Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 24 Nov 2011 12:04:55 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t1322154398hdzzvsm7teyysh9.htm/, Retrieved Thu, 31 Oct 2024 22:58:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=147098, Retrieved Thu, 31 Oct 2024 22:58:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact145
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
-   PD    [Multiple Regression] [Workshop 7] [2011-11-24 17:04:55] [02ed7fa8d7b1f39a2d911dce6cf09d8a] [Current]
Feedback Forum

Post a new message
Dataseries X:
1966	1
1966	2
1966	3
1966	4
1966	5
1966	6
1966	7
1966	8
1966	9
1966	10
1966	11
1966	12
1967	1
1967	2
1967	3
1967	4
1967	5
1967	6
1967	7
1967	8
1967	9
1967	10
1967	11
1967	12
1968	1
1968	2
1968	3
1968	4
1968	5
1968	6
1968	7
1968	8
1968	9
1968	10
1968	11
1968	12
1969	1
1969	2
1969	3
1969	4
1969	5
1969	6
1969	7
1969	8
1969	9
1969	10
1969	11
1969	12
1970	1
1970	2
1970	3
1970	4
1970	5
1970	6
1970	7
1970	8
1970	9
1970	10
1970	11
1970	12
1971	1
1971	2
1971	3
1971	4
1971	5
1971	6
1971	7
1971	8
1971	9
1971	10
1971	11
1971	12
1972	1
1972	2
1972	3
1972	4
1972	5
1972	6
1972	7
1972	8
1972	9
1972	10
1972	11
1972	12
1973	1
1973	2
1973	3
1973	4
1973	5
1973	6
1973	7
1973	8
1973	9
1973	10
1973	11
1973	12
1974	1
1974	2
1974	3
1974	4
1974	5
1974	6
1974	7
1974	8
1974	9
1974	10
1974	11
1974	12
1975	1
1975	2
1975	3
1975	4
1975	5
1975	6
1975	7
1975	8
1975	9
1975	10




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Jaartal[t] = + 1970.63667545688 -0.0331937964482434Maand[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Jaartal[t] =  +  1970.63667545688 -0.0331937964482434Maand[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Jaartal[t] =  +  1970.63667545688 -0.0331937964482434Maand[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Jaartal[t] = + 1970.63667545688 -0.0331937964482434Maand[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1970.636675456880.5594533522.43700
Maand-0.03319379644824340.076964-0.43130.6670570.333528

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 1970.63667545688 & 0.559453 & 3522.437 & 0 & 0 \tabularnewline
Maand & -0.0331937964482434 & 0.076964 & -0.4313 & 0.667057 & 0.333528 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]1970.63667545688[/C][C]0.559453[/C][C]3522.437[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Maand[/C][C]-0.0331937964482434[/C][C]0.076964[/C][C]-0.4313[/C][C]0.667057[/C][C]0.333528[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1970.636675456880.5594533522.43700
Maand-0.03319379644824340.076964-0.43130.6670570.333528







Multiple Linear Regression - Regression Statistics
Multiple R0.0400123351850188
R-squared0.00160098696695829
Adjusted R-squared-0.00700590107642984
F-TEST (value)0.186012291421422
F-TEST (DF numerator)1
F-TEST (DF denominator)116
p-value0.667056945200398
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.85767949202389
Sum Squared Residuals947.294521179534

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.0400123351850188 \tabularnewline
R-squared & 0.00160098696695829 \tabularnewline
Adjusted R-squared & -0.00700590107642984 \tabularnewline
F-TEST (value) & 0.186012291421422 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 116 \tabularnewline
p-value & 0.667056945200398 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 2.85767949202389 \tabularnewline
Sum Squared Residuals & 947.294521179534 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.0400123351850188[/C][/ROW]
[ROW][C]R-squared[/C][C]0.00160098696695829[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.00700590107642984[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]0.186012291421422[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]116[/C][/ROW]
[ROW][C]p-value[/C][C]0.667056945200398[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]2.85767949202389[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]947.294521179534[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.0400123351850188
R-squared0.00160098696695829
Adjusted R-squared-0.00700590107642984
F-TEST (value)0.186012291421422
F-TEST (DF numerator)1
F-TEST (DF denominator)116
p-value0.667056945200398
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.85767949202389
Sum Squared Residuals947.294521179534







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
119661970.60348166043-4.60348166043248
219661970.57028786398-4.57028786397906
319661970.53709406753-4.53709406753082
419661970.50390027108-4.50390027108258
519661970.47070647463-4.47070647463433
619661970.43751267819-4.43751267818609
719661970.40431888174-4.40431888173785
819661970.37112508529-4.3711250852896
919661970.33793128884-4.33793128884136
1019661970.30473749239-4.30473749239312
1119661970.27154369594-4.27154369594487
1219661970.2383498995-4.23834989949663
1319671970.60348166043-3.60348166042731
1419671970.57028786398-3.57028786397906
1519671970.53709406753-3.53709406753082
1619671970.50390027108-3.50390027108258
1719671970.47070647463-3.47070647463433
1819671970.43751267819-3.43751267818609
1919671970.40431888174-3.40431888173785
2019671970.37112508529-3.3711250852896
2119671970.33793128884-3.33793128884136
2219671970.30473749239-3.30473749239312
2319671970.27154369594-3.27154369594487
2419671970.2383498995-3.23834989949663
2519681970.60348166043-2.60348166042731
