101773	109011
197266	101653	134245
212120	81493	136692
141582	55901	50741
245107	109104	149510
206879	114425	147888
145696	36311	54987
173535	70027	74467
142064	73713	100033
117926	40671	85505
113461	89041	62426
145285	57231	82932
150999	68608	72002
91838	59155	65469
118807	55827	63572
69471	22618	23824
126630	58425	73831
145908	65724	63551
102896	56979	56756
190926	72369	81399
198797	79194	117881
112566	202316	70711
89318	44970	50495
120362	49319	53845
98791	36252	51390
283982	75741	104953
132798	38417	65983
137875	64102	76839
80953	56622	55792
109237	15430	25155
98724	72571	55291
226191	67271	84279
172071	43460	99692
118174	99501	59633
133561	28340	63249
152193	76013	82928
112004	37361	50000
169613	48204	69455
187483	76168	84068
130533	85168	76195
142339	125410	114634
201941	123328	139357
201744	83038	110044
247024	120087	155118
162502	91939	83061
182581	103646	127122
106351	29467	45653
43287	43750	19630
127493	34497	67229
127930	66477	86060
149006	71181	88003
187714	74482	95815
74112	174949	85499
94006	46765	27220
176625	90257	109882
141933	51370	72579
22938	1168	5841
125927	51360	68369
61857	25162	24610
91290	21067	30995
255100	58233	150662
21054	855	6622
174150	85903	93694
31414	14116	13155
189461	57637	111908
137544	94137	57550
77166	62147	16356
74567	62832	40174
38214	8773	13983
90961	63785	52316
194652	65196	99585
135261	73087	86271
248590	72631	131012
201748	86281	130274
256402	162365	159051
139144	56530	76506
76470	35606	49145
193518	70111	66398
280334	92046	127546
50999	63989	6802
254825	104911	99509
103239	43448	43106
168059	60029	108303
136709	38650	64167
78256	47261	8579
249232	73586	97811
152366	83042	84365
173260	37238	10901
197197	63958	91346
68388	78956	33660
139409	99518	93634
185366	111436	109348
0	0	0
14688	6023	7953
98	0	0
455	0	0
0	0	0
0	0	0
137885	42564	63538
185288	38885	108281
0	0	0
203	0	0
7199	1644	4245
46660	6179	21509
17547	3926	7670
73567	23238	10641
969	0	0
105477	49288	41243




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
TotalRFC[t] = + 27446.7032785528 -0.0382799281381194TotalCompen[t] + 1.56091369781817TotalCharac[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TotalRFC[t] =  +  27446.7032785528 -0.0382799281381194TotalCompen[t] +  1.56091369781817TotalCharac[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TotalRFC[t] =  +  27446.7032785528 -0.0382799281381194TotalCompen[t] +  1.56091369781817TotalCharac[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TotalRFC[t] = + 27446.7032785528 -0.0382799281381194TotalCompen[t] + 1.56091369781817TotalCharac[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)27446.70327855285653.2258734.85513e-061e-06
TotalCompen-0.03827992813811940.113614-0.33690.7366080.368304
TotalCharac1.560913697818170.09546716.350400

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 27446.7032785528 & 5653.225873 & 4.8551 & 3e-06 & 1e-06 \tabularnewline
TotalCompen & -0.0382799281381194 & 0.113614 & -0.3369 & 0.736608 & 0.368304 \tabularnewline
TotalCharac & 1.56091369781817 & 0.095467 & 16.3504 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]27446.7032785528[/C][C]5653.225873[/C][C]4.8551[/C][C]3e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]TotalCompen[/C][C]-0.0382799281381194[/C][C]0.113614[/C][C]-0.3369[/C][C]0.736608[/C][C]0.368304[/C][/ROW]
[ROW][C]TotalCharac[/C][C]1.56091369781817[/C][C]0.095467[/C][C]16.3504[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)27446.70327855285653.2258734.85513e-061e-06
TotalCompen-0.03827992813811940.113614-0.33690.7366080.368304
TotalCharac1.560913697818170.09546716.350400







Multiple Linear Regression - Regression Statistics
Multiple R0.878986552375793
R-squared0.772617359257483
Adjusted R-squared0.769792730179936
F-TEST (value)273.528784858543
F-TEST (DF numerator)2
F-TEST (DF denominator)161
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation33470.0151143258
Sum Squared Residuals180358947792.264

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.878986552375793 \tabularnewline
R-squared & 0.772617359257483 \tabularnewline
Adjusted R-squared & 0.769792730179936 \tabularnewline
F-TEST (value) & 273.528784858543 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 161 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 33470.0151143258 \tabularnewline
Sum Squared Residuals & 180358947792.264 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.878986552375793[/C][/ROW]
[ROW][C]R-squared[/C][C]0.772617359257483[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.769792730179936[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]273.528784858543[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]161[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]33470.0151143258[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]180358947792.264[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.878986552375793
R-squared0.772617359257483
Adjusted R-squared0.769792730179936
F-TEST (value)273.528784858543
F-TEST (DF numerator)2
F-TEST (DF denominator)161
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation33470.0151143258
Sum Squared Residuals180358947792.264







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1170588202463.495627237-31875.4956272367
286621163645.547144199-77024.5471441992
3118522140777.766933916-22255.7669339162
4152510146020.9165389526489.08346104793
586206109309.488973112-23103.4889731119
63725780000.6507915868-42743.6507915867
7306055257626.89346085448428.106539146
83275037270.5945286546-4520.59452865464
9116502116432.15895882869.8410411722237
10130539130263.637878493275.362121507145
11164604198024.15560844-33420.1556084401
12128274115754.70806405812519.291935942
13104367114663.332448624-10296.3324486236
14193024146778.01287489746245.9871251028
15141574132259.4357189899314.56428101139
16254150219344.30979677434805.6902032263
17181110194344.760705839-13234.7607058386
18198432143040.55366657655391.4463334243
19113853148782.726880525-34929.7268805248
20159940146108.39479436913831.6052056306
21166822178332.464680282-11510.4646802816
22286675190038.95020635696636.0497936445
2395297106299.77123868-11002.7712386803
24108278127293.962652684-19015.9626526839
25146342138603.2934139797738.70658602147
26146684152846.624328333-6162.62432833293
27163569174115.766172502-10546.7661725019
28162716178694.407239701-15978.4072397005
2910688899197.67907309357690.3209269065
30188150205155.635302201-17005.6353022007
31189401218646.609109255-29245.6091092555
32129484118123.30890869611360.691091304
33204030224484.237033152-20454.2370331522
346853853847.771745541414690.2282544586
35243625264683.673587942-21058.673587942
36167255127302.15012903239952.8498709676
37264528238237.96499840326290.0350015969
38122024129675.216854073-7651.21685407266
398096498196.5209139418-17232.5209139418
40209795192719.99335944917075.0066405505
41224911185756.81190822739154.1880917727
4211597198743.018272202217227.9817277978
43138191177647.640615691-39456.6406156905
448110683302.6061170464-2196.60611704644
4593125111926.858826361-18801.8588263613
46307743145744.42061801161998.57938199
4778800115104.3722296-36304.3722295999
48158835146085.14753388512749.852466115
49223590225544.610222536-1954.61022253615
50131108138848.609682441-7740.60968244071
51128734152206.800846821-23472.8008468206
522418850709.1279445966-26521.1279445966
53257677202050.65555948455626.3444405159
546502965393.6353762453-364.635376245316
559806697760.5005654661305.499434533915
56173587164648.8683201758938.13167982516
57180042193707.603265008-13665.6032650085
58197266233100.293107129-35834.2931071287
59212120237691.572276954-25571.5722769543
60141582104509.13895669637072.8610433045
61245107256642.416959766-11535.4169597659
62206879253906.927444282-47027.9274442819
63145696111886.68230985733809.3176901428
64173535141002.6350862532532.3649137496
65142064180767.854869553-38703.8548695526
66117926159355.74605319-41429.7460531899
67113461121479.818697204-8018.81869720359
68145285154705.599498737-9420.59949873653
69150999137209.30203915713789.6979608434
7091838127373.713012-35535.7130120001
71118807124540.055328083-5733.05532808269
726947163768.09580074495702.9041992551
73126630140454.017700696-13824.0177006965
74145908124128.41969164621779.5803083545
75102896113856.769086539-10960.7690865389
76190926151733.23724782639192.7627521736
77198797208417.230262086-9620.23026208622
78112566130075.829823782-17509.8298237817
7989318104543.59208151-15225.5920815101
80120362109606.17356172810755.8264382718
8198791106274.334254565-7483.33425456543
82283982188369.91856855495612.0814314462
83132798128969.8718024073828.12819759305
84137875144931.930951693-7056.93095169341
8580953112365.714216188-31412.7142161875
8610923766120.828055997743116.1719440023
8798724110973.169879706-12249.1698797058
88226191156423.81977119169767.1802288091
89172071181393.665964559-9322.66596455907
90118174116719.7786908731454.22130912729
91133561125088.080588428472.9194115801
92152193153980.382233655-1787.3822336551
93112004104062.2117742937941.78822570699
94169613134014.71850454435598.2814954561
95187483155753.89046030631729.1095396936
96130533143120.297564141-12587.2975641409
97142339201579.798326439-59240.7983264393
98201941240249.966487981-38308.9664879815
99201744196037.2015685225706.79843147771
100247024264975.592526389-17951.5925263893
101162502153578.3376199378923.66238006276
102182581221905.612940791-39324.6129407906
10310635197579.10168259978771.89831740026
1044328756412.6923106808-13125.6923106808
105127493131064.82758819-3571.82758818982
106127930159234.201329947-31304.2013299467
107149006162086.987862846-13080.9878628457
108187714174154.48362741713559.5163725827
10974112154206.228380473-80094.2283804727
1109400668144.613293784225861.3867062158
111176625195507.990748247-18882.9907482467
112141933138769.8186440433163.18135595746
1132293836519.2892314434-13581.2892314434
114125927132198.754775509-6271.75477550943
1156185764897.5898300466-3040.58983004661
1169129075020.780096341216269.2199036588
117255100260387.927763967-5287.92776396673
1182105437750.3444469466-16696.3444469466
119174150170406.590615083743.40938492049
1203141447440.1635077531-16026.1635077531
121189461199919.093155892-10458.0931558917
122137544113673.7289928523870.2710071497
1237716650598.025026067126567.9749739329
1247456787749.6457299256-13182.6457299256
1253821448937.1297055886-10723.1297055886
12690961106665.779077318-15704.7790773182
127194652180394.59568088214257.4043191176
128135261159310.523795193-24049.5237951934
129248590229164.81919650719425.1808034929
130201748227490.343868432-25742.3438684319
131256402269496.267298085-13094.2672980847
132139144144702.002306182-5558.00230618179
13376470102794.811836541-26324.8118365409
134193518128404.40694459265113.593055408
135280334223011.48751506857322.5124849323
1365099935614.543929481915384.4560705181
137254825178755.67889384376069.3211061572
13810323993068.262818957810170.7371810422
139168059194200.433687151-26141.4336871508