2619681970.57028786398-2.57028786397906
2719681970.53709406753-2.53709406753082
2819681970.50390027108-2.50390027108258
2919681970.47070647463-2.47070647463433
3019681970.43751267819-2.43751267818609
3119681970.40431888174-2.40431888173785
3219681970.37112508529-2.3711250852896
3319681970.33793128884-2.33793128884136
3419681970.30473749239-2.30473749239312
3519681970.27154369594-2.27154369594487
3619681970.2383498995-2.23834989949663
3719691970.60348166043-1.60348166042731
3819691970.57028786398-1.57028786397906
3919691970.53709406753-1.53709406753082
4019691970.50390027108-1.50390027108258
4119691970.47070647463-1.47070647463433
4219691970.43751267819-1.43751267818609
4319691970.40431888174-1.40431888173785
4419691970.37112508529-1.3711250852896
4519691970.33793128884-1.33793128884136
4619691970.30473749239-1.30473749239312
4719691970.27154369594-1.27154369594487
4819691970.2383498995-1.23834989949663
4919701970.60348166043-0.603481660427308
5019701970.57028786398-0.570287863979065
5119701970.53709406753-0.537094067530821
5219701970.50390027108-0.503900271082578
5319701970.47070647463-0.470706474634334
5419701970.43751267819-0.437512678186091
5519701970.40431888174-0.404318881737848
5619701970.37112508529-0.371125085289604
5719701970.33793128884-0.337931288841361
5819701970.30473749239-0.304737492393117
5919701970.27154369594-0.271543695944874
6019701970.2383498995-0.23834989949663
6119711970.603481660430.396518339572692
6219711970.570287863980.429712136020935
6319711970.537094067530.462905932469179
6419711970.503900271080.496099728917422
6519711970.470706474630.529293525365666
6619711970.437512678190.562487321813909
6719711970.404318881740.595681118262153
6819711970.371125085290.628874914710396
6919711970.337931288840.662068711158639
7019711970.304737492390.695262507606883
7119711970.271543695940.728456304055126
7219711970.23834989950.76165010050337
7319721970.603481660431.39651833957269
7419721970.570287863981.42971213602094
7519721970.537094067531.46290593246918
7619721970.503900271081.49609972891742
7719721970.470706474631.52929352536567
7819721970.437512678191.56248732181391
7919721970.404318881741.59568111826215
8019721970.371125085291.6288749147104
8119721970.337931288841.66206871115864
8219721970.304737492391.69526250760688
8319721970.271543695941.72845630405513
8419721970.23834989951.76165010050337
8519731970.603481660432.39651833957269
8619731970.570287863982.42971213602094
8719731970.537094067532.46290593246918
8819731970.503900271082.49609972891742
8919731970.470706474632.52929352536567
9019731970.437512678192.56248732181391
9119731970.404318881742.59568111826215
9219731970.371125085292.6288749147104
9319731970.337931288842.66206871115864
9419731970.304737492392.69526250760688
9519731970.271543695942.72845630405513
9619731970.23834989952.76165010050337
9719741970.603481660433.39651833957269
9819741970.570287863983.42971213602094
9919741970.537094067533.46290593246918
10019741970.503900271083.49609972891742
10119741970.470706474633.52929352536567
10219741970.437512678193.56248732181391
10319741970.404318881743.59568111826215
10419741970.371125085293.6288749147104
10519741970.337931288843.66206871115864
10619741970.304737492393.69526250760688
10719741970.271543695943.72845630405513
10819741970.23834989953.76165010050337
10919751970.603481660434.39651833957269
11019751970.570287863984.42971213602094
11119751970.537094067534.46290593246918
11219751970.503900271084.49609972891742
11319751970.470706474634.52929352536567
11419751970.437512678194.56248732181391
11519751970.404318881744.59568111826215
11619751970.371125085294.6288749147104
11719751970.337931288844.66206871115864
11819751970.304737492394.69526250760688

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1966 & 1970.60348166043 & -4.60348166043248 \tabularnewline
2 & 1966 & 1970.57028786398 & -4.57028786397906 \tabularnewline
3 & 1966 & 1970.53709406753 & -4.53709406753082 \tabularnewline
4 & 1966 & 1970.50390027108 & -4.50390027108258 \tabularnewline
5 & 1966 & 1970.47070647463 & -4.47070647463433 \tabularnewline
6 & 1966 & 1970.43751267819 & -4.43751267818609 \tabularnewline
7 & 1966 & 1970.40431888174 & -4.40431888173785 \tabularnewline
8 & 1966 & 1970.37112508529 & -4.3711250852896 \tabularnewline
9 & 1966 & 1970.33793128884 & -4.33793128884136 \tabularnewline
10 & 1966 & 1970.30473749239 & -4.30473749239312 \tabularnewline
11 & 1966 & 1970.27154369594 & -4.27154369594487 \tabularnewline
12 & 1966 & 1970.2383498995 & -4.23834989949663 \tabularnewline
13 & 1967 & 1970.60348166043 & -3.60348166042731 \tabularnewline
14 & 1967 & 1970.57028786398 & -3.57028786397906 \tabularnewline
15 & 1967 & 1970.53709406753 & -3.53709406753082 \tabularnewline
16 & 1967 & 1970.50390027108 & -3.50390027108258 \tabularnewline
17 & 1967 & 1970.47070647463 & -3.47070647463433 \tabularnewline
18 & 1967 & 1970.43751267819 & -3.43751267818609 \tabularnewline
19 & 1967 & 1970.40431888174 & -3.40431888173785 \tabularnewline
20 & 1967 & 1970.37112508529 & -3.3711250852896 \tabularnewline
21 & 1967 & 1970.33793128884 & -3.33793128884136 \tabularnewline
22 & 1967 & 1970.30473749239 & -3.30473749239312 \tabularnewline
23 & 1967 & 1970.27154369594 & -3.27154369594487 \tabularnewline
24 & 1967 & 1970.2383498995 & -3.23834989949663 \tabularnewline
25 & 1968 & 1970.60348166043 & -2.60348166042731 \tabularnewline