140136709126126.33330391310582.666696087
1417825639028.634208399239227.3657916008
142249232177304.36618387471927.6338161259
143152366155954.345602537-3588.34560253697
14417326043036.7555344614130223.244465539
145197197167581.61827559329615.3817244065
1466838876964.6283410391-8576.62834103907
147139409169791.75457161-30382.7545716099
148185366193863.732235575-8497.73223557455
149027446.7032785528-27446.7032785528
1501468839630.0899101248-24942.0899101248
1519827446.7032785528-27348.7032785528
15245527446.7032785528-26991.7032785528
153027446.7032785528-27446.7032785528
154027446.7032785528-27446.7032785528
155137885124994.69094925312890.3090507472
156185288194975.484386351-9687.48438635123
157027446.7032785528-27446.7032785528
15820327446.7032785528-27243.7032785528
159719934009.8497239319-26810.8497239319
1604666060783.8643289584-14123.8643289584
1611754739268.6243429479-21721.6243429479
1627356743166.836966962330400.1630330377
16396927446.7032785528-26477.7032785528
16410547789936.725819595915540.274180404

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 170588 & 202463.495627237 & -31875.4956272367 \tabularnewline
2 & 86621 & 163645.547144199 & -77024.5471441992 \tabularnewline
3 & 118522 & 140777.766933916 & -22255.7669339162 \tabularnewline
4 & 152510 & 146020.916538952 & 6489.08346104793 \tabularnewline
5 & 86206 & 109309.488973112 & -23103.4889731119 \tabularnewline
6 & 37257 & 80000.6507915868 & -42743.6507915867 \tabularnewline
7 & 306055 & 257626.893460854 & 48428.106539146 \tabularnewline
8 & 32750 & 37270.5945286546 & -4520.59452865464 \tabularnewline
9 & 116502 & 116432.158958828 & 69.8410411722237 \tabularnewline
10 & 130539 & 130263.637878493 & 275.362121507145 \tabularnewline
11 & 164604 & 198024.15560844 & -33420.1556084401 \tabularnewline
12 & 128274 & 115754.708064058 & 12519.291935942 \tabularnewline
13 & 104367 & 114663.332448624 & -10296.3324486236 \tabularnewline
14 & 193024 & 146778.012874897 & 46245.9871251028 \tabularnewline
15 & 141574 & 132259.435718989 & 9314.56428101139 \tabularnewline
16 & 254150 & 219344.309796774 & 34805.6902032263 \tabularnewline
17 & 181110 & 194344.760705839 & -13234.7607058386 \tabularnewline
18 & 198432 & 143040.553666576 & 55391.4463334243 \tabularnewline
19 & 113853 & 148782.726880525 & -34929.7268805248 \tabularnewline
20 & 159940 & 146108.394794369 & 13831.6052056306 \tabularnewline
21 & 166822 & 178332.464680282 & -11510.4646802816 \tabularnewline
22 & 286675 & 190038.950206356 & 96636.0497936445 \tabularnewline
23 & 95297 & 106299.77123868 & -11002.7712386803 \tabularnewline
24 & 108278 & 127293.962652684 & -19015.9626526839 \tabularnewline
25 & 146342 & 138603.293413979 & 7738.70658602147 \tabularnewline
26 & 146684 & 152846.624328333 & -6162.62432833293 \tabularnewline
27 & 163569 & 174115.766172502 & -10546.7661725019 \tabularnewline
28 & 162716 & 178694.407239701 & -15978.4072397005 \tabularnewline
29 & 106888 & 99197.6790730935 & 7690.3209269065 \tabularnewline
30 & 188150 & 205155.635302201 & -17005.6353022007 \tabularnewline
31 & 189401 & 218646.609109255 & -29245.6091092555 \tabularnewline
32 & 129484 & 118123.308908696 & 11360.691091304 \tabularnewline
33 & 204030 & 224484.237033152 & -20454.2370331522 \tabularnewline
34 & 68538 & 53847.7717455414 & 14690.2282544586 \tabularnewline
35 & 243625 & 264683.673587942 & -21058.673587942 \tabularnewline
36 & 167255 & 127302.150129032 & 39952.8498709676 \tabularnewline
37 & 264528 & 238237.964998403 & 26290.0350015969 \tabularnewline
38 & 122024 & 129675.216854073 & -7651.21685407266 \tabularnewline
39 & 80964 & 98196.5209139418 & -17232.5209139418 \tabularnewline
40 & 209795 & 192719.993359449 & 17075.0066405505 \tabularnewline
41 & 224911 & 185756.811908227 & 39154.1880917727 \tabularnewline
42 & 115971 & 98743.0182722022 & 17227.9817277978 \tabularnewline
43 & 138191 & 177647.640615691 & -39456.6406156905 \tabularnewline
44 & 81106 & 83302.6061170464 & -2196.60611704644 \tabularnewline
45 & 93125 & 111926.858826361 & -18801.8588263613 \tabularnewline
46 & 307743 & 145744.42061801 & 161998.57938199 \tabularnewline
47 & 78800 & 115104.3722296 & -36304.3722295999 \tabularnewline
48 & 158835 & 146085.147533885 & 12749.852466115 \tabularnewline
49 & 223590 & 225544.610222536 & -1954.61022253615 \tabularnewline
50 & 131108 & 138848.609682441 & -7740.60968244071 \tabularnewline
51 & 128734 & 152206.800846821 & -23472.8008468206 \tabularnewline
52 & 24188 & 50709.1279445966 & -26521.1279445966 \tabularnewline
53 & 257677 & 202050.655559484 & 55626.3444405159 \tabularnewline
54 & 65029 & 65393.6353762453 & -364.635376245316 \tabularnewline
55 & 98066 & 97760.5005654661 & 305.499434533915 \tabularnewline
56 & 173587 & 164648.868320175 & 8938.13167982516 \tabularnewline
57 & 180042 & 193707.603265008 & -13665.6032650085 \tabularnewline
58 & 197266 & 233100.293107129 & -35834.2931071287 \tabularnewline
59 & 212120 & 237691.572276954 & -25571.5722769543 \tabularnewline
60 & 141582 & 104509.138956696 & 37072.8610433045 \tabularnewline
61 & 245107 & 256642.416959766 & -11535.4169597659 \tabularnewline
62 & 206879 & 253906.927444282 & -47027.9274442819 \tabularnewline
63 & 145696 & 111886.682309857 & 33809.3176901428 \tabularnewline
64 & 173535 & 141002.63508625 & 32532.3649137496 \tabularnewline
65 & 142064 & 180767.854869553 & -38703.8548695526 \tabularnewline
66 & 117926 & 159355.74605319 & -41429.7460531899 \tabularnewline
67 & 113461 & 121479.818697204 & -8018.81869720359 \tabularnewline
68 & 145285 & 154705.599498737 & -9420.59949873653 \tabularnewline
69 & 150999 & 137209.302039157 & 13789.6979608434 \tabularnewline
70 & 91838 & 127373.713012 & -35535.7130120001 \tabularnewline
71 & 118807 & 124540.055328083 & -5733.05532808269 \tabularnewline
72 & 69471 & 63768.0958007449 & 5702.9041992551 \tabularnewline
73 & 126630 & 140454.017700696 & -13824.0177006965 \tabularnewline
74 & 145908 & 124128.419691646 & 21779.5803083545 \tabularnewline
75 & 102896 & 113856.769086539 & -10960.7690865389 \tabularnewline
76 & 190926 & 151733.237247826 & 39192.7627521736 \tabularnewline
77 & 198797 & 208417.230262086 & -9620.23026208622 \tabularnewline
78 & 112566 & 130075.829823782 & -17509.8298237817 \tabularnewline
79 & 89318 & 104543.59208151 & -15225.5920815101 \tabularnewline
80 & 120362 & 109606.173561728 & 10755.8264382718 \tabularnewline
81 & 98791 & 106274.334254565 & -7483.33425456543 \tabularnewline
82 & 283982 & 188369.918568554 & 95612.0814314462 \tabularnewline
83 & 132798 & 128969.871802407 & 3828.12819759305 \tabularnewline
84 & 137875 & 144931.930951693 & -7056.93095169341 \tabularnewline
85 & 80953 & 112365.714216188 & -31412.7142161875 \tabularnewline
86 & 109237 & 66120.8280559977 & 43116.1719440023 \tabularnewline
87 & 98724 & 110973.169879706 & -12249.1698797058 \tabularnewline
88 & 226191 & 156423.819771191 & 69767.1802288091 \tabularnewline
89 & 172071 & 181393.665964559 & -9322.66596455907 \tabularnewline
90 & 118174 & 116719.778690873 & 1454.22130912729 \tabularnewline
91 & 133561 & 125088.08058842 & 8472.9194115801 \tabularnewline
92 & 152193 & 153980.382233655 & -1787.3822336551 \tabularnewline
93 & 112004 & 104062.211774293 & 7941.78822570699 \tabularnewline
94 & 169613 & 134014.718504544 & 35598.2814954561 \tabularnewline
95 & 187483 & 155753.890460306 & 31729.1095396936 \tabularnewline
96 & 130533 & 143120.297564141 & -12587.2975641409 \tabularnewline
97 & 142339 & 201579.798326439 & -59240.7983264393 \tabularnewline
98 & 201941 & 240249.966487981 & -38308.9664879815 \tabularnewline
99 & 201744 & 196037.201568522 & 5706.79843147771 \tabularnewline
100 & 247024 & 264975.592526389 & -17951.5925263893 \tabularnewline
101 & 162502 & 153578.337619937 & 8923.66238006276 \tabularnewline
102 & 182581 & 221905.612940791 & -39324.6129407906 \tabularnewline
103 & 106351 & 97579.1016825997 & 8771.89831740026 \tabularnewline
104 & 43287 & 56412.6923106808 & -13125.6923106808 \tabularnewline
105 & 127493 & 131064.82758819 & -3571.82758818982 \tabularnewline
106 & 127930 & 159234.201329947 & -31304.2013299467 \tabularnewline
107 & 149006 & 162086.987862846 & -13080.9878628457 \tabularnewline
108 & 187714 & 174154.483627417 & 13559.5163725827 \tabularnewline
109 & 74112 & 154206.228380473 & -80094.2283804727 \tabularnewline
110 & 94006 & 68144.6132937842 & 25861.3867062158 \tabularnewline
111 & 176625 & 195507.990748247 & -18882.9907482467 \tabularnewline
112 & 141933 & 138769.818644043 & 3163.18135595746 \tabularnewline
113 & 22938 & 36519.2892314434 & -13581.2892314434 \tabularnewline
114 & 125927 & 132198.754775509 & -6271.75477550943 \tabularnewline
115 & 61857 & 64897.5898300466 & -3040.58983004661 \tabularnewline
116 & 91290 & 75020.7800963412 & 16269.2199036588 \tabularnewline
117 & 255100 & 260387.927763967 & -5287.92776396673 \tabularnewline
118 & 21054 & 37750.3444469466 & -16696.3444469466 \tabularnewline
119 & 174150 & 170406.59061508 & 3743.40938492049 \tabularnewline
120 & 31414 & 47440.1635077531 & -16026.1635077531 \tabularnewline
121 & 189461 & 199919.093155892 & -10458.0931558917 \tabularnewline
122 & 137544 & 113673.72899285 & 23870.2710071497 \tabularnewline
123 & 77166 & 50598.0250260671 & 26567.9749739329 \tabularnewline
124 & 74567 & 87749.6457299256 & -13182.6457299256 \tabularnewline
125 & 38214 & 48937.1297055886 & -10723.1297055886 \tabularnewline
126 & 90961 & 106665.779077318 & -15704.7790773182 \tabularnewline
127 & 194652 & 180394.595680882 & 14257.4043191176 \tabularnewline
128 & 135261 & 159310.523795193 & -24049.5237951934 \tabularnewline
129 & 248590 & 229164.819196507 & 19425.1808034929 \tabularnewline
130 & 201748 & 227490.343868432 & -25742.3438684319 \tabularnewline
131 & 256402 & 269496.267298085 & -13094.2672980847 \tabularnewline
132 & 139144 & 144702.002306182 & -5558.00230618179 \tabularnewline
133 & 76470 & 102794.811836541 & -26324.8118365409 \tabularnewline
134 & 193518 & 128404.406944592 & 65113.593055408 \tabularnewline
135 & 280334 & 223011.487515068 & 57322.5124849323 \tabularnewline
136 & 50999 & 35614.5439294819 & 15384.4560705181 \tabularnewline
137 & 254825 & 178755.678893843 & 76069.3211061572 \tabularnewline
138 & 103239 & 93068.2628189578 & 10170.7371810422 \tabularnewline
139 & 168059 & 194200.433687151 & -26141.4336871508 \tabularnewline
140 & 136709 & 126126.333303913 & 10582.666696087 \tabularnewline
141 & 78256 & 39028.6342083992 & 39227.3657916008 \tabularnewline
142 & 249232 & 177304.366183874 & 71927.6338161259 \tabularnewline
143 & 152366 & 155954.345602537 & -3588.34560253697 \tabularnewline
144 & 173260 & 43036.7555344614 & 130223.244465539 \tabularnewline
145 & 197197 & 167581.618275593 & 29615.3817244065 \tabularnewline
146 & 68388 & 76964.6283410391 & -8576.62834103907 \tabularnewline
147 & 139409 & 169791.75457161 & -30382.7545716099 \tabularnewline
148 & 185366 & 193863.732235575 & -8497.73223557455 \tabularnewline
149 & 0 & 27446.7032785528 & -27446.7032785528 \tabularnewline
150 & 14688 & 39630.0899101248 & -24942.0899101248 \tabularnewline
151 & 98 & 27446.7032785528 & -27348.7032785528 \tabularnewline
152 & 455 & 27446.7032785528 & -26991.7032785528 \tabularnewline
153 & 0 & 27446.7032785528 & -27446.7032785528 \tabularnewline
154 & 0 & 27446.7032785528 & -27446.7032785528 \tabularnewline
155 & 137885 & 124994.690949253 & 12890.3090507472 \tabularnewline
156 & 185288 & 194975.484386351 & -9687.48438635123 \tabularnewline
157 & 0 & 27446.7032785528 & -27446.7032785528 \tabularnewline
158 & 203 & 27446.7032785528 & -27243.7032785528 \tabularnewline
159 & 7199 & 34009.8497239319 & -26810.8497239319 \tabularnewline
160 & 46660 & 60783.8643289584 & -14123.8643289584 \tabularnewline
161 & 17547 & 39268.6243429479 & -21721.6243429479 \tabularnewline
162 & 73567 & 43166.8369669623 & 30400.1630330377 \tabularnewline
163 & 969 & 27446.7032785528 & -26477.7032785528 \tabularnewline
164 & 105477 & 89936.7258195959 & 15540.274180404 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]170588[/C][C]202463.495627237[/C][C]-31875.4956272367[/C][/ROW]
[ROW][C]2[/C][C]86621[/C][C]163645.547144199[/C][C]-77024.5471441992[/C][/ROW]
[ROW][C]3[/C][C]118522[/C][C]140777.766933916[/C][C]-22255.7669339162[/C][/ROW]
[ROW][C]4[/C][C]152510[/C][C]146020.916538952[/C][C]6489.08346104793[/C][/ROW]
[ROW][C]5[/C][C]86206[/C][C]109309.488973112[/C][C]-23103.4889731119[/C][/ROW]
[ROW][C]6[/C][C]37257[/C][C]80000.6507915868[/C][C]-42743.6507915867[/C][/ROW]
[ROW][C]7[/C][C]306055[/C][C]257626.893460854[/C][C]48428.106539146[/C][/ROW]
[ROW][C]8[/C][C]32750[/C][C]37270.5945286546[/C][C]-4520.59452865464[/C][/ROW]
[ROW][C]9[/C][C]116502[/C][C]116432.158958828[/C][C]69.8410411722237[/C][/ROW]
[ROW][C]10[/C][C]130539[/C][C]130263.637878493[/C][C]275.362121507145[/C][/ROW]
[ROW][C]11[/C][C]164604[/C][C]198024.15560844[/C][C]-33420.1556084401[/C][/ROW]
[ROW][C]12[/C][C]128274[/C][C]115754.708064058[/C][C]12519.291935942[/C][/ROW]
[ROW][C]13[/C][C]104367[/C][C]114663.332448624[/C][C]-10296.3324486236[/C][/ROW]
[ROW][C]14[/C][C]193024[/C][C]146778.012874897[/C][C]46245.9871251028[/C][/ROW]
[ROW][C]15[/C][C]141574[/C][C]132259.435718989[/C][C]9314.56428101139[/C][/ROW]
[ROW][C]16[/C][C]254150[/C][C]219344.309796774[/C][C]34805.6902032263[/C][/ROW]
[ROW][C]17[/C][C]181110[/C][C]194344.760705839[/C][C]-13234.7607058386[/C][/ROW]
[ROW][C]18[/C][C]198432[/C][C]143040.553666576[/C][C]55391.4463334243[/C][/ROW]
[ROW][C]19[/C][C]113853[/C][C]148782.726880525[/C][C]-34929.7268805248[/C][/ROW]
[ROW][C]20[/C][C]159940[/C][C]146108.394794369[/C][C]13831.6052056306[/C][/ROW]
[ROW][C]21[/C][C]166822[/C][C]178332.464680282[/C][C]-11510.4646802816[/C][/ROW]
[ROW][C]22[/C][C]286675[/C][C]190038.950206356[/C][C]96636.0497936445[/C][/ROW]
[ROW][C]23[/C][C]95297[/C][C]106299.77123868[/C][C]-11002.7712386803[/C][/ROW]
[ROW][C]24[/C][C]108278[/C][C]127293.962652684[/C][C]-19015.9626526839[/C][/ROW]
[ROW][C]25[/C][C]146342[/C][C]138603.293413979[/C][C]7738.70658602147[/C][/ROW]
[ROW][C]26[/C][C]146684[/C][C]152846.624328333[/C][C]-6162.62432833293[/C][/ROW]
[ROW][C]27[/C][C]163569[/C][C]174115.766172502[/C][C]-10546.7661725019[/C][/ROW]
[ROW][C]28[/C][C]162716[/C][C]178694.407239701[/C][C]-15978.4072397005[/C][/ROW]
[ROW][C]29[/C][C]106888[/C][C]99197.6790730935[/C][C]7690.3209269065[/C][/ROW]
[ROW][C]30[/C][C]188150[/C][C]205155.635302201[/C][C]-17005.6353022007[/C][/ROW]
[ROW][C]31[/C][C]189401[/C][C]218646.609109255[/C][C]-29245.6091092555[/C][/ROW]
[ROW][C]32[/C][C]129484[/C][C]118123.308908696[/C][C]11360.691091304[/C][/ROW]
[ROW][C]33[/C][C]204030[/C][C]224484.237033152[/C][C]-20454.2370331522[/C][/ROW]
[ROW][C]34[/C][C]68538[/C][C]53847.7717455414[/C][C]14690.2282544586[/C][/ROW]
[ROW][C]35[/C][C]243625[/C][C]264683.673587942[/C][C]-21058.673587942[/C][/ROW]
[ROW][C]36[/C][C]167255[/C][C]127302.150129032[/C][C]39952.8498709676[/C][/ROW]
[ROW][C]37[/C][C]264528[/C][C]238237.964998403[/C][C]26290.0350015969[/C][/ROW]
[ROW][C]38[/C][C]122024[/C][C]129675.216854073[/C][C]-7651.21685407266[/C][/ROW]
[ROW][C]39[/C][C]80964[/C][C]98196.5209139418[/C][C]-17232.5209139418[/C][/ROW]
[ROW][C]40[/C][C]209795[/C][C]192719.993359449[/C][C]17075.0066405505[/C][/ROW]
[ROW][C]41[/C][C]224911[/C][C]185756.811908227[/C][C]39154.1880917727[/C][/ROW]
[ROW][C]42[/C][C]115971[/C][C]98743.0182722022[/C][C]17227.9817277978[/C][/ROW]
[ROW][C]43[/C][C]138191[/C][C]177647.640615691[/C][C]-39456.6406156905[/C][/ROW]
[ROW][C]44[/C][C]81106[/C][C]83302.6061170464[/C][C]-2196.60611704644[/C][/ROW]
[ROW][C]45[/C][C]93125[/C][C]111926.858826361[/C][C]-18801.8588263613[/C][/ROW]
[ROW][C]46[/C][C]307743[/C][C]145744.42061801[/C][C]161998.57938199[/C][/ROW]
[ROW][C]47[/C][C]78800[/C][C]115104.3722296[/C][C]-36304.3722295999[/C][/ROW]
[ROW][C]48[/C][C]158835[/C][C]146085.147533885[/C][C]12749.852466115[/C][/ROW]
[ROW][C]49[/C][C]223590[/C][C]225544.610222536[/C][C]-1954.61022253615[/C][/ROW]
[ROW][C]50[/C][C]131108[/C][C]138848.609682441[/C][C]-7740.60968244071[/C][/ROW]
[ROW][C]51[/C][C]128734[/C][C]152206.800846821[/C][C]-23472.8008468206[/C][/ROW]
[ROW][C]52[/C][C]24188[/C][C]50709.1279445966[/C][C]-26521.1279445966[/C][/ROW]
[ROW][C]53[/C][C]257677[/C][C]202050.655559484[/C][C]55626.3444405159[/C][/ROW]
[ROW][C]54[/C][C]65029[/C][C]65393.6353762453[/C][C]-364.635376245316[/C][/ROW]
[ROW][C]55[/C][C]98066[/C][C]97760.5005654661[/C][C]305.499434533915[/C][/ROW]
[ROW][C]56[/C][C]173587[/C][C]164648.868320175[/C][C]8938.13167982516[/C][/ROW]
[ROW][C]57[/C][C]180042[/C][C]193707.603265008[/C][C]-13665.6032650085[/C][/ROW]
[ROW][C]58[/C][C]197266[/C][C]233100.293107129[/C][C]-35834.2931071287[/C][/ROW]
[ROW][C]59[/C][C]212120[/C][C]237691.572276954[/C][C]-25571.5722769543[/C][/ROW]
[ROW][C]60[/C][C]141582[/C][C]104509.138956696[/C][C]37072.8610433045[/C][/ROW]
[ROW][C]61[/C][C]245107[/C][C]256642.416959766[/C][C]-11535.4169597659[/C][/ROW]
[ROW][C]62[/C][C]206879[/C][C]253906.927444282[/C][C]-47027.9274442819[/C][/ROW]
[ROW][C]63[/C][C]145696[/C][C]111886.682309857[/C][C]33809.3176901428[/C][/ROW]
[ROW][C]64[/C][C]173535[/C][C]141002.63508625[/C][C]32532.3649137496[/C][/ROW]
[ROW][C]65[/C][C]142064[/C][C]180767.854869553[/C][C]-38703.8548695526[/C][/ROW]
[ROW][C]66[/C][C]117926[/C][C]159355.74605319[/C][C]-41429.7460531899[/C][/ROW]
[ROW][C]67[/C][C]113461[/C][C]121479.818697204[/C][C]-8018.81869720359[/C][/ROW]
[ROW][C]68[/C][C]145285[/C][C]154705.599498737[/C][C]-9420.59949873653[/C][/ROW]
[ROW][C]69[/C][C]150999[/C][C]137209.302039157[/C][C]13789.6979608434[/C][/ROW]
[ROW][C]70[/C][C]91838[/C][C]127373.713012[/C][C]-35535.7130120001[/C][/ROW]
[ROW][C]71[/C][C]118807[/C][C]124540.055328083[/C][C]-5733.05532808269[/C][/ROW]
[ROW][C]72[/C][C]69471[/C][C]63768.0958007449[/C][C]5702.9041992551[/C][/ROW]
[ROW][C]73[/C][C]126630[/C][C]140454.017700696[/C][C]-13824.0177006965[/C][/ROW]
[ROW][C]74[/C][C]145908[/C][C]124128.419691646[/C][C]21779.5803083545[/C][/ROW]
[ROW][C]75[/C][C]102896[/C][C]113856.769086539[/C][C]-10960.7690865389[/C][/ROW]
[ROW][C]76[/C][C]190926[/C][C]151733.237247826[/C][C]39192.7627521736[/C][/ROW]
[ROW][C]77[/C][C]198797[/C][C]208417.230262086[/C][C]-9620.23026208622[/C][/ROW]
[ROW][C]78[/C][C]112566[/C][C]130075.829823782[/C][C]-17509.8298237817[/C][/ROW]
[ROW][C]79[/C][C]89318[/C][C]104543.59208151[/C][C]-15225.5920815101[/C][/ROW]
[ROW][C]80[/C][C]120362[/C][C]109606.173561728[/C][C]10755.8264382718[/C][/ROW]
[ROW][C]81[/C][C]98791[/C][C]106274.334254565[/C][C]-7483.33425456543[/C][/ROW]
[ROW][C]82[/C][C]283982[/C][C]188369.918568554[/C][C]95612.0814314462[/C][/ROW]
[ROW][C]83[/C][C]132798[/C][C]128969.871802407[/C][C]3828.12819759305[/C][/ROW]
[ROW][C]84[/C][C]137875[/C][C]144931.930951693[/C][C]-7056.93095169341[/C][/ROW]
[ROW][C]85[/C][C]80953[/C][C]112365.714216188[/C][C]-31412.7142161875[/C][/ROW]
[ROW][C]86[/C][C]109237[/C][C]66120.8280559977[/C][C]43116.1719440023[/C][/ROW]
[ROW][C]87[/C][C]98724[/C][C]110973.169879706[/C][C]-12249.1698797058[/C][/ROW]
[ROW][C]88[/C][C]226191[/C][C]156423.819771191[/C][C]69767.1802288091[/C][/ROW]
[ROW][C]89[/C][C]172071[/C][C]181393.665964559[/C][C]-9322.66596455907[/C][/ROW]
[ROW][C]90[/C][C]118174[/C][C]116719.778690873[/C][C]1454.22130912729[/C][/ROW]
[ROW][C]91[/C][C]133561[/C][C]125088.08058842[/C][C]8472.9194115801[/C][/ROW]
[ROW][C]92[/C][C]152193[/C][C]153980.382233655[/C][C]-1787.3822336551[/C][/ROW]
[ROW][C]93[/C][C]112004[/C][C]104062.211774293[/C][C]7941.78822570699[/C][/ROW]
[ROW][C]94[/C][C]169613[/C][C]134014.718504544[/C][C]35598.2814954561[/C][/ROW]
[ROW][C]95[/C][C]187483[/C][C]155753.890460306[/C][C]31729.1095396936[/C][/ROW]
[ROW][C]96[/C][C]130533[/C][C]143120.297564141[/C][C]-12587.2975641409[/C][/ROW]
[ROW][C]97[/C][C]142339[/C][C]201579.798326439[/C][C]-59240.7983264393[/C][/ROW]
[ROW][C]98[/C][C]201941[/C][C]240249.966487981[/C][C]-38308.9664879815[/C][/ROW]
[ROW][C]99[/C][C]201744[/C][C]196037.201568522[/C][C]5706.79843147771[/C][/ROW]
[ROW][C]100[/C][C]247024[/C][C]264975.592526389[/C][C]-17951.5925263893[/C][/ROW]
[ROW][C]101[/C][C]162502[/C][C]153578.337619937[/C][C]8923.66238006276[/C][/ROW]
[ROW][C]102[/C][C]182581[/C][C]221905.612940791[/C][C]-39324.6129407906[/C][/ROW]
[ROW][C]103[/C][C]106351[/C][C]97579.1016825997[/C][C]8771.89831740026[/C][/ROW]
[ROW][C]104[/C][C]43287[/C][C]56412.6923106808[/C][C]-13125.6923106808[/C][/ROW]
[ROW][C]105[/C][C]127493[/C][C]131064.82758819[/C][C]-3571.82758818982[/C][/ROW]
[ROW][C]106[/C][C]127930[/C][C]159234.201329947[/C][C]-31304.2013299467[/C][/ROW]
[ROW][C]107[/C][C]149006[/C][C]162086.987862846[/C][C]-13080.9878628457[/C][/ROW]
[ROW][C]108[/C][C]187714[/C][C]174154.483627417[/C][C]13559.5163725827[/C][/ROW]
[ROW][C]109[/C][C]74112[/C][C]154206.228380473[/C][C]-80094.2283804727[/C][/ROW]
[ROW][C]110[/C][C]94006[/C][C]68144.6132937842[/C][C]25861.3867062158[/C][/ROW]
[ROW][C]111[/C][C]176625[/C][C]195507.990748247[/C][C]-18882.9907482467[/C][/ROW]
[ROW][C]112[/C][C]141933[/C][C]138769.818644043[/C][C]3163.18135595746[/C][/ROW]
[ROW][C]113[/C][C]22938[/C][C]36519.2892314434[/C][C]-13581.2892314434[/C][/ROW]
[ROW][C]114[/C][C]125927[/C][C]132198.754775509[/C][C]-6271.75477550943[/C][/ROW]
[ROW][C]115[/C][C]61857[/C][C]64897.5898300466[/C][C]-3040.58983004661[/C][/ROW]
[ROW][C]116[/C][C]91290[/C][C]75020.7800963412[/C][C]16269.2199036588[/C][/ROW]
[ROW][C]117[/C][C]255100[/C][C]260387.927763967[/C][C]-5287.92776396673[/C][/ROW]
[ROW][C]118[/C][C]21054[/C][C]37750.3444469466[/C][C]-16696.3444469466[/C][/ROW]
[ROW][C]119[/C][C]174150[/C][C]170406.59061508[/C][C]3743.40938492049[/C][/ROW]
[ROW][C]120[/C][C]31414[/C][C]47440.1635077531[/C][C]-16026.1635077531[/C][/ROW]
[ROW][C]121[/C][C]189461[/C][C]199919.093155892[/C][C]-10458.0931558917[/C][/ROW]
[ROW][C]122[/C][C]137544[/C][C]113673.72899285[/C][C]23870.2710071497[/C][/ROW]
[ROW][C]123[/C][C]77166[/C][C]50598.0250260671[/C][C]26567.9749739329[/C][/ROW]