26 & 1968 & 1970.57028786398 & -2.57028786397906 \tabularnewline
27 & 1968 & 1970.53709406753 & -2.53709406753082 \tabularnewline
28 & 1968 & 1970.50390027108 & -2.50390027108258 \tabularnewline
29 & 1968 & 1970.47070647463 & -2.47070647463433 \tabularnewline
30 & 1968 & 1970.43751267819 & -2.43751267818609 \tabularnewline
31 & 1968 & 1970.40431888174 & -2.40431888173785 \tabularnewline
32 & 1968 & 1970.37112508529 & -2.3711250852896 \tabularnewline
33 & 1968 & 1970.33793128884 & -2.33793128884136 \tabularnewline
34 & 1968 & 1970.30473749239 & -2.30473749239312 \tabularnewline
35 & 1968 & 1970.27154369594 & -2.27154369594487 \tabularnewline
36 & 1968 & 1970.2383498995 & -2.23834989949663 \tabularnewline
37 & 1969 & 1970.60348166043 & -1.60348166042731 \tabularnewline
38 & 1969 & 1970.57028786398 & -1.57028786397906 \tabularnewline
39 & 1969 & 1970.53709406753 & -1.53709406753082 \tabularnewline
40 & 1969 & 1970.50390027108 & -1.50390027108258 \tabularnewline
41 & 1969 & 1970.47070647463 & -1.47070647463433 \tabularnewline
42 & 1969 & 1970.43751267819 & -1.43751267818609 \tabularnewline
43 & 1969 & 1970.40431888174 & -1.40431888173785 \tabularnewline
44 & 1969 & 1970.37112508529 & -1.3711250852896 \tabularnewline
45 & 1969 & 1970.33793128884 & -1.33793128884136 \tabularnewline
46 & 1969 & 1970.30473749239 & -1.30473749239312 \tabularnewline
47 & 1969 & 1970.27154369594 & -1.27154369594487 \tabularnewline
48 & 1969 & 1970.2383498995 & -1.23834989949663 \tabularnewline
49 & 1970 & 1970.60348166043 & -0.603481660427308 \tabularnewline
50 & 1970 & 1970.57028786398 & -0.570287863979065 \tabularnewline
51 & 1970 & 1970.53709406753 & -0.537094067530821 \tabularnewline
52 & 1970 & 1970.50390027108 & -0.503900271082578 \tabularnewline
53 & 1970 & 1970.47070647463 & -0.470706474634334 \tabularnewline
54 & 1970 & 1970.43751267819 & -0.437512678186091 \tabularnewline
55 & 1970 & 1970.40431888174 & -0.404318881737848 \tabularnewline
56 & 1970 & 1970.37112508529 & -0.371125085289604 \tabularnewline
57 & 1970 & 1970.33793128884 & -0.337931288841361 \tabularnewline
58 & 1970 & 1970.30473749239 & -0.304737492393117 \tabularnewline
59 & 1970 & 1970.27154369594 & -0.271543695944874 \tabularnewline
60 & 1970 & 1970.2383498995 & -0.23834989949663 \tabularnewline
61 & 1971 & 1970.60348166043 & 0.396518339572692 \tabularnewline
62 & 1971 & 1970.57028786398 & 0.429712136020935 \tabularnewline
63 & 1971 & 1970.53709406753 & 0.462905932469179 \tabularnewline
64 & 1971 & 1970.50390027108 & 0.496099728917422 \tabularnewline
65 & 1971 & 1970.47070647463 & 0.529293525365666 \tabularnewline
66 & 1971 & 1970.43751267819 & 0.562487321813909 \tabularnewline
67 & 1971 & 1970.40431888174 & 0.595681118262153 \tabularnewline
68 & 1971 & 1970.37112508529 & 0.628874914710396 \tabularnewline
69 & 1971 & 1970.33793128884 & 0.662068711158639 \tabularnewline
70 & 1971 & 1970.30473749239 & 0.695262507606883 \tabularnewline
71 & 1971 & 1970.27154369594 & 0.728456304055126 \tabularnewline
72 & 1971 & 1970.2383498995 & 0.76165010050337 \tabularnewline
73 & 1972 & 1970.60348166043 & 1.39651833957269 \tabularnewline
74 & 1972 & 1970.57028786398 & 1.42971213602094 \tabularnewline
75 & 1972 & 1970.53709406753 & 1.46290593246918 \tabularnewline
76 & 1972 & 1970.50390027108 & 1.49609972891742 \tabularnewline
77 & 1972 & 1970.47070647463 & 1.52929352536567 \tabularnewline
78 & 1972 & 1970.43751267819 & 1.56248732181391 \tabularnewline
79 & 1972 & 1970.40431888174 & 1.59568111826215 \tabularnewline
80 & 1972 & 1970.37112508529 & 1.6288749147104 \tabularnewline
81 & 1972 & 1970.33793128884 & 1.66206871115864 \tabularnewline
82 & 1972 & 1970.30473749239 & 1.69526250760688 \tabularnewline
83 & 1972 & 1970.27154369594 & 1.72845630405513 \tabularnewline
84 & 1972 & 1970.2383498995 & 1.76165010050337 \tabularnewline
85 & 1973 & 1970.60348166043 & 2.39651833957269 \tabularnewline
86 & 1973 & 1970.57028786398 & 2.42971213602094 \tabularnewline
87 & 1973 & 1970.53709406753 & 2.46290593246918 \tabularnewline
88 & 1973 & 1970.50390027108 & 2.49609972891742 \tabularnewline
89 & 1973 & 1970.47070647463 & 2.52929352536567 \tabularnewline
90 & 1973 & 1970.43751267819 & 2.56248732181391 \tabularnewline
91 & 1973 & 1970.40431888174 & 2.59568111826215 \tabularnewline
92 & 1973 & 1970.37112508529 & 2.6288749147104 \tabularnewline
93 & 1973 & 1970.33793128884 & 2.66206871115864 \tabularnewline
94 & 1973 & 1970.30473749239 & 2.69526250760688 \tabularnewline
95 & 1973 & 1970.27154369594 & 2.72845630405513 \tabularnewline
96 & 1973 & 1970.2383498995 & 2.76165010050337 \tabularnewline
97 & 1974 & 1970.60348166043 & 3.39651833957269 \tabularnewline
98 & 1974 & 1970.57028786398 & 3.42971213602094 \tabularnewline
99 & 1974 & 1970.53709406753 & 3.46290593246918 \tabularnewline
100 & 1974 & 1970.50390027108 & 3.49609972891742 \tabularnewline
101 & 1974 & 1970.47070647463 & 3.52929352536567 \tabularnewline
102 & 1974 & 1970.43751267819 & 3.56248732181391 \tabularnewline
103 & 1974 & 1970.40431888174 & 3.59568111826215 \tabularnewline
104 & 1974 & 1970.37112508529 & 3.6288749147104 \tabularnewline
105 & 1974 & 1970.33793128884 & 3.66206871115864 \tabularnewline
106 & 1974 & 1970.30473749239 & 3.69526250760688 \tabularnewline
107 & 1974 & 1970.27154369594 & 3.72845630405513 \tabularnewline
108 & 1974 & 1970.2383498995 & 3.76165010050337 \tabularnewline
109 & 1975 & 1970.60348166043 & 4.39651833957269 \tabularnewline
110 & 1975 & 1970.57028786398 & 4.42971213602094 \tabularnewline
111 & 1975 & 1970.53709406753 & 4.46290593246918 \tabularnewline
112 & 1975 & 1970.50390027108 & 4.49609972891742 \tabularnewline
113 & 1975 & 1970.47070647463 & 4.52929352536567 \tabularnewline
114 & 1975 & 1970.43751267819 & 4.56248732181391 \tabularnewline
115 & 1975 & 1970.40431888174 & 4.59568111826215 \tabularnewline
116 & 1975 & 1970.37112508529 & 4.6288749147104 \tabularnewline
117 & 1975 & 1970.33793128884 & 4.66206871115864 \tabularnewline
118 & 1975 & 1970.30473749239 & 4.69526250760688 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1966[/C][C]1970.60348166043[/C][C]-4.60348166043248[/C][/ROW]
[ROW][C]2[/C][C]1966[/C][C]1970.57028786398[/C][C]-4.57028786397906[/C][/ROW]
[ROW][C]3[/C][C]1966[/C][C]1970.53709406753[/C][C]-4.53709406753082[/C][/ROW]
[ROW][C]4[/C][C]1966[/C][C]1970.50390027108[/C][C]-4.50390027108258[/C][/ROW]
[ROW][C]5[/C][C]1966[/C][C]1970.47070647463[/C][C]-4.47070647463433[/C][/ROW]
[ROW][C]6[/C][C]1966[/C][C]1970.43751267819[/C][C]-4.43751267818609[/C][/ROW]
[ROW][C]7[/C][C]1966[/C][C]1970.40431888174[/C][C]-4.40431888173785[/C][/ROW]
[ROW][C]8[/C][C]1966[/C][C]1970.37112508529[/C][C]-4.3711250852896[/C][/ROW]
[ROW][C]9[/C][C]1966[/C][C]1970.33793128884[/C][C]-4.33793128884136[/C][/ROW]
[ROW][C]10[/C][C]1966[/C][C]1970.30473749239[/C][C]-4.30473749239312[/C][/ROW]
[ROW][C]11[/C][C]1966[/C][C]1970.27154369594[/C][C]-4.27154369594487[/C][/ROW]
[ROW][C]12[/C][C]1966[/C][C]1970.2383498995[/C][C]-4.23834989949663[/C][/ROW]
[ROW][C]13[/C][C]1967[/C][C]1970.60348166043[/C][C]-3.60348166042731[/C][/ROW]
[ROW][C]14[/C][C]1967[/C][C]1970.57028786398[/C][C]-3.57028786397906[/C][/ROW]
[ROW][C]15[/C][C]1967[/C][C]1970.53709406753[/C][C]-3.53709406753082[/C][/ROW]
[ROW][C]16[/C][C]1967[/C][C]1970.50390027108[/C][C]-3.50390027108258[/C][/ROW]
[ROW][C]17[/C][C]1967[/C][C]1970.47070647463[/C][C]-3.47070647463433[/C][/ROW]
[ROW][C]18[/C][C]1967[/C][C]1970.43751267819[/C][C]-3.43751267818609[/C][/ROW]
[ROW][C]19[/C][C]1967[/C][C]1970.40431888174[/C][C]-3.40431888173785[/C][/ROW]
[ROW][C]20[/C][C]1967[/C][C]1970.37112508529[/C][C]-3.3711250852896[/C][/ROW]
[ROW][C]21[/C][C]1967[/C][C]1970.33793128884[/C][C]-3.33793128884136[/C][/ROW]
[ROW][C]22[/C][C]1967[/C][C]1970.30473749239[/C][C]-3.30473749239312[/C][/ROW]
[ROW][C]23[/C][C]1967[/C][C]1970.27154369594[/C][C]-3.27154369594487[/C][/ROW]
[ROW][C]24[/C][C]1967[/C][C]1970.2383498995[/C][C]-3.23834989949663[/C][/ROW]
[ROW][C]25[/C][C]1968[/C][C]1970.60348166043[/C][C]-2.60348166042731[/C][/ROW]
[ROW][C]26[/C][C]1968[/C][C]1970.57028786398[/C][C]-2.57028786397906[/C][/ROW]
[ROW][C]27[/C][C]1968[/C][C]1970.53709406753[/C][C]-2.53709406753082[/C][/ROW]
[ROW][C]28[/C][C]1968[/C][C]1970.50390027108[/C][C]-2.50390027108258[/C][/ROW]
[ROW][C]29[/C][C]1968[/C][C]1970.47070647463[/C][C]-2.47070647463433[/C][/ROW]
[ROW][C]30[/C][C]1968[/C][C]1970.43751267819[/C][C]-2.43751267818609[/C][/ROW]
[ROW][C]31[/C][C]1968[/C][C]1970.40431888174[/C][C]-2.40431888173785[/C][/ROW]
[ROW][C]32[/C][C]1968[/C][C]1970.37112508529[/C][C]-2.3711250852896[/C][/ROW]
[ROW][C]33[/C][C]1968[/C][C]1970.33793128884[/C][C]-2.33793128884136[/C][/ROW]
[ROW][C]34[/C][C]1968[/C][C]1970.30473749239[/C][C]-2.30473749239312[/C][/ROW]
[ROW][C]35[/C][C]1968[/C][C]1970.27154369594[/C][C]-2.27154369594487[/C][/ROW]
[ROW][C]36[/C][C]1968[/C][C]1970.2383498995[/C][C]-2.23834989949663[/C][/ROW]
[ROW][C]37[/C][C]1969[/C][C]1970.60348166043[/C][C]-1.60348166042731[/C][/ROW]
[ROW][C]38[/C][C]1969[/C][C]1970.57028786398[/C][C]-1.57028786397906[/C][/ROW]
[ROW][C]39[/C][C]1969[/C][C]1970.53709406753[/C][C]-1.53709406753082[/C][/ROW]
[ROW][C]40[/C][C]1969[/C][C]1970.50390027108[/C][C]-1.50390027108258[/C][/ROW]
[ROW][C]41[/C][C]1969[/C][C]1970.47070647463[/C][C]-1.47070647463433[/C][/ROW]
[ROW][C]42[/C][C]1969[/C][C]1970.43751267819[/C][C]-1.43751267818609[/C][/ROW]
[ROW][C]43[/C][C]1969[/C][C]1970.40431888174[/C][C]-1.40431888173785[/C][/ROW]
[ROW][C]44[/C][C]1969[/C][C]1970.37112508529[/C][C]-1.3711250852896[/C][/ROW]
[ROW][C]45[/C][C]1969[/C][C]1970.33793128884[/C][C]-1.33793128884136[/C][/ROW]
[ROW][C]46[/C][C]1969[/C][C]1970.30473749239[/C][C]-1.30473749239312[/C][/ROW]
[ROW][C]47[/C][C]1969[/C][C]1970.27154369594[/C][C]-1.27154369594487[/C][/ROW]
[ROW][C]48[/C][C]1969[/C][C]1970.2383498995[/C][C]-1.23834989949663[/C][/ROW]
[ROW][C]49[/C][C]1970[/C][C]1970.60348166043[/C][C]-0.603481660427308[/C][/ROW]
[ROW][C]50[/C][C]1970[/C][C]1970.57028786398[/C][C]-0.570287863979065[/C][/ROW]
[ROW][C]51[/C][C]1970[/C][C]1970.53709406753[/C][C]-0.537094067530821[/C][/ROW]
[ROW][C]52[/C][C]1970[/C][C]1970.50390027108[/C][C]-0.503900271082578[/C][/ROW]
[ROW][C]53[/C][C]1970[/C][C]1970.47070647463[/C][C]-0.470706474634334[/C][/ROW]
[ROW][C]54[/C][C]1970[/C][C]1970.43751267819[/C][C]-0.437512678186091[/C][/ROW]
[ROW][C]55[/C][C]1970[/C][C]1970.40431888174[/C][C]-0.404318881737848[/C][/ROW]
[ROW][C]56[/C][C]1970[/C][C]1970.37112508529[/C][C]-0.371125085289604[/C][/ROW]
[ROW][C]57[/C][C]1970[/C][C]1970.33793128884[/C][C]-0.337931288841361[/C][/ROW]
[ROW][C]58[/C][C]1970[/C][C]1970.30473749239[/C][C]-0.304737492393117[/C][/ROW]