[ROW][C]124[/C][C]74567[/C][C]87749.6457299256[/C][C]-13182.6457299256[/C][/ROW]
[ROW][C]125[/C][C]38214[/C][C]48937.1297055886[/C][C]-10723.1297055886[/C][/ROW]
[ROW][C]126[/C][C]90961[/C][C]106665.779077318[/C][C]-15704.7790773182[/C][/ROW]
[ROW][C]127[/C][C]194652[/C][C]180394.595680882[/C][C]14257.4043191176[/C][/ROW]
[ROW][C]128[/C][C]135261[/C][C]159310.523795193[/C][C]-24049.5237951934[/C][/ROW]
[ROW][C]129[/C][C]248590[/C][C]229164.819196507[/C][C]19425.1808034929[/C][/ROW]
[ROW][C]130[/C][C]201748[/C][C]227490.343868432[/C][C]-25742.3438684319[/C][/ROW]
[ROW][C]131[/C][C]256402[/C][C]269496.267298085[/C][C]-13094.2672980847[/C][/ROW]
[ROW][C]132[/C][C]139144[/C][C]144702.002306182[/C][C]-5558.00230618179[/C][/ROW]
[ROW][C]133[/C][C]76470[/C][C]102794.811836541[/C][C]-26324.8118365409[/C][/ROW]
[ROW][C]134[/C][C]193518[/C][C]128404.406944592[/C][C]65113.593055408[/C][/ROW]
[ROW][C]135[/C][C]280334[/C][C]223011.487515068[/C][C]57322.5124849323[/C][/ROW]
[ROW][C]136[/C][C]50999[/C][C]35614.5439294819[/C][C]15384.4560705181[/C][/ROW]
[ROW][C]137[/C][C]254825[/C][C]178755.678893843[/C][C]76069.3211061572[/C][/ROW]
[ROW][C]138[/C][C]103239[/C][C]93068.2628189578[/C][C]10170.7371810422[/C][/ROW]
[ROW][C]139[/C][C]168059[/C][C]194200.433687151[/C][C]-26141.4336871508[/C][/ROW]
[ROW][C]140[/C][C]136709[/C][C]126126.333303913[/C][C]10582.666696087[/C][/ROW]
[ROW][C]141[/C][C]78256[/C][C]39028.6342083992[/C][C]39227.3657916008[/C][/ROW]
[ROW][C]142[/C][C]249232[/C][C]177304.366183874[/C][C]71927.6338161259[/C][/ROW]
[ROW][C]143[/C][C]152366[/C][C]155954.345602537[/C][C]-3588.34560253697[/C][/ROW]
[ROW][C]144[/C][C]173260[/C][C]43036.7555344614[/C][C]130223.244465539[/C][/ROW]
[ROW][C]145[/C][C]197197[/C][C]167581.618275593[/C][C]29615.3817244065[/C][/ROW]
[ROW][C]146[/C][C]68388[/C][C]76964.6283410391[/C][C]-8576.62834103907[/C][/ROW]
[ROW][C]147[/C][C]139409[/C][C]169791.75457161[/C][C]-30382.7545716099[/C][/ROW]
[ROW][C]148[/C][C]185366[/C][C]193863.732235575[/C][C]-8497.73223557455[/C][/ROW]
[ROW][C]149[/C][C]0[/C][C]27446.7032785528[/C][C]-27446.7032785528[/C][/ROW]
[ROW][C]150[/C][C]14688[/C][C]39630.0899101248[/C][C]-24942.0899101248[/C][/ROW]
[ROW][C]151[/C][C]98[/C][C]27446.7032785528[/C][C]-27348.7032785528[/C][/ROW]
[ROW][C]152[/C][C]455[/C][C]27446.7032785528[/C][C]-26991.7032785528[/C][/ROW]
[ROW][C]153[/C][C]0[/C][C]27446.7032785528[/C][C]-27446.7032785528[/C][/ROW]
[ROW][C]154[/C][C]0[/C][C]27446.7032785528[/C][C]-27446.7032785528[/C][/ROW]
[ROW][C]155[/C][C]137885[/C][C]124994.690949253[/C][C]12890.3090507472[/C][/ROW]
[ROW][C]156[/C][C]185288[/C][C]194975.484386351[/C][C]-9687.48438635123[/C][/ROW]
[ROW][C]157[/C][C]0[/C][C]27446.7032785528[/C][C]-27446.7032785528[/C][/ROW]
[ROW][C]158[/C][C]203[/C][C]27446.7032785528[/C][C]-27243.7032785528[/C][/ROW]
[ROW][C]159[/C][C]7199[/C][C]34009.8497239319[/C][C]-26810.8497239319[/C][/ROW]
[ROW][C]160[/C][C]46660[/C][C]60783.8643289584[/C][C]-14123.8643289584[/C][/ROW]
[ROW][C]161[/C][C]17547[/C][C]39268.6243429479[/C][C]-21721.6243429479[/C][/ROW]
[ROW][C]162[/C][C]73567[/C][C]43166.8369669623[/C][C]30400.1630330377[/C][/ROW]
[ROW][C]163[/C][C]969[/C][C]27446.7032785528[/C][C]-26477.7032785528[/C][/ROW]
[ROW][C]164[/C][C]105477[/C][C]89936.7258195959[/C][C]15540.274180404[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1170588202463.495627237-31875.4956272367
286621163645.547144199-77024.5471441992
3118522140777.766933916-22255.7669339162
4152510146020.9165389526489.08346104793
586206109309.488973112-23103.4889731119
63725780000.6507915868-42743.6507915867
7306055257626.89346085448428.106539146
83275037270.5945286546-4520.59452865464
9116502116432.15895882869.8410411722237
10130539130263.637878493275.362121507145
11164604198024.15560844-33420.1556084401
12128274115754.70806405812519.291935942
13104367114663.332448624-10296.3324486236
14193024146778.01287489746245.9871251028
15141574132259.4357189899314.56428101139
16254150219344.30979677434805.6902032263
17181110194344.760705839-13234.7607058386
18198432143040.55366657655391.4463334243
19113853148782.726880525-34929.7268805248
20159940146108.39479436913831.6052056306
21166822178332.464680282-11510.4646802816
22286675190038.95020635696636.0497936445
2395297106299.77123868-11002.7712386803
24108278127293.962652684-19015.9626526839
25146342138603.2934139797738.70658602147
26146684152846.624328333-6162.62432833293
27163569174115.766172502-10546.7661725019
28162716178694.407239701-15978.4072397005
2910688899197.67907309357690.3209269065
30188150205155.635302201-17005.6353022007
31189401218646.609109255-29245.6091092555
32129484118123.30890869611360.691091304
33204030224484.237033152-20454.2370331522
346853853847.771745541414690.2282544586
35243625264683.673587942-21058.673587942
36167255127302.15012903239952.8498709676
37264528238237.96499840326290.0350015969
38122024129675.216854073-7651.21685407266
398096498196.5209139418-17232.5209139418
40209795192719.99335944917075.0066405505
41224911185756.81190822739154.1880917727
4211597198743.018272202217227.9817277978
43138191177647.640615691-39456.6406156905
448110683302.6061170464-2196.60611704644
4593125111926.858826361-18801.8588263613
46307743145744.42061801161998.57938199
4778800115104.3722296-36304.3722295999
48158835146085.14753388512749.852466115
49223590225544.610222536-1954.61022253615
50131108138848.609682441-7740.60968244071
51128734152206.800846821-23472.8008468206
522418850709.1279445966-26521.1279445966
53257677202050.65555948455626.3444405159
546502965393.6353762453-364.635376245316
559806697760.5005654661305.499434533915
56173587164648.8683201758938.13167982516
57180042193707.603265008-13665.6032650085
58197266233100.293107129-35834.2931071287
59212120237691.572276954-25571.5722769543
60141582104509.13895669637072.8610433045
61245107256642.416959766-11535.4169597659
62206879253906.927444282-47027.9274442819
63145696111886.68230985733809.3176901428
64173535141002.6350862532532.3649137496
65142064180767.854869553-38703.8548695526
66117926159355.74605319-41429.7460531899
67113461121479.818697204-8018.81869720359
68145285154705.599498737-9420.59949873653
69150999137209.30203915713789.6979608434
7091838127373.713012-35535.7130120001
71118807124540.055328083-5733.05532808269
726947163768.09580074495702.9041992551
73126630140454.017700696-13824.0177006965
74145908124128.41969164621779.5803083545
75102896113856.769086539-10960.7690865389
76190926151733.23724782639192.7627521736
77198797208417.230262086-9620.23026208622
78112566130075.829823782-17509.8298237817
7989318104543.59208151-15225.5920815101
80120362109606.17356172810755.8264382718
8198791106274.334254565-7483.33425456543
82283982188369.91856855495612.0814314462
83132798128969.8718024073828.12819759305
84137875144931.930951693-7056.93095169341
8580953112365.714216188-31412.7142161875
8610923766120.828055997743116.1719440023
8798724110973.169879706-12249.1698797058
88226191156423.81977119169767.1802288091
89172071181393.665964559-9322.66596455907
90118174116719.7786908731454.22130912729
91133561125088.080588428472.9194115801
92152193153980.382233655-1787.3822336551
93112004104062.2117742937941.78822570699
94169613134014.71850454435598.2814954561
95187483155753.89046030631729.1095396936
96130533143120.297564141-12587.2975641409
97142339201579.798326439-59240.7983264393
98201941240249.966487981-38308.9664879815
99201744196037.2015685225706.79843147771
100247024264975.592526389-17951.5925263893
101162502153578.3376199378923.66238006276
102182581221905.612940791-39324.6129407906
10310635197579.10168259978771.89831740026
1044328756412.6923106808-13125.6923106808
105127493131064.82758819-3571.82758818982
106127930159234.201329947-31304.2013299467
107149006162086.987862846-13080.9878628457
108187714174154.48362741713559.5163725827
10974112154206.228380473-80094.2283804727
1109400668144.613293784225861.3867062158
111176625195507.990748247-18882.9907482467
112141933138769.8186440433163.18135595746
1132293836519.2892314434-13581.2892314434
114125927132198.754775509-6271.75477550943
1156185764897.5898300466-3040.58983004661
1169129075020.780096341216269.2199036588
117255100260387.927763967-5287.92776396673
1182105437750.3444469466-16696.3444469466
119174150170406.590615083743.40938492049
1203141447440.1635077531-16026.1635077531
121189461199919.093155892-10458.0931558917
122137544113673.7289928523870.2710071497
1237716650598.025026067126567.9749739329
1247456787749.6457299256-13182.6457299256
1253821448937.1297055886-10723.1297055886
12690961106665.779077318-15704.7790773182
127194652180394.59568088214257.4043191176
128135261159310.523795193-24049.5237951934
129248590229164.81919650719425.1808034929
130201748227490.343868432-25742.3438684319
131256402269496.267298085-13094.2672980847
132139144144702.002306182-5558.00230618179
13376470102794.811836541-26324.8118365409
134193518128404.40694459265113.593055408
135280334223011.48751506857322.5124849323
1365099935614.543929481915384.4560705181
137254825178755.67889384376069.3211061572
13810323993068.262818957810170.7371810422
139168059194200.433687151-26141.4336871508
140136709126126.33330391310582.666696087
1417825639028.634208399239227.3657916008
142249232177304.36618387471927.6338161259
143152366155954.345602537-3588.34560253697
14417326043036.7555344614130223.244465539
145197197167581.61827559329615.3817244065
1466838876964.6283410391-8576.62834103907
147139409169791.75457161-30382.7545716099
148185366193863.732235575-8497.73223557455
149027446.7032785528-27446.7032785528
1501468839630.0899101248-24942.0899101248
1519827446.7032785528-27348.7032785528
15245527446.7032785528-26991.7032785528
153027446.7032785528-27446.7032785528
154027446.7032785528-27446.7032785528
155137885124994.69094925312890.3090507472
156185288194975.484386351-9687.48438635123
157027446.7032785528-27446.7032785528
15820327446.7032785528-27243.7032785528
159719934009.8497239319-26810.8497239319
1604666060783.8643289584-14123.8643289584
1611754739268.6243429479-21721.6243429479
1627356743166.836966962330400.1630330377
16396927446.7032785528-26477.7032785528
16410547789936.725819595915540.274180404







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.5373268697522330.9253462604955340.462673130247767
70.7810086669514690.4379826660970620.218991333048531
80.8174105287456120.3651789425087750.182589471254388
90.7399446655240970.5201106689518060.260055334475903
100.6728807650506640.6542384698986710.327119234949336
110.596183422873310.8076331542533790.403816577126689
120.5489925748940590.9020148502118820.451007425105941
130.4565524155429270.9131048310858550.543447584457073
140.6147335825593020.7705328348813950.385266417440698
150.5811586890343540.8376826219312930.418841310965646
160.582194781127420.835610437745160.41780521887258
170.5291351588574920.9417296822850150.470864841142508
180.6654187510992490.6691624978015020.334581248900751