[ROW][C]59[/C][C]1970[/C][C]1970.27154369594[/C][C]-0.271543695944874[/C][/ROW]
[ROW][C]60[/C][C]1970[/C][C]1970.2383498995[/C][C]-0.23834989949663[/C][/ROW]
[ROW][C]61[/C][C]1971[/C][C]1970.60348166043[/C][C]0.396518339572692[/C][/ROW]
[ROW][C]62[/C][C]1971[/C][C]1970.57028786398[/C][C]0.429712136020935[/C][/ROW]
[ROW][C]63[/C][C]1971[/C][C]1970.53709406753[/C][C]0.462905932469179[/C][/ROW]
[ROW][C]64[/C][C]1971[/C][C]1970.50390027108[/C][C]0.496099728917422[/C][/ROW]
[ROW][C]65[/C][C]1971[/C][C]1970.47070647463[/C][C]0.529293525365666[/C][/ROW]
[ROW][C]66[/C][C]1971[/C][C]1970.43751267819[/C][C]0.562487321813909[/C][/ROW]
[ROW][C]67[/C][C]1971[/C][C]1970.40431888174[/C][C]0.595681118262153[/C][/ROW]
[ROW][C]68[/C][C]1971[/C][C]1970.37112508529[/C][C]0.628874914710396[/C][/ROW]
[ROW][C]69[/C][C]1971[/C][C]1970.33793128884[/C][C]0.662068711158639[/C][/ROW]
[ROW][C]70[/C][C]1971[/C][C]1970.30473749239[/C][C]0.695262507606883[/C][/ROW]
[ROW][C]71[/C][C]1971[/C][C]1970.27154369594[/C][C]0.728456304055126[/C][/ROW]
[ROW][C]72[/C][C]1971[/C][C]1970.2383498995[/C][C]0.76165010050337[/C][/ROW]
[ROW][C]73[/C][C]1972[/C][C]1970.60348166043[/C][C]1.39651833957269[/C][/ROW]
[ROW][C]74[/C][C]1972[/C][C]1970.57028786398[/C][C]1.42971213602094[/C][/ROW]
[ROW][C]75[/C][C]1972[/C][C]1970.53709406753[/C][C]1.46290593246918[/C][/ROW]
[ROW][C]76[/C][C]1972[/C][C]1970.50390027108[/C][C]1.49609972891742[/C][/ROW]
[ROW][C]77[/C][C]1972[/C][C]1970.47070647463[/C][C]1.52929352536567[/C][/ROW]
[ROW][C]78[/C][C]1972[/C][C]1970.43751267819[/C][C]1.56248732181391[/C][/ROW]
[ROW][C]79[/C][C]1972[/C][C]1970.40431888174[/C][C]1.59568111826215[/C][/ROW]
[ROW][C]80[/C][C]1972[/C][C]1970.37112508529[/C][C]1.6288749147104[/C][/ROW]
[ROW][C]81[/C][C]1972[/C][C]1970.33793128884[/C][C]1.66206871115864[/C][/ROW]
[ROW][C]82[/C][C]1972[/C][C]1970.30473749239[/C][C]1.69526250760688[/C][/ROW]
[ROW][C]83[/C][C]1972[/C][C]1970.27154369594[/C][C]1.72845630405513[/C][/ROW]
[ROW][C]84[/C][C]1972[/C][C]1970.2383498995[/C][C]1.76165010050337[/C][/ROW]
[ROW][C]85[/C][C]1973[/C][C]1970.60348166043[/C][C]2.39651833957269[/C][/ROW]
[ROW][C]86[/C][C]1973[/C][C]1970.57028786398[/C][C]2.42971213602094[/C][/ROW]
[ROW][C]87[/C][C]1973[/C][C]1970.53709406753[/C][C]2.46290593246918[/C][/ROW]
[ROW][C]88[/C][C]1973[/C][C]1970.50390027108[/C][C]2.49609972891742[/C][/ROW]
[ROW][C]89[/C][C]1973[/C][C]1970.47070647463[/C][C]2.52929352536567[/C][/ROW]
[ROW][C]90[/C][C]1973[/C][C]1970.43751267819[/C][C]2.56248732181391[/C][/ROW]
[ROW][C]91[/C][C]1973[/C][C]1970.40431888174[/C][C]2.59568111826215[/C][/ROW]
[ROW][C]92[/C][C]1973[/C][C]1970.37112508529[/C][C]2.6288749147104[/C][/ROW]
[ROW][C]93[/C][C]1973[/C][C]1970.33793128884[/C][C]2.66206871115864[/C][/ROW]
[ROW][C]94[/C][C]1973[/C][C]1970.30473749239[/C][C]2.69526250760688[/C][/ROW]
[ROW][C]95[/C][C]1973[/C][C]1970.27154369594[/C][C]2.72845630405513[/C][/ROW]
[ROW][C]96[/C][C]1973[/C][C]1970.2383498995[/C][C]2.76165010050337[/C][/ROW]
[ROW][C]97[/C][C]1974[/C][C]1970.60348166043[/C][C]3.39651833957269[/C][/ROW]
[ROW][C]98[/C][C]1974[/C][C]1970.57028786398[/C][C]3.42971213602094[/C][/ROW]
[ROW][C]99[/C][C]1974[/C][C]1970.53709406753[/C][C]3.46290593246918[/C][/ROW]
[ROW][C]100[/C][C]1974[/C][C]1970.50390027108[/C][C]3.49609972891742[/C][/ROW]
[ROW][C]101[/C][C]1974[/C][C]1970.47070647463[/C][C]3.52929352536567[/C][/ROW]
[ROW][C]102[/C][C]1974[/C][C]1970.43751267819[/C][C]3.56248732181391[/C][/ROW]
[ROW][C]103[/C][C]1974[/C][C]1970.40431888174[/C][C]3.59568111826215[/C][/ROW]
[ROW][C]104[/C][C]1974[/C][C]1970.37112508529[/C][C]3.6288749147104[/C][/ROW]
[ROW][C]105[/C][C]1974[/C][C]1970.33793128884[/C][C]3.66206871115864[/C][/ROW]
[ROW][C]106[/C][C]1974[/C][C]1970.30473749239[/C][C]3.69526250760688[/C][/ROW]
[ROW][C]107[/C][C]1974[/C][C]1970.27154369594[/C][C]3.72845630405513[/C][/ROW]
[ROW][C]108[/C][C]1974[/C][C]1970.2383498995[/C][C]3.76165010050337[/C][/ROW]
[ROW][C]109[/C][C]1975[/C][C]1970.60348166043[/C][C]4.39651833957269[/C][/ROW]
[ROW][C]110[/C][C]1975[/C][C]1970.57028786398[/C][C]4.42971213602094[/C][/ROW]
[ROW][C]111[/C][C]1975[/C][C]1970.53709406753[/C][C]4.46290593246918[/C][/ROW]
[ROW][C]112[/C][C]1975[/C][C]1970.50390027108[/C][C]4.49609972891742[/C][/ROW]
[ROW][C]113[/C][C]1975[/C][C]1970.47070647463[/C][C]4.52929352536567[/C][/ROW]
[ROW][C]114[/C][C]1975[/C][C]1970.43751267819[/C][C]4.56248732181391[/C][/ROW]
[ROW][C]115[/C][C]1975[/C][C]1970.40431888174[/C][C]4.59568111826215[/C][/ROW]
[ROW][C]116[/C][C]1975[/C][C]1970.37112508529[/C][C]4.6288749147104[/C][/ROW]
[ROW][C]117[/C][C]1975[/C][C]1970.33793128884[/C][C]4.66206871115864[/C][/ROW]
[ROW][C]118[/C][C]1975[/C][C]1970.30473749239[/C][C]4.69526250760688[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
119661970.60348166043-4.60348166043248
219661970.57028786398-4.57028786397906
319661970.53709406753-4.53709406753082
419661970.50390027108-4.50390027108258
519661970.47070647463-4.47070647463433
619661970.43751267819-4.43751267818609
719661970.40431888174-4.40431888173785
819661970.37112508529-4.3711250852896
919661970.33793128884-4.33793128884136
1019661970.30473749239-4.30473749239312
1119661970.27154369594-4.27154369594487
1219661970.2383498995-4.23834989949663
1319671970.60348166043-3.60348166042731
1419671970.57028786398-3.57028786397906
1519671970.53709406753-3.53709406753082
1619671970.50390027108-3.50390027108258
1719671970.47070647463-3.47070647463433
1819671970.43751267819-3.43751267818609
1919671970.40431888174-3.40431888173785
2019671970.37112508529-3.3711250852896
2119671970.33793128884-3.33793128884136
2219671970.30473749239-3.30473749239312
2319671970.27154369594-3.27154369594487
2419671970.2383498995-3.23834989949663
2519681970.60348166043-2.60348166042731
2619681970.57028786398-2.57028786397906
2719681970.53709406753-2.53709406753082
2819681970.50390027108-2.50390027108258
2919681970.47070647463-2.47070647463433
3019681970.43751267819-2.43751267818609
3119681970.40431888174-2.40431888173785
3219681970.37112508529-2.3711250852896
3319681970.33793128884-2.33793128884136
3419681970.30473749239-2.30473749239312
3519681970.27154369594-2.27154369594487
3619681970.2383498995-2.23834989949663
3719691970.60348166043-1.60348166042731
3819691970.57028786398-1.57028786397906
3919691970.53709406753-1.53709406753082
4019691970.50390027108-1.50390027108258
4119691970.47070647463-1.47070647463433
4219691970.43751267819-1.43751267818609
4319691970.40431888174-1.40431888173785
4419691970.37112508529-1.3711250852896
4519691970.33793128884-1.33793128884136
4619691970.30473749239-1.30473749239312
4719691970.27154369594-1.27154369594487
4819691970.2383498995-1.23834989949663
4919701970.60348166043-0.603481660427308
5019701970.57028786398-0.570287863979065
5119701970.53709406753-0.537094067530821
5219701970.50390027108-0.503900271082578
5319701970.47070647463-0.470706474634334
5419701970.43751267819-0.437512678186091
5519701970.40431888174-0.404318881737848
5619701970.37112508529-0.371125085289604
5719701970.33793128884-0.337931288841361
5819701970.30473749239-0.304737492393117
5919701970.27154369594-0.271543695944874
6019701970.2383498995-0.23834989949663
6119711970.603481660430.396518339572692
6219711970.570287863980.429712136020935
6319711970.537094067530.462905932469179
6419711970.503900271080.496099728917422
6519711970.470706474630.529293525365666
6619711970.437512678190.562487321813909
6719711970.404318881740.595681118262153
6819711970.371125085290.628874914710396
6919711970.337931288840.662068711158639
7019711970.304737492390.695262507606883
7119711970.271543695940.728456304055126
7219711970.23834989950.76165010050337
7319721970.603481660431.39651833957269
7419721970.570287863981.42971213602094
7519721970.537094067531.46290593246918
7619721970.503900271081.49609972891742
7719721970.470706474631.52929352536567
7819721970.437512678191.56248732181391
7919721970.404318881741.59568111826215
8019721970.371125085291.6288749147104
8119721970.337931288841.66206871115864
8219721970.304737492391.69526250760688
8319721970.271543695941.72845630405513
8419721970.23834989951.76165010050337
8519731970.603481660432.39651833957269
8619731970.570287863982.42971213602094
8719731970.537094067532.46290593246918
8819731970.503900271082.49609972891742
8919731970.470706474632.52929352536567
9019731970.437512678192.56248732181391
9119731970.404318881742.59568111826215
9219731970.371125085292.6288749147104
9319731970.337931288842.66206871115864
9419731970.304737492392.69526250760688
9519731970.271543695942.72845630405513
9619731970.23834989952.76165010050337
9719741970.603481660433.39651833957269
9819741970.570287863983.42971213602094
9919741970.537094067533.46290593246918
10019741970.503900271083.49609972891742
10119741970.470706474633.52929352536567
10219741970.437512678193.56248732181391
10319741970.404318881743.59568111826215
10419741970.371125085293.6288749147104
10519741970.337931288843.66206871115864
10619741970.304737492393.69526250760688
10719741970.271543695943.72845630405513
10819741970.23834989953.76165010050337
10919751970.603481660434.39651833957269
11019751970.570287863984.42971213602094
11119751970.537094067534.46290593246918
11219751970.503900271084.49609972891742
11319751970.470706474634.52929352536567
11419751970.437512678194.56248732181391
11519751970.404318881744.59568111826215
11619751970.371125085294.6288749147104
11719751970.337931288844.66206871115864
11819751970.304737492394.69526250760688







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
51.08544971296092e-412.17089942592183e-411
66.46926102267736e-541.29385220453547e-531
71.7807836049797e-723.56156720995941e-721
81.70543695575661e-783.41087391151322e-781
96.94101626498145e-941.38820325299629e-931
102.09560719567635e-1074.1912143913527e-1071
111.06973959758728e-1252.13947919517456e-1251
123.06628873872672e-1296.13257747745345e-1291
137.53137751258725e-101.50627550251745e-090.999999999246862
142.05176742160285e-094.1035348432057e-090.999999997948233
152.16671038986965e-094.3334207797393e-090.99999999783329
161.79586237681966e-093.59172475363932e-090.999999998204138
171.40926069932433e-092.81852139864866e-090.999999998590739
181.10694726531126e-092.21389453062251e-090.999999998893053
198.70302908440382e-101.74060581688076e-090.999999999129697
206.65892814352738e-101.33178562870548e-090.999999999334107
214.77397320422452e-109.54794640844904e-100.999999999522603
223.10650755824816e-106.21301511649632e-100.999999999689349
231.80887044591199e-103.61774089182398e-100.999999999819113
249.50853826575986e-111.90170765315197e-100.999999999904915
255.91449135652089e-101.18289827130418e-090.999999999408551
261.58592894584408e-093.17185789168817e-090.999999998414071