190.6670022291723550.6659955416552910.332997770827645
200.6125379526424060.7749240947151890.387462047357594
210.5521144871435150.8957710257129710.447885512856485
220.8705577102235380.2588845795529230.129442289776462
230.833766118383550.3324677632328990.16623388161645
240.7960910381480270.4078179237039460.203908961851973
250.7500664049189910.4998671901620180.249933595081009
260.7001444238921570.5997111522156850.299855576107843
270.6551593430323560.6896813139352880.344840656967644
280.6220776014082870.7558447971834250.377922398591713
290.5709490431119890.8581019137760230.429050956888011
300.5485119938115180.9029760123769640.451488006188482
310.5445328949418510.9109342101162990.455467105058149
320.4989107645778840.9978215291557670.501089235422116
330.4755003730432460.9510007460864920.524499626956754
340.4413569713154880.8827139426309770.558643028684512
350.4104866996712790.8209733993425570.589513300328721
360.4315824041063820.8631648082127640.568417595893618
370.4008129118293160.8016258236586320.599187088170684
380.3521251910971440.7042503821942870.647874808902856
390.3173951397143850.6347902794287710.682604860285615
400.2807185521377110.5614371042754220.719281447862289
410.2895359235458110.5790718470916230.710464076454189
420.257805132040610.515610264081220.74219486795939
430.2852429647261340.5704859294522680.714757035273866
440.242319810396930.484639620793860.75768018960307
450.2132777340719150.4265554681438290.786722265928085
460.970147585261310.059704829477380.02985241473869
470.9695714757283010.06085704854339790.0304285242716989
480.9612362332521290.07752753349574210.0387637667478711
490.9518267645822260.09634647083554810.048173235417774
500.939258276879750.1214834462404990.0607417231202497
510.9309042621444850.1381914757110290.0690957378555147
520.9204265331378420.1591469337243150.0795734668621577
530.940546216143630.1189075677127410.0594537838563704
540.9252829362184960.1494341275630080.0747170637815042
550.9074021518701050.1851956962597910.0925978481298954
560.8872336770357910.2255326459284170.112766322964209
570.8733364417888550.253327116422290.126663558211145
580.8831595376026940.2336809247946110.116840462397306
590.8735769221176270.2528461557647460.126423077882373
600.8760191534673130.2479616930653740.123980846532687
610.8556006864903370.2887986270193270.144399313509663
620.8819416200061790.2361167599876430.118058379993821
630.8816145090001240.2367709819997520.118385490999876
640.8775896750733280.2448206498533430.122410324926672
650.8847012043470510.2305975913058980.115298795652949
660.8930014355383580.2139971289232840.106998564461642
670.8737311790032770.2525376419934460.126268820996723
680.8505554788943950.2988890422112110.149444521105605
690.8263850699974360.3472298600051290.173614930002564
700.830741888326940.3385162233461210.16925811167306
710.8015694214796730.3968611570406530.198430578520327
720.7693430401104620.4613139197790760.230656959889538
730.7399422474984350.5201155050031310.260057752501565
740.7160277361461340.5679445277077320.283972263853866
750.6815229592755030.6369540814489940.318477040724497
760.6921431188220920.6157137623558150.307856881177908
770.6548983474106030.6902033051787930.345101652589397
780.6339897567763360.7320204864473280.366010243223664
790.6000104466842870.7999791066314260.399989553315713
800.5599505523936540.8800988952126920.440049447606346
810.5175210353564620.9649579292870760.482478964643538
820.7965520222898840.4068959554202320.203447977710116
830.7634999179655270.4730001640689460.236500082034473
840.7288551542792040.5422896914415930.271144845720796
850.7237277797953490.5525444404093030.276272220204651
860.7465170439961240.5069659120077520.253482956003876
870.7140491419330670.5719017161338650.285950858066933
880.8267616740439030.3464766519121950.173238325956097
890.7982312576643450.4035374846713110.201768742335655
900.7648111690146040.4703776619707910.235188830985396
910.7309312249479990.5381375501040020.269068775052001
920.6920677892659510.6158644214680980.307932210734049
930.6533261261065040.6933477477869930.346673873893496
940.6596941108721810.6806117782556390.340305889127819
950.6570877423700330.6858245152599340.342912257629967
960.6194627449948390.7610745100103210.380537255005161
970.7042760611549160.5914478776901690.295723938845084
980.7153483074692430.5693033850615140.284651692530757
990.6760668911194630.6478662177610740.323933108880537
1000.6463216010078790.7073567979842410.353678398992121
1010.6048283687798740.7903432624402510.395171631220126
1020.6251412096119870.7497175807760260.374858790388013
1030.5835021417571660.8329957164856680.416497858242834
1040.5451913437462920.9096173125074170.454808656253708
1050.4989506873007810.9979013746015620.501049312699219
1060.4950901242794520.9901802485589050.504909875720548
1070.4566695982370260.9133391964740510.543330401762974
1080.4157424570727990.8314849141455980.584257542927201
1090.7762085419343410.4475829161313180.223791458065659
1100.7543802474751750.4912395050496490.245619752524825
1110.7417706610220860.5164586779558280.258229338977914
1120.7006660093081350.5986679813837310.299333990691865
1130.6637673581682370.6724652836635260.336232641831763
1140.6198294906048360.7603410187903280.380170509395164
1150.5724460908498550.8551078183002910.427553909150145
1160.5420425810325050.9159148379349890.457957418967495
1170.494028908854210.988057817708420.50597109114579
1180.4530218134467690.9060436268935380.546978186553231
1190.4066488603844920.8132977207689840.593351139615508
1200.3662501814520750.732500362904150.633749818547925
1210.3215648861174410.6431297722348810.678435113882559
1220.2865549095401410.5731098190802830.713445090459859
1230.2544650392620190.5089300785240390.745534960737981
1240.2316817398503690.4633634797007380.768318260149631
1250.1960560281634010.3921120563268020.803943971836599
1260.1788314485233890.3576628970467790.821168551476611
1270.1504370214319950.300874042863990.849562978568005
1280.145157585965110.290315171930220.85484241403489
1290.1264263969204510.2528527938409020.873573603079549
1300.1207063968088020.2414127936176050.879293603191198
1310.1931908113556370.3863816227112740.806809188644363
1320.1620016463062170.3240032926124350.837998353693783
1330.1500907113277050.300181422655410.849909288672295
1340.1929804835277810.3859609670555610.807019516472219
1350.2179019546267220.4358039092534450.782098045373278
1360.1839982953885690.3679965907771380.816001704611431
1370.2491239553305910.4982479106611820.750876044669409
1380.2043361110268960.4086722220537920.795663888973104
1390.1815614103967380.3631228207934760.818438589603262
1400.1477892316054240.2955784632108470.852210768394576
1410.1380123554213410.2760247108426820.861987644578659
1420.2708299055685760.5416598111371520.729170094431424
1430.2210945374592830.4421890749185660.778905462540717
1440.9967536373836410.00649272523271830.00324636261635915
1450.9982743879945880.003451224010823230.00172561200541161
1460.9965128954965650.006974209006869250.00348710450343462
1470.998487984007590.003024031984820670.00151201599241033
1480.9999970040596025.99188079591746e-062.99594039795873e-06
1490.9999893641703562.12716592884022e-051.06358296442011e-05
1500.9999676306618946.47386762130141e-053.2369338106507e-05
1510.9998914111441390.0002171777117219180.000108588855860959
1520.9996460555547290.0007078888905421080.000353944445271054
1530.9989125249079610.002174950184077890.00108747509203894
1540.9968313736882070.006337252623585420.00316862631179271
1550.990473887748030.01905222450394030.00952611225197017
1560.9756467587214660.04870648255706880.0243532412785344
1570.9414183888795270.1171632222409460.058581611120473
1580.8711508917440020.2576982165119960.128849108255998

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 & 0.537326869752233 & 0.925346260495534 & 0.462673130247767 \tabularnewline
7 & 0.781008666951469 & 0.437982666097062 & 0.218991333048531 \tabularnewline
8 & 0.817410528745612 & 0.365178942508775 & 0.182589471254388 \tabularnewline
9 & 0.739944665524097 & 0.520110668951806 & 0.260055334475903 \tabularnewline
10 & 0.672880765050664 & 0.654238469898671 & 0.327119234949336 \tabularnewline
11 & 0.59618342287331 & 0.807633154253379 & 0.403816577126689 \tabularnewline
12 & 0.548992574894059 & 0.902014850211882 & 0.451007425105941 \tabularnewline
13 & 0.456552415542927 & 0.913104831085855 & 0.543447584457073 \tabularnewline
14 & 0.614733582559302 & 0.770532834881395 & 0.385266417440698 \tabularnewline
15 & 0.581158689034354 & 0.837682621931293 & 0.418841310965646 \tabularnewline
16 & 0.58219478112742 & 0.83561043774516 & 0.41780521887258 \tabularnewline
17 & 0.529135158857492 & 0.941729682285015 & 0.470864841142508 \tabularnewline
18 & 0.665418751099249 & 0.669162497801502 & 0.334581248900751 \tabularnewline
19 & 0.667002229172355 & 0.665995541655291 & 0.332997770827645 \tabularnewline
20 & 0.612537952642406 & 0.774924094715189 & 0.387462047357594 \tabularnewline
21 & 0.552114487143515 & 0.895771025712971 & 0.447885512856485 \tabularnewline
22 & 0.870557710223538 & 0.258884579552923 & 0.129442289776462 \tabularnewline
23 & 0.83376611838355 & 0.332467763232899 & 0.16623388161645 \tabularnewline
24 & 0.796091038148027 & 0.407817923703946 & 0.203908961851973 \tabularnewline
25 & 0.750066404918991 & 0.499867190162018 & 0.249933595081009 \tabularnewline
26 & 0.700144423892157 & 0.599711152215685 & 0.299855576107843 \tabularnewline
27 & 0.655159343032356 & 0.689681313935288 & 0.344840656967644 \tabularnewline
28 & 0.622077601408287 & 0.755844797183425 & 0.377922398591713 \tabularnewline
29 & 0.570949043111989 & 0.858101913776023 & 0.429050956888011 \tabularnewline
30 & 0.548511993811518 & 0.902976012376964 & 0.451488006188482 \tabularnewline
31 & 0.544532894941851 & 0.910934210116299 & 0.455467105058149 \tabularnewline
32 & 0.498910764577884 & 0.997821529155767 & 0.501089235422116 \tabularnewline
33 & 0.475500373043246 & 0.951000746086492 & 0.524499626956754 \tabularnewline
34 & 0.441356971315488 & 0.882713942630977 & 0.558643028684512 \tabularnewline
35 & 0.410486699671279 & 0.820973399342557 & 0.589513300328721 \tabularnewline
36 & 0.431582404106382 & 0.863164808212764 & 0.568417595893618 \tabularnewline
37 & 0.400812911829316 & 0.801625823658632 & 0.599187088170684 \tabularnewline
38 & 0.352125191097144 & 0.704250382194287 & 0.647874808902856 \tabularnewline
39 & 0.317395139714385 & 0.634790279428771 & 0.682604860285615 \tabularnewline
40 & 0.280718552137711 & 0.561437104275422 & 0.719281447862289 \tabularnewline
41 & 0.289535923545811 & 0.579071847091623 & 0.710464076454189 \tabularnewline
42 & 0.25780513204061 & 0.51561026408122 & 0.74219486795939 \tabularnewline
43 & 0.285242964726134 & 0.570485929452268 & 0.714757035273866 \tabularnewline
44 & 0.24231981039693 & 0.48463962079386 & 0.75768018960307 \tabularnewline
45 & 0.213277734071915 & 0.426555468143829 & 0.786722265928085 \tabularnewline
46 & 0.97014758526131 & 0.05970482947738 & 0.02985241473869 \tabularnewline