273.12153102895315e-096.2430620579063e-090.999999996878469
285.45945046213001e-091.091890092426e-080.99999999454055
299.19017970226653e-091.83803594045331e-080.99999999080982
301.53519014531822e-083.07038029063644e-080.999999984648099
312.55332079182032e-085.10664158364063e-080.999999974466792
324.17374523024071e-088.34749046048143e-080.999999958262548
336.56763919158363e-081.31352783831673e-070.999999934323608
349.75197527610636e-081.95039505522127e-070.999999902480247
351.35221532363285e-072.7044306472657e-070.999999864778468
361.76337443087263e-073.52674886174526e-070.999999823662557
377.3559514716788e-071.47119029433576e-060.999999264404853
382.1588359067089e-064.3176718134178e-060.999997841164093
395.38673221470252e-061.0773464429405e-050.999994613267785
401.24074256901842e-052.48148513803685e-050.99998759257431
412.7353630530522e-055.47072610610439e-050.999972646369469
425.84859656873818e-050.0001169719313747640.999941514034313
430.0001213574915807860.0002427149831615730.999878642508419
440.0002429405296074570.0004858810592149130.999757059470393
450.0004655747075049580.0009311494150099160.999534425292495
460.0008498270064921440.001699654012984290.999150172993508
470.001480822549803330.002961645099606660.998519177450197
480.002499484770782930.004998969541565860.997500515229217
490.006139382129829880.01227876425965980.99386061787017
500.01273957025609640.02547914051219290.987260429743904
510.02391456048644470.04782912097288940.976085439513555
520.04180346378684620.08360692757369240.958196536213154
530.06884646858098120.1376929371619620.931153531419019
540.1072897021219530.2145794042439060.892710297878047
550.1585005821812250.317001164362450.841499417818775
560.2223636465966740.4447272931933490.777636353403325
570.2971416393021770.5942832786043540.702858360697823
580.3800789156311550.7601578312623090.619921084368845
590.4686893684688260.9373787369376520.531310631531174
600.562326621008190.875346757983620.43767337899181
610.6706270603640070.6587458792719870.329372939635993
620.7608258613810050.478348277237990.239174138618995
630.8334749329548880.3330501340902240.166525067045112
640.8890560498377690.2218879003244610.110943950162231
650.9291271746535640.1417456506928730.0708728253464365
660.9563705779493790.08725884410124110.0436294220506206
670.9739565065632030.05208698687359350.0260434934367968
680.9848463882396350.03030722352073060.0151536117603653
690.9913931211818990.01721375763620250.00860687881810125
700.9952609030498890.009478193900221280.00473909695011064
710.9975293937137770.004941212572445090.00247060628622255
720.9988504909492780.002299018101443630.00114950905072182
730.9994198655727160.001160268854567350.000580134427283677
740.9997143218934670.0005713562130651930.000285678106532597
750.9998637634767540.0002724730464923440.000136236523246172
760.9999365927235910.0001268145528174986.3407276408749e-05
770.9999707344867025.85310265958421e-052.92655132979211e-05
780.9999863668888842.72662222328308e-051.36331111164154e-05
790.9999935030428611.29939142769845e-056.49695713849224e-06
800.999996818157556.36368490067708e-063.18184245033854e-06
810.9999984132784273.17344314578972e-061.58672157289486e-06
820.9999992186938281.56261234312451e-067.81306171562256e-07
830.9999996458675827.08264835810394e-073.54132417905197e-07
840.9999998740490752.51901850405046e-071.25950925202523e-07
850.9999999172970651.65405870185753e-078.27029350928766e-08
860.9999999486321271.02735746397326e-075.13678731986631e-08
870.9999999696408926.0718215318305e-083.03591076591525e-08
880.9999999824583583.50832841471498e-081.75416420735749e-08
890.9999999897166432.05667143185526e-081.02833571592763e-08
900.9999999936646721.26706556777961e-086.33532783889803e-09
910.9999999958028098.39438176772825e-094.19719088386412e-09
920.9999999970007455.9985093644723e-092.99925468223615e-09
930.9999999977438954.51220975125092e-092.25610487562546e-09
940.999999998328383.34323891086988e-091.67161945543494e-09
950.9999999989549712.09005853533838e-091.04502926766919e-09
960.9999999996411567.17688651535943e-103.58844325767971e-10
970.9999999994120851.17583051428746e-095.8791525714373e-10
980.9999999991401171.71976630364974e-098.59883151824868e-10
990.9999999988680482.26390384568156e-091.13195192284078e-09
1000.9999999986030442.79391287853108e-091.39695643926554e-09
1010.9999999982768263.44634743496755e-091.72317371748378e-09
1020.9999999977236314.55273793722707e-092.27636896861353e-09
1030.9999999966068356.78632896952995e-093.39316448476498e-09
1040.9999999941983351.16033302223596e-085.80166511117978e-09
1050.9999999890422112.19155772291289e-081.09577886145645e-08
1060.9999999800855143.98289717327935e-081.99144858663968e-08
1070.9999999790247424.19505169333746e-082.09752584666873e-08
10813.61227733493292e-1121.80613866746646e-112
10911.47364480526437e-937.36822402632186e-94
11012.77982029460801e-791.389910147304e-79
11111.84371194655685e-759.21855973278424e-76
11211.68986968763595e-528.44934843817973e-53
11313.20164342682304e-401.60082171341152e-40

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 1.08544971296092e-41 & 2.17089942592183e-41 & 1 \tabularnewline
6 & 6.46926102267736e-54 & 1.29385220453547e-53 & 1 \tabularnewline
7 & 1.7807836049797e-72 & 3.56156720995941e-72 & 1 \tabularnewline
8 & 1.70543695575661e-78 & 3.41087391151322e-78 & 1 \tabularnewline