47 & 0.969571475728301 & 0.0608570485433979 & 0.0304285242716989 \tabularnewline
48 & 0.961236233252129 & 0.0775275334957421 & 0.0387637667478711 \tabularnewline
49 & 0.951826764582226 & 0.0963464708355481 & 0.048173235417774 \tabularnewline
50 & 0.93925827687975 & 0.121483446240499 & 0.0607417231202497 \tabularnewline
51 & 0.930904262144485 & 0.138191475711029 & 0.0690957378555147 \tabularnewline
52 & 0.920426533137842 & 0.159146933724315 & 0.0795734668621577 \tabularnewline
53 & 0.94054621614363 & 0.118907567712741 & 0.0594537838563704 \tabularnewline
54 & 0.925282936218496 & 0.149434127563008 & 0.0747170637815042 \tabularnewline
55 & 0.907402151870105 & 0.185195696259791 & 0.0925978481298954 \tabularnewline
56 & 0.887233677035791 & 0.225532645928417 & 0.112766322964209 \tabularnewline
57 & 0.873336441788855 & 0.25332711642229 & 0.126663558211145 \tabularnewline
58 & 0.883159537602694 & 0.233680924794611 & 0.116840462397306 \tabularnewline
59 & 0.873576922117627 & 0.252846155764746 & 0.126423077882373 \tabularnewline
60 & 0.876019153467313 & 0.247961693065374 & 0.123980846532687 \tabularnewline
61 & 0.855600686490337 & 0.288798627019327 & 0.144399313509663 \tabularnewline
62 & 0.881941620006179 & 0.236116759987643 & 0.118058379993821 \tabularnewline
63 & 0.881614509000124 & 0.236770981999752 & 0.118385490999876 \tabularnewline
64 & 0.877589675073328 & 0.244820649853343 & 0.122410324926672 \tabularnewline
65 & 0.884701204347051 & 0.230597591305898 & 0.115298795652949 \tabularnewline
66 & 0.893001435538358 & 0.213997128923284 & 0.106998564461642 \tabularnewline
67 & 0.873731179003277 & 0.252537641993446 & 0.126268820996723 \tabularnewline
68 & 0.850555478894395 & 0.298889042211211 & 0.149444521105605 \tabularnewline
69 & 0.826385069997436 & 0.347229860005129 & 0.173614930002564 \tabularnewline
70 & 0.83074188832694 & 0.338516223346121 & 0.16925811167306 \tabularnewline
71 & 0.801569421479673 & 0.396861157040653 & 0.198430578520327 \tabularnewline
72 & 0.769343040110462 & 0.461313919779076 & 0.230656959889538 \tabularnewline
73 & 0.739942247498435 & 0.520115505003131 & 0.260057752501565 \tabularnewline
74 & 0.716027736146134 & 0.567944527707732 & 0.283972263853866 \tabularnewline
75 & 0.681522959275503 & 0.636954081448994 & 0.318477040724497 \tabularnewline
76 & 0.692143118822092 & 0.615713762355815 & 0.307856881177908 \tabularnewline
77 & 0.654898347410603 & 0.690203305178793 & 0.345101652589397 \tabularnewline
78 & 0.633989756776336 & 0.732020486447328 & 0.366010243223664 \tabularnewline
79 & 0.600010446684287 & 0.799979106631426 & 0.399989553315713 \tabularnewline
80 & 0.559950552393654 & 0.880098895212692 & 0.440049447606346 \tabularnewline
81 & 0.517521035356462 & 0.964957929287076 & 0.482478964643538 \tabularnewline
82 & 0.796552022289884 & 0.406895955420232 & 0.203447977710116 \tabularnewline
83 & 0.763499917965527 & 0.473000164068946 & 0.236500082034473 \tabularnewline
84 & 0.728855154279204 & 0.542289691441593 & 0.271144845720796 \tabularnewline
85 & 0.723727779795349 & 0.552544440409303 & 0.276272220204651 \tabularnewline
86 & 0.746517043996124 & 0.506965912007752 & 0.253482956003876 \tabularnewline
87 & 0.714049141933067 & 0.571901716133865 & 0.285950858066933 \tabularnewline
88 & 0.826761674043903 & 0.346476651912195 & 0.173238325956097 \tabularnewline
89 & 0.798231257664345 & 0.403537484671311 & 0.201768742335655 \tabularnewline
90 & 0.764811169014604 & 0.470377661970791 & 0.235188830985396 \tabularnewline
91 & 0.730931224947999 & 0.538137550104002 & 0.269068775052001 \tabularnewline
92 & 0.692067789265951 & 0.615864421468098 & 0.307932210734049 \tabularnewline
93 & 0.653326126106504 & 0.693347747786993 & 0.346673873893496 \tabularnewline
94 & 0.659694110872181 & 0.680611778255639 & 0.340305889127819 \tabularnewline
95 & 0.657087742370033 & 0.685824515259934 & 0.342912257629967 \tabularnewline
96 & 0.619462744994839 & 0.761074510010321 & 0.380537255005161 \tabularnewline
97 & 0.704276061154916 & 0.591447877690169 & 0.295723938845084 \tabularnewline
98 & 0.715348307469243 & 0.569303385061514 & 0.284651692530757 \tabularnewline
99 & 0.676066891119463 & 0.647866217761074 & 0.323933108880537 \tabularnewline
100 & 0.646321601007879 & 0.707356797984241 & 0.353678398992121 \tabularnewline
101 & 0.604828368779874 & 0.790343262440251 & 0.395171631220126 \tabularnewline
102 & 0.625141209611987 & 0.749717580776026 & 0.374858790388013 \tabularnewline
103 & 0.583502141757166 & 0.832995716485668 & 0.416497858242834 \tabularnewline
104 & 0.545191343746292 & 0.909617312507417 & 0.454808656253708 \tabularnewline
105 & 0.498950687300781 & 0.997901374601562 & 0.501049312699219 \tabularnewline
106 & 0.495090124279452 & 0.990180248558905 & 0.504909875720548 \tabularnewline
107 & 0.456669598237026 & 0.913339196474051 & 0.543330401762974 \tabularnewline
108 & 0.415742457072799 & 0.831484914145598 & 0.584257542927201 \tabularnewline
109 & 0.776208541934341 & 0.447582916131318 & 0.223791458065659 \tabularnewline
110 & 0.754380247475175 & 0.491239505049649 & 0.245619752524825 \tabularnewline
111 & 0.741770661022086 & 0.516458677955828 & 0.258229338977914 \tabularnewline
112 & 0.700666009308135 & 0.598667981383731 & 0.299333990691865 \tabularnewline
113 & 0.663767358168237 & 0.672465283663526 & 0.336232641831763 \tabularnewline
114 & 0.619829490604836 & 0.760341018790328 & 0.380170509395164 \tabularnewline
115 & 0.572446090849855 & 0.855107818300291 & 0.427553909150145 \tabularnewline
116 & 0.542042581032505 & 0.915914837934989 & 0.457957418967495 \tabularnewline
117 & 0.49402890885421 & 0.98805781770842 & 0.50597109114579 \tabularnewline
118 & 0.453021813446769 & 0.906043626893538 & 0.546978186553231 \tabularnewline
119 & 0.406648860384492 & 0.813297720768984 & 0.593351139615508 \tabularnewline
120 & 0.366250181452075 & 0.73250036290415 & 0.633749818547925 \tabularnewline
121 & 0.321564886117441 & 0.643129772234881 & 0.678435113882559 \tabularnewline
122 & 0.286554909540141 & 0.573109819080283 & 0.713445090459859 \tabularnewline
123 & 0.254465039262019 & 0.508930078524039 & 0.745534960737981 \tabularnewline
124 & 0.231681739850369 & 0.463363479700738 & 0.768318260149631 \tabularnewline
125 & 0.196056028163401 & 0.392112056326802 & 0.803943971836599 \tabularnewline
126 & 0.178831448523389 & 0.357662897046779 & 0.821168551476611 \tabularnewline
127 & 0.150437021431995 & 0.30087404286399 & 0.849562978568005 \tabularnewline
128 & 0.14515758596511 & 0.29031517193022 & 0.85484241403489 \tabularnewline
129 & 0.126426396920451 & 0.252852793840902 & 0.873573603079549 \tabularnewline
130 & 0.120706396808802 & 0.241412793617605 & 0.879293603191198 \tabularnewline
131 & 0.193190811355637 & 0.386381622711274 & 0.806809188644363 \tabularnewline
132 & 0.162001646306217 & 0.324003292612435 & 0.837998353693783 \tabularnewline
133 & 0.150090711327705 & 0.30018142265541 & 0.849909288672295 \tabularnewline
134 & 0.192980483527781 & 0.385960967055561 & 0.807019516472219 \tabularnewline
135 & 0.217901954626722 & 0.435803909253445 & 0.782098045373278 \tabularnewline
136 & 0.183998295388569 & 0.367996590777138 & 0.816001704611431 \tabularnewline
137 & 0.249123955330591 & 0.498247910661182 & 0.750876044669409 \tabularnewline
138 & 0.204336111026896 & 0.408672222053792 & 0.795663888973104 \tabularnewline
139 & 0.181561410396738 & 0.363122820793476 & 0.818438589603262 \tabularnewline
140 & 0.147789231605424 & 0.295578463210847 & 0.852210768394576 \tabularnewline
141 & 0.138012355421341 & 0.276024710842682 & 0.861987644578659 \tabularnewline
142 & 0.270829905568576 & 0.541659811137152 & 0.729170094431424 \tabularnewline
143 & 0.221094537459283 & 0.442189074918566 & 0.778905462540717 \tabularnewline
144 & 0.996753637383641 & 0.0064927252327183 & 0.00324636261635915 \tabularnewline
145 & 0.998274387994588 & 0.00345122401082323 & 0.00172561200541161 \tabularnewline
146 & 0.996512895496565 & 0.00697420900686925 & 0.00348710450343462 \tabularnewline
147 & 0.99848798400759 & 0.00302403198482067 & 0.00151201599241033 \tabularnewline
148 & 0.999997004059602 & 5.99188079591746e-06 & 2.99594039795873e-06 \tabularnewline
149 & 0.999989364170356 & 2.12716592884022e-05 & 1.06358296442011e-05 \tabularnewline
150 & 0.999967630661894 & 6.47386762130141e-05 & 3.2369338106507e-05 \tabularnewline
151 & 0.999891411144139 & 0.000217177711721918 & 0.000108588855860959 \tabularnewline
152 & 0.999646055554729 & 0.000707888890542108 & 0.000353944445271054 \tabularnewline
153 & 0.998912524907961 & 0.00217495018407789 & 0.00108747509203894 \tabularnewline
154 & 0.996831373688207 & 0.00633725262358542 & 0.00316862631179271 \tabularnewline
155 & 0.99047388774803 & 0.0190522245039403 & 0.00952611225197017 \tabularnewline
156 & 0.975646758721466 & 0.0487064825570688 & 0.0243532412785344 \tabularnewline
157 & 0.941418388879527 & 0.117163222240946 & 0.058581611120473 \tabularnewline
158 & 0.871150891744002 & 0.257698216511996 & 0.128849108255998 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C]0.537326869752233[/C][C]0.925346260495534[/C][C]0.462673130247767[/C][/ROW]
[ROW][C]7[/C][C]0.781008666951469[/C][C]0.437982666097062[/C][C]0.218991333048531[/C][/ROW]
[ROW][C]8[/C][C]0.817410528745612[/C][C]0.365178942508775[/C][C]0.182589471254388[/C][/ROW]
[ROW][C]9[/C][C]0.739944665524097[/C][C]0.520110668951806[/C][C]0.260055334475903[/C][/ROW]
[ROW][C]10[/C][C]0.672880765050664[/C][C]0.654238469898671[/C][C]0.327119234949336[/C][/ROW]
[ROW][C]11[/C][C]0.59618342287331[/C][C]0.807633154253379[/C][C]0.403816577126689[/C][/ROW]
[ROW][C]12[/C][C]0.548992574894059[/C][C]0.902014850211882[/C][C]0.451007425105941[/C][/ROW]
[ROW][C]13[/C][C]0.456552415542927[/C][C]0.913104831085855[/C][C]0.543447584457073[/C][/ROW]
[ROW][C]14[/C][C]0.614733582559302[/C][C]0.770532834881395[/C][C]0.385266417440698[/C][/ROW]
[ROW][C]15[/C][C]0.581158689034354[/C][C]0.837682621931293[/C][C]0.418841310965646[/C][/ROW]
[ROW][C]16[/C][C]0.58219478112742[/C][C]0.83561043774516[/C][C]0.41780521887258[/C][/ROW]
[ROW][C]17[/C][C]0.529135158857492[/C][C]0.941729682285015[/C][C]0.470864841142508[/C][/ROW]
[ROW][C]18[/C][C]0.665418751099249[/C][C]0.669162497801502[/C][C]0.334581248900751[/C][/ROW]
[ROW][C]19[/C][C]0.667002229172355[/C][C]0.665995541655291[/C][C]0.332997770827645[/C][/ROW]
[ROW][C]20[/C][C]0.612537952642406[/C][C]0.774924094715189[/C][C]0.387462047357594[/C][/ROW]
[ROW][C]21[/C][C]0.552114487143515[/C][C]0.895771025712971[/C][C]0.447885512856485[/C][/ROW]
[ROW][C]22[/C][C]0.870557710223538[/C][C]0.258884579552923[/C][C]0.129442289776462[/C][/ROW]
[ROW][C]23[/C][C]0.83376611838355[/C][C]0.332467763232899[/C][C]0.16623388161645[/C][/ROW]
[ROW][C]24[/C][C]0.796091038148027[/C][C]0.407817923703946[/C][C]0.203908961851973[/C][/ROW]
[ROW][C]25[/C][C]0.750066404918991[/C][C]0.499867190162018[/C][C]0.249933595081009[/C][/ROW]
[ROW][C]26[/C][C]0.700144423892157[/C][C]0.599711152215685[/C][C]0.299855576107843[/C][/ROW]
[ROW][C]27[/C][C]0.655159343032356[/C][C]0.689681313935288[/C][C]0.344840656967644[/C][/ROW]
[ROW][C]28[/C][C]0.622077601408287[/C][C]0.755844797183425[/C][C]0.377922398591713[/C][/ROW]
[ROW][C]29[/C][C]0.570949043111989[/C][C]0.858101913776023[/C][C]0.429050956888011[/C][/ROW]
[ROW][C]30[/C][C]0.548511993811518[/C][C]0.902976012376964[/C][C]0.451488006188482[/C][/ROW]
[ROW][C]31[/C][C]0.544532894941851[/C][C]0.910934210116299[/C][C]0.455467105058149[/C][/ROW]
[ROW][C]32[/C][C]0.498910764577884[/C][C]0.997821529155767[/C][C]0.501089235422116[/C][/ROW]
[ROW][C]33[/C][C]0.475500373043246[/C][C]0.951000746086492[/C][C]0.524499626956754[/C][/ROW]
[ROW][C]34[/C][C]0.441356971315488[/C][C]0.882713942630977[/C][C]0.558643028684512[/C][/ROW]
[ROW][C]35[/C][C]0.410486699671279[/C][C]0.820973399342557[/C][C]0.589513300328721[/C][/ROW]
[ROW][C]36[/C][C]0.431582404106382[/C][C]0.863164808212764[/C][C]0.568417595893618[/C][/ROW]
[ROW][C]37[/C][C]0.400812911829316[/C][C]0.801625823658632[/C][C]0.599187088170684[/C][/ROW]
[ROW][C]38[/C][C]0.352125191097144[/C][C]0.704250382194287[/C][C]0.647874808902856[/C][/ROW]
[ROW][C]39[/C][C]0.317395139714385[/C][C]0.634790279428771[/C][C]0.682604860285615[/C][/ROW]
[ROW][C]40[/C][C]0.280718552137711[/C][C]0.561437104275422[/C][C]0.719281447862289[/C][/ROW]
[ROW][C]41[/C][C]0.289535923545811[/C][C]0.579071847091623[/C][C]0.710464076454189[/C][/ROW]
[ROW][C]42[/C][C]0.25780513204061[/C][C]0.51561026408122[/C][C]0.74219486795939[/C][/ROW]
[ROW][C]43[/C][C]0.285242964726134[/C][C]0.570485929452268[/C][C]0.714757035273866[/C][/ROW]
[ROW][C]44[/C][C]0.24231981039693[/C][C]0.48463962079386[/C][C]0.75768018960307[/C][/ROW]
[ROW][C]45[/C][C]0.213277734071915[/C][C]0.426555468143829[/C][C]0.786722265928085[/C][/ROW]
[ROW][C]46[/C][C]0.97014758526131[/C][C]0.05970482947738[/C][C]0.02985241473869[/C][/ROW]
[ROW][C]47[/C][C]0.969571475728301[/C][C]0.0608570485433979[/C][C]0.0304285242716989[/C][/ROW]
[ROW][C]48[/C][C]0.961236233252129[/C][C]0.0775275334957421[/C][C]0.0387637667478711[/C][/ROW]
[ROW][C]49[/C][C]0.951826764582226[/C][C]0.0963464708355481[/C][C]0.048173235417774[/C][/ROW]
[ROW][C]50[/C][C]0.93925827687975[/C][C]0.121483446240499[/C][C]0.0607417231202497[/C][/ROW]
[ROW][C]51[/C][C]0.930904262144485[/C][C]0.138191475711029[/C][C]0.0690957378555147[/C][/ROW]
[ROW][C]52[/C][C]0.920426533137842[/C][C]0.159146933724315[/C][C]0.0795734668621577[/C][/ROW]
[ROW][C]53[/C][C]0.94054621614363[/C][C]0.118907567712741[/C][C]0.0594537838563704[/C][/ROW]
[ROW][C]54[/C][C]0.925282936218496[/C][C]0.149434127563008[/C][C]0.0747170637815042[/C][/ROW]
[ROW][C]55[/C][C]0.907402151870105[/C][C]0.185195696259791[/C][C]0.0925978481298954[/C][/ROW]
[ROW][C]56[/C][C]0.887233677035791[/C][C]0.225532645928417[/C][C]0.112766322964209[/C][/ROW]
[ROW][C]57[/C][C]0.873336441788855[/C][C]0.25332711642229[/C][C]0.126663558211145[/C][/ROW]
[ROW][C]58[/C][C]0.883159537602694[/C][C]0.233680924794611[/C][C]0.116840462397306[/C][/ROW]
[ROW][C]59[/C][C]0.873576922117627[/C][C]0.252846155764746[/C][C]0.126423077882373[/C][/ROW]
[ROW][C]60[/C][C]0.876019153467313[/C][C]0.247961693065374[/C][C]0.123980846532687[/C][/ROW]
[ROW][C]61[/C][C]0.855600686490337[/C][C]0.288798627019327[/C][C]0.144399313509663[/C][/ROW]
[ROW][C]62[/C][C]0.881941620006179[/C][C]0.236116759987643[/C][C]0.118058379993821[/C][/ROW]
[ROW][C]63[/C][C]0.881614509000124[/C][C]0.236770981999752[/C][C]0.118385490999876[/C][/ROW]
[ROW][C]64[/C][C]0.877589675073328[/C][C]0.244820649853343[/C][C]0.122410324926672[/C][/ROW]
[ROW][C]65[/C][C]0.884701204347051[/C][C]0.230597591305898[/C][C]0.115298795652949[/C][/ROW]
[ROW][C]66[/C][C]0.893001435538358[/C][C]0.213997128923284[/C][C]0.106998564461642[/C][/ROW]
[ROW][C]67[/C][C]0.873731179003277[/C][C]0.252537641993446[/C][C]0.126268820996723[/C][/ROW]
[ROW][C]68[/C][C]0.850555478894395[/C][C]0.298889042211211[/C][C]0.149444521105605[/C][/ROW]
[ROW][C]69[/C][C]0.826385069997436[/C][C]0.347229860005129[/C][C]0.173614930002564[/C][/ROW]
[ROW][C]70[/C][C]0.83074188832694[/C][C]0.338516223346121[/C][C]0.16925811167306[/C][/ROW]
[ROW][C]71[/C][C]0.801569421479673[/C][C]0.396861157040653[/C][C]0.198430578520327[/C][/ROW]
[ROW][C]72[/C][C]0.769343040110462[/C][C]0.461313919779076[/C][C]0.230656959889538[/C][/ROW]
[ROW][C]73[/C][C]0.739942247498435[/C][C]0.520115505003131[/C][C]0.260057752501565[/C][/ROW]
[ROW][C]74[/C][C]0.716027736146134[/C][C]0.567944527707732[/C][C]0.283972263853866[/C][/ROW]
[ROW][C]75[/C][C]0.681522959275503[/C][C]0.636954081448994[/C][C]0.318477040724497[/C][/ROW]
[ROW][C]76[/C][C]0.692143118822092[/C][C]0.615713762355815[/C][C]0.307856881177908[/C][/ROW]
[ROW][C]77[/C][C]0.654898347410603[/C][C]0.690203305178793[/C][C]0.345101652589397[/C][/ROW]
[ROW][C]78[/C][C]0.633989756776336[/C][C]0.732020486447328[/C][C]0.366010243223664[/C][/ROW]
[ROW][C]79[/C][C]0.600010446684287[/C][C]0.799979106631426[/C][C]0.399989553315713[/C][/ROW]
[ROW][C]80[/C][C]0.559950552393654[/C][C]0.880098895212692[/C][C]0.440049447606346[/C][/ROW]
[ROW][C]81[/C][C]0.517521035356462[/C][C]0.964957929287076[/C][C]0.482478964643538[/C][/ROW]
[ROW][C]82[/C][C]0.796552022289884[/C][C]0.406895955420232[/C][C]0.203447977710116[/C][/ROW]
[ROW][C]83[/C][C]0.763499917965527[/C][C]0.473000164068946[/C][C]0.236500082034473[/C][/ROW]
[ROW][C]84[/C][C]0.728855154279204[/C][C]0.542289691441593[/C][C]0.271144845720796[/C][/ROW]
[ROW][C]85[/C][C]0.723727779795349[/C][C]0.552544440409303[/C][C]0.276272220204651[/C][/ROW]
[ROW][C]86[/C][C]0.746517043996124[/C][C]0.506965912007752[/C][C]0.253482956003876[/C][/ROW]
[ROW][C]87[/C][C]0.714049141933067[/C][C]0.571901716133865[/C][C]0.285950858066933[/C][/ROW]
[ROW][C]88[/C][C]0.826761674043903[/C][C]0.346476651912195[/C][C]0.173238325956097[/C][/ROW]
[ROW][C]89[/C][C]0.798231257664345[/C][C]0.403537484671311[/C][C]0.201768742335655[/C][/ROW]
[ROW][C]90[/C][C]0.764811169014604[/C][C]0.470377661970791[/C][C]0.235188830985396[/C][/ROW]
[ROW][C]91[/C][C]0.730931224947999[/C][C]0.538137550104002[/C][C]0.269068775052001[/C][/ROW]
[ROW][C]92[/C][C]0.692067789265951[/C][C]0.615864421468098[/C][C]0.307932210734049[/C][/ROW]
[ROW][C]93[/C][C]0.653326126106504[/C][C]0.693347747786993[/C][C]0.346673873893496[/C][/ROW]
[ROW][C]94[/C][C]0.659694110872181[/C][C]0.680611778255639[/C][C]0.340305889127819[/C][/ROW]
[ROW][C]95[/C][C]0.657087742370033[/C][C]0.685824515259934[/C][C]0.342912257629967[/C][/ROW]
[ROW][C]96[/C][C]0.619462744994839[/C][C]0.761074510010321[/C][C]0.380537255005161[/C][/ROW]
[ROW][C]97[/C][C]0.704276061154916[/C][C]0.591447877690169[/C][C]0.295723938845084[/C][/ROW]
[ROW][C]98[/C][C]0.715348307469243[/C][C]0.569303385061514[/C][C]0.284651692530757[/C][/ROW]
[ROW][C]99[/C][C]0.676066891119463[/C][C]0.647866217761074[/C][C]0.323933108880537[/C][/ROW]
[ROW][C]100[/C][C]0.646321601007879[/C][C]0.707356797984241[/C][C]0.353678398992121[/C][/ROW]
[ROW][C]101[/C][C]0.604828368779874[/C][C]0.790343262440251[/C][C]0.395171631220126[/C][/ROW]
[ROW][C]102[/C][C]0.625141209611987[/C][C]0.749717580776026[/C][C]0.374858790388013[/C][/ROW]
[ROW][C]103[/C][C]0.583502141757166[/C][C]0.832995716485668[/C][C]0.416497858242834[/C][/ROW]
[ROW][C]104[/C][C]0.545191343746292[/C][C]0.909617312507417[/C][C]0.454808656253708[/C][/ROW]
[ROW][C]105[/C][C]0.498950687300781[/C][C]0.997901374601562[/C][C]0.501049312699219[/C][/ROW]
[ROW][C]106[/C][C]0.495090124279452[/C][C]0.990180248558905[/C][C]0.504909875720548[/C][/ROW]
[ROW][C]107[/C][C]0.456669598237026[/C][C]0.913339196474051[/C][C]0.543330401762974[/C][/ROW]
[ROW][C]108[/C][C]0.415742457072799[/C][C]0.831484914145598[/C][C]0.584257542927201[/C][/ROW]
[ROW][C]109[/C][C]0.776208541934341[/C][C]0.447582916131318[/C][C]0.223791458065659[/C][/ROW]
[ROW][C]110[/C][C]0.754380247475175[/C][C]0.491239505049649[/C][C]0.245619752524825[/C][/ROW]
[ROW][C]111[/C][C]0.741770661022086[/C][C]0.516458677955828[/C][C]0.258229338977914[/C][/ROW]
[ROW][C]112[/C][C]0.700666009308135[/C][C]0.598667981383731[/C][C]0.299333990691865[/C][/ROW]
[ROW][C]113[/C][C]0.663767358168237[/C][C]0.672465283663526[/C][C]0.336232641831763[/C][/ROW]
[ROW][C]114[/C][C]0.619829490604836[/C][C]0.760341018790328[/C][C]0.380170509395164[/C][/ROW]
[ROW][C]115[/C][C]0.572446090849855[/C][C]0.855107818300291[/C][C]0.427553909150145[/C][/ROW]
[ROW][C]116[/C][C]0.542042581032505[/C][C]0.915914837934989[/C][C]0.457957418967495[/C][/ROW]
[ROW][C]117[/C][C]0.49402890885421[/C][C]0.98805781770842[/C][C]0.50597109114579[/C][/ROW]
[ROW][C]118[/C][C]0.453021813446769[/C][C]0.906043626893538[/C][C]0.546978186553231[/C][/ROW]
[ROW][C]119[/C][C]0.406648860384492[/C][C]0.813297720768984[/C][C]0.593351139615508[/C][/ROW]
[ROW][C]120[/C][C]0.366250181452075[/C][C]0.73250036290415[/C][C]0.633749818547925[/C][/ROW]
[ROW][C]121[/C][C]0.321564886117441[/C][C]0.643129772234881[/C][C]0.678435113882559[/C][/ROW]
[ROW][C]122[/C][C]0.286554909540141[/C][C]0.573109819080283[/C][C]0.713445090459859[/C][/ROW]
[ROW][C]123[/C][C]0.254465039262019[/C][C]0.508930078524039[/C][C]0.745534960737981[/C][/ROW]
[ROW][C]124[/C][C]0.231681739850369[/C][C]0.463363479700738[/C][C]0.768318260149631[/C][/ROW]
[ROW][C]125[/C][C]0.196056028163401[/C][C]0.392112056326802[/C][C]0.803943971836599[/C][/ROW]
[ROW][C]126[/C][C]0.178831448523389[/C][C]0.357662897046779[/C][C]0.821168551476611[/C][/ROW]
[ROW][C]127[/C][C]0.150437021431995[/C][C]0.30087404286399[/C][C]0.849562978568005[/C][/ROW]
[ROW][C]128[/C][C]0.14515758596511[/C][C]0.29031517193022[/C][C]0.85484241403489[/C][/ROW]
[ROW][C]129[/C][C]0.126426396920451[/C][C]0.252852793840902[/C][C]0.873573603079549[/C][/ROW]
[ROW][C]130[/C][C]0.120706396808802[/C][C]0.241412793617605[/C][C]0.879293603191198[/C][/ROW]
[ROW][C]131[/C][C]0.193190811355637[/C][C]0.386381622711274[/C][C]0.806809188644363[/C][/ROW]
[ROW][C]132[/C][C]0.162001646306217[/C][C]0.324003292612435[/C][C]0.837998353693783[/C][/ROW]
[ROW][C]133[/C][C]0.150090711327705[/C][C]0.30018142265541[/C][C]0.849909288672295[/C][/ROW]
[ROW][C]134[/C][C]0.192980483527781[/C][C]0.385960967055561[/C][C]0.807019516472219[/C][/ROW]
[ROW][C]135[/C][C]0.217901954626722[/C][C]0.435803909253445[/C][C]0.782098045373278[/C][/ROW]
[ROW][C]136[/C][C]0.183998295388569[/C][C]0.367996590777138[/C][C]0.816001704611431[/C][/ROW]
[ROW][C]137[/C][C]0.249123955330591[/C][C]0.498247910661182[/C][C]0.750876044669409[/C][/ROW]
[ROW][C]138[/C][C]0.204336111026896[/C][C]0.408672222053792[/C][C]0.795663888973104[/C][/ROW]
[ROW][C]139[/C][C]0.181561410396738[/C][C]0.363122820793476[/C][C]0.818438589603262[/C][/ROW]
[ROW][C]140[/C][C]0.147789231605424[/C][C]0.295578463210847[/C][C]0.852210768394576[/C][/ROW]
[ROW][C]141[/C][C]0.138012355421341[/C][C]0.276024710842682[/C][C]0.861987644578659[/C][/ROW]
[ROW][C]142[/C][C]0.270829905568576[/C][C]0.541659811137152[/C][C]0.729170094431424[/C][/ROW]
[ROW][C]143[/C][C]0.221094537459283[/C][C]0.442189074918566[/C][C]0.778905462540717[/C][/ROW]
[ROW][C]144[/C][C]0.996753637383641[/C][C]0.0064927252327183[/C][C]0.00324636261635915[/C][/ROW]
[ROW][C]145[/C][C]0.998274387994588[/C][C]0.00345122401082323[/C][C]0.00172561200541161[/C][/ROW]
[ROW][C]146[/C][C]0.996512895496565[/C][C]0.00697420900686925[/C][C]0.00348710450343462[/C][/ROW]
[ROW][C]147[/C][C]0.99848798400759[/C][C]0.00302403198482067[/C][C]0.00151201599241033[/C][/ROW]
[ROW][C]148[/C][C]0.999997004059602[/C][C]5.99188079591746e-06[/C][C]2.99594039795873e-06[/C][/ROW]
[ROW][C]149[/C][C]0.999989364170356[/C][C]2.12716592884022e-05[/C][C]1.06358296442011e-05[/C][/ROW]
[ROW][C]150[/C][C]0.999967630661894[/C][C]6.47386762130141e-05[/C][C]3.2369338106507e-05[/C][/ROW]
[ROW][C]151[/C][C]0.999891411144139[/C][C]0.000217177711721918[/C][C]0.000108588855860959[/C][/ROW]
[ROW][C]152[/C][C]0.999646055554729[/C][C]0.000707888890542108[/C][C]0.000353944445271054[/C][/ROW]
[ROW][C]153[/C][C]0.998912524907961[/C][C]0.00217495018407789[/C][C]0.00108747509203894[/C][/ROW]
[ROW][C]154[/C][C]0.996831373688207[/C][C]0.00633725262358542[/C][C]0.00316862631179271[/C][/ROW]
[ROW][C]155[/C][C]0.99047388774803[/C][C]0.0190522245039403[/C][C]0.00952611225197017[/C][/ROW]
[ROW][C]156[/C][C]0.975646758721466[/C][C]0.0487064825570688[/C][C]0.0243532412785344[/C][/ROW]
[ROW][C]157[/C][C]0.941418388879527[/C][C]0.117163222240946[/C][C]0.058581611120473[/C][/ROW]
[ROW][C]158[/C][C]0.871150891744002[/C][C]0.257698216511996[/C][C]0.128849108255998[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.5373268697522330.9253462604955340.462673130247767
70.7810086669514690.4379826660970620.218991333048531
80.8174105287456120.3651789425087750.182589471254388
90.7399446655240970.5201106689518060.260055334475903
100.6728807650506640.6542384698986710.327119234949336
110.596183422873310.8076331542533790.403816577126689
120.5489925748940590.9020148502118820.451007425105941
130.4565524155429270.9131048310858550.543447584457073
140.6147335825593020.7705328348813950.385266417440698
150.5811586890343540.8376826219312930.418841310965646
160.582194781127420.835610437745160.41780521887258
170.5291351588574920.9417296822850150.470864841142508
180.6654187510992490.6691624978015020.334581248900751
190.6670022291723550.6659955416552910.332997770827645
200.6125379526424060.7749240947151890.387462047357594
210.5521144871435150.8957710257129710.447885512856485
220.8705577102235380.2588845795529230.129442289776462
230.833766118383550.3324677632328990.16623388161645
240.7960910381480270.4078179237039460.203908961851973
250.7500664049189910.4998671901620180.249933595081009
260.7001444238921570.5997111522156850.299855576107843
270.6551593430323560.6896813139352880.344840656967644
280.6220776014082870.7558447971834250.377922398591713
290.5709490431119890.8581019137760230.429050956888011
300.5485119938115180.9029760123769640.451488006188482
310.5445328949418510.9109342101162990.455467105058149
320.4989107645778840.9978215291557670.501089235422116
330.4755003730432460.9510007460864920.524499626956754
340.4413569713154880.8827139426309770.558643028684512
350.4104866996712790.8209733993425570.589513300328721
360.4315824041063820.8631648082127640.568417595893618
370.4008129118293160.8016258236586320.599187088170684
380.3521251910971440.7042503821942870.647874808902856
390.3173951397143850.6347902794287710.682604860285615
400.2807185521377110.5614371042754220.719281447862289
410.2895359235458110.5790718470916230.710464076454189
420.257805132040610.515610264081220.74219486795939
430.2852429647261340.5704859294522680.714757035273866
440.242319810396930.484639620793860.75768018960307
450.2132777340719150.4265554681438290.786722265928085
460.970147585261310.059704829477380.02985241473869
470.9695714757283010.06085704854339790.0304285242716989
480.9612362332521290.07752753349574210.0387637667478711
490.9518267645822260.09634647083554810.048173235417774
500.939258276879750.1214834462404990.0607417231202497
510.9309042621444850.1381914757110290.0690957378555147
520.9204265331378420.1591469337243150.0795734668621577
530.940546216143630.1189075677127410.0594537838563704
540.9252829362184960.1494341275630080.0747170637815042
550.9074021518701050.1851956962597910.0925978481298954
560.8872336770357910.2255326459284170.112766322964209
570.8733364417888550.253327116422290.126663558211145
580.8831595376026940.2336809247946110.116840462397306
590.8735769221176270.2528461557647460.126423077882373
600.8760191534673130.2479616930653740.123980846532687
610.8556006864903370.2887986270193270.144399313509663
620.8819416200061790.2361167599876430.118058379993821
630.8816145090001240.2367709819997520.118385490999876
640.8775896750733280.2448206498533430.122410324926672
650.8847012043470510.2305975913058980.115298795652949
660.8930014355383580.2139971289232840.106998564461642
670.8737311790032770.2525376419934460.126268820996723
680.8505554788943950.2988890422112110.149444521105605
690.8263850699974360.3472298600051290.173614930002564
700.830741888326940.3385162233461210.16925811167306
710.8015694214796730.3968611570406530.198430578520327
720.7693430401104620.4613139197790760.230656959889538
730.7399422474984350.5201155050031310.260057752501565
740.7160277361461340.5679445277077320.283972263853866
750.6815229592755030.6369540814489940.318477040724497
760.6921431188220920.6157137623558150.307856881177908
770.6548983474106030.6902033051787930.345101652589397
780.6339897567763360.7320204864473280.366010243223664
790.6000104466842870.7999791066314260.399989553315713
800.5599505523936540.8800988952126920.440049447606346
810.5175210353564620.9649579292870760.482478964643538
820.7965520222898840.4068959554202320.203447977710116
830.7634999179655270.4730001640689460.236500082034473
840.7288551542792040.5422896914415930.271144845720796
850.7237277797953490.5525444404093030.276272220204651
860.7465170439961240.5069659120077520.253482956003876
870.7140491419330670.5719017161338650.285950858066933
880.8267616740439030.3464766519121950.173238325956097
890.7982312576643450.4035374846713110.201768742335655
900.7648111690146040.4703776619707910.235188830985396
910.7309312249479990.5381375501040020.269068775052001
920.6920677892659510.6158644214680980.307932210734049
930.6533261261065040.6933477477869930.346673873893496
940.6596941108721810.6806117782556390.340305889127819
950.6570877423700330.6858245152599340.342912257629967
960.6194627449948390.7610745100103210.380537255005161
970.7042760611549160.5914478776901690.295723938845084
980.7153483074692430.5693033850615140.284651692530757
990.6760668911194630.6478662177610740.323933108880537
1000.6463216010078790.7073567979842410.353678398992121
1010.6048283687798740.7903432624402510.395171631220126
1020.6251412096119870.7497175807760260.374858790388013
1030.5835021417571660.8329957164856680.416497858242834
1040.5451913437462920.9096173125074170.454808656253708
1050.4989506873007810.9979013746015620.501049312699219
1060.4950901242794520.9901802485589050.504909875720548
1070.4566695982370260.9133391964740510.543330401762974
1080.4157424570727990.8314849141455980.584257542927201
1090.7762085419343410.4475829161313180.223791458065659
1100.7543802474751750.4912395050496490.245619752524825
1110.7417706610220860.5164586779558280.258229338977914
1120.7006660093081350.5986679813837310.299333990691865
1130.6637673581682370.6724652836635260.336232641831763
1140.6198294906048360.7603410187903280.380170509395164
1150.5724460908498550.8551078183002910.427553909150145
1160.5420425810325050.9159148379349890.457957418967495
1170.494028908854210.988057817708420.50597109114579
1180.4530218134467690.9060436268935380.546978186553231
1190.4066488603844920.8132977207689840.593351139615508
1200.3662501814520750.732500362904150.633749818547925
1210.3215648861174410.6431297722348810.678435113882559
1220.2865549095401410.5731098190802830.713445090459859
1230.2544650392620190.5089300785240390.745534960737981
1240.2316817398503690.4633634797007380.768318260149631
1250.1960560281634010.3921120563268020.803943971836599
1260.1788314485233890.3576628970467790.821168551476611
1270.1504370214319950.300874042863990.849562978568005
1280.145157585965110.290315171930220.85484241403489
1290.1264263969204510.2528527938409020.873573603079549
1300.1207063968088020.2414127936176050.879293603191198
1310.1931908113556370.3863816227112740.806809188644363
1320.1620016463062170.3240032926124350.837998353693783
1330.1500907113277050.300181422655410.849909288672295
1340.1929804835277810.3859609670555610.807019516472219
1350.2179019546267220.4358039092534450.782098045373278
1360.1839982953885690.3679965907771380.816001704611431
1370.2491239553305910.4982479106611820.750876044669409
1380.2043361110268960.4086722220537920.795663888973104
1390.1815614103967380.3631228207934760.818438589603262
1400.1477892316054240.2955784632108470.852210768394576
1410.1380123554213410.2760247108426820.861987644578659
1420.2708299055685760.5416598111371520.729170094431424
1430.2210945374592830.4421890749185660.778905462540717
1440.9967536373836410.00649272523271830.00324636261635915
1450.9982743879945880.003451224010823230.00172561200541161
1460.9965128954965650.006974209006869250.00348710450343462
1470.998487984007590.003024031984820670.00151201599241033
1480.9999970040596025.99188079591746e-062.99594039795873e-06
1490.9999893641703562.12716592884022e-051.06358296442011e-05
1500.9999676306618946.47386762130141e-053.2369338106507e-05
1510.9998914111441390.0002171777117219180.000108588855860959
1520.9996460555547290.0007078888905421080.000353944445271054
1530.9989125249079610.002174950184077890.00108747509203894
1540.9968313736882070.006337252623585420.00316862631179271
1550.990473887748030.01905222450394030.00952611225197017
1560.9756467587214660.04870648255706880.0243532412785344
1570.9414183888795270.1171632222409460.058581611120473
1580.8711508917440020.2576982165119960.128849108255998







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level110.0718954248366013NOK
5% type I error level130.0849673202614379NOK
10% type I error level170.111111111111111NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 11 & 0.0718954248366013 & NOK \tabularnewline
5% type I error level & 13 & 0.0849673202614379 & NOK \tabularnewline
10% type I error level & 17 & 0.111111111111111 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145979&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]11[/C][C]0.0718954248366013[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]13[/C][C]0.0849673202614379[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]17[/C][C]0.111111111111111[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145979&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145979&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level110.0718954248366013NOK
5% type I error level130.0849673202614379NOK
10% type I error level170.111111111111111NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}