9 & 6.94101626498145e-94 & 1.38820325299629e-93 & 1 \tabularnewline
10 & 2.09560719567635e-107 & 4.1912143913527e-107 & 1 \tabularnewline
11 & 1.06973959758728e-125 & 2.13947919517456e-125 & 1 \tabularnewline
12 & 3.06628873872672e-129 & 6.13257747745345e-129 & 1 \tabularnewline
13 & 7.53137751258725e-10 & 1.50627550251745e-09 & 0.999999999246862 \tabularnewline
14 & 2.05176742160285e-09 & 4.1035348432057e-09 & 0.999999997948233 \tabularnewline
15 & 2.16671038986965e-09 & 4.3334207797393e-09 & 0.99999999783329 \tabularnewline
16 & 1.79586237681966e-09 & 3.59172475363932e-09 & 0.999999998204138 \tabularnewline
17 & 1.40926069932433e-09 & 2.81852139864866e-09 & 0.999999998590739 \tabularnewline
18 & 1.10694726531126e-09 & 2.21389453062251e-09 & 0.999999998893053 \tabularnewline
19 & 8.70302908440382e-10 & 1.74060581688076e-09 & 0.999999999129697 \tabularnewline
20 & 6.65892814352738e-10 & 1.33178562870548e-09 & 0.999999999334107 \tabularnewline
21 & 4.77397320422452e-10 & 9.54794640844904e-10 & 0.999999999522603 \tabularnewline
22 & 3.10650755824816e-10 & 6.21301511649632e-10 & 0.999999999689349 \tabularnewline
23 & 1.80887044591199e-10 & 3.61774089182398e-10 & 0.999999999819113 \tabularnewline
24 & 9.50853826575986e-11 & 1.90170765315197e-10 & 0.999999999904915 \tabularnewline
25 & 5.91449135652089e-10 & 1.18289827130418e-09 & 0.999999999408551 \tabularnewline
26 & 1.58592894584408e-09 & 3.17185789168817e-09 & 0.999999998414071 \tabularnewline
27 & 3.12153102895315e-09 & 6.2430620579063e-09 & 0.999999996878469 \tabularnewline
28 & 5.45945046213001e-09 & 1.091890092426e-08 & 0.99999999454055 \tabularnewline
29 & 9.19017970226653e-09 & 1.83803594045331e-08 & 0.99999999080982 \tabularnewline
30 & 1.53519014531822e-08 & 3.07038029063644e-08 & 0.999999984648099 \tabularnewline
31 & 2.55332079182032e-08 & 5.10664158364063e-08 & 0.999999974466792 \tabularnewline
32 & 4.17374523024071e-08 & 8.34749046048143e-08 & 0.999999958262548 \tabularnewline
33 & 6.56763919158363e-08 & 1.31352783831673e-07 & 0.999999934323608 \tabularnewline
34 & 9.75197527610636e-08 & 1.95039505522127e-07 & 0.999999902480247 \tabularnewline
35 & 1.35221532363285e-07 & 2.7044306472657e-07 & 0.999999864778468 \tabularnewline
36 & 1.76337443087263e-07 & 3.52674886174526e-07 & 0.999999823662557 \tabularnewline
37 & 7.3559514716788e-07 & 1.47119029433576e-06 & 0.999999264404853 \tabularnewline
38 & 2.1588359067089e-06 & 4.3176718134178e-06 & 0.999997841164093 \tabularnewline
39 & 5.38673221470252e-06 & 1.0773464429405e-05 & 0.999994613267785 \tabularnewline
40 & 1.24074256901842e-05 & 2.48148513803685e-05 & 0.99998759257431 \tabularnewline
41 & 2.7353630530522e-05 & 5.47072610610439e-05 & 0.999972646369469 \tabularnewline
42 & 5.84859656873818e-05 & 0.000116971931374764 & 0.999941514034313 \tabularnewline
43 & 0.000121357491580786 & 0.000242714983161573 & 0.999878642508419 \tabularnewline
44 & 0.000242940529607457 & 0.000485881059214913 & 0.999757059470393 \tabularnewline
45 & 0.000465574707504958 & 0.000931149415009916 & 0.999534425292495 \tabularnewline
46 & 0.000849827006492144 & 0.00169965401298429 & 0.999150172993508 \tabularnewline
47 & 0.00148082254980333 & 0.00296164509960666 & 0.998519177450197 \tabularnewline
48 & 0.00249948477078293 & 0.00499896954156586 & 0.997500515229217 \tabularnewline
49 & 0.00613938212982988 & 0.0122787642596598 & 0.99386061787017 \tabularnewline
50 & 0.0127395702560964 & 0.0254791405121929 & 0.987260429743904 \tabularnewline
51 & 0.0239145604864447 & 0.0478291209728894 & 0.976085439513555 \tabularnewline
52 & 0.0418034637868462 & 0.0836069275736924 & 0.958196536213154 \tabularnewline
53 & 0.0688464685809812 & 0.137692937161962 & 0.931153531419019 \tabularnewline
54 & 0.107289702121953 & 0.214579404243906 & 0.892710297878047 \tabularnewline
55 & 0.158500582181225 & 0.31700116436245 & 0.841499417818775 \tabularnewline
56 & 0.222363646596674 & 0.444727293193349 & 0.777636353403325 \tabularnewline
57 & 0.297141639302177 & 0.594283278604354 & 0.702858360697823 \tabularnewline
58 & 0.380078915631155 & 0.760157831262309 & 0.619921084368845 \tabularnewline
59 & 0.468689368468826 & 0.937378736937652 & 0.531310631531174 \tabularnewline
60 & 0.56232662100819 & 0.87534675798362 & 0.43767337899181 \tabularnewline
61 & 0.670627060364007 & 0.658745879271987 & 0.329372939635993 \tabularnewline
62 & 0.760825861381005 & 0.47834827723799 & 0.239174138618995 \tabularnewline
63 & 0.833474932954888 & 0.333050134090224 & 0.166525067045112 \tabularnewline
64 & 0.889056049837769 & 0.221887900324461 & 0.110943950162231 \tabularnewline
65 & 0.929127174653564 & 0.141745650692873 & 0.0708728253464365 \tabularnewline
66 & 0.956370577949379 & 0.0872588441012411 & 0.0436294220506206 \tabularnewline
67 & 0.973956506563203 & 0.0520869868735935 & 0.0260434934367968 \tabularnewline
68 & 0.984846388239635 & 0.0303072235207306 & 0.0151536117603653 \tabularnewline
69 & 0.991393121181899 & 0.0172137576362025 & 0.00860687881810125 \tabularnewline
70 & 0.995260903049889 & 0.00947819390022128 & 0.00473909695011064 \tabularnewline
71 & 0.997529393713777 & 0.00494121257244509 & 0.00247060628622255 \tabularnewline
72 & 0.998850490949278 & 0.00229901810144363 & 0.00114950905072182 \tabularnewline
73 & 0.999419865572716 & 0.00116026885456735 & 0.000580134427283677 \tabularnewline
74 & 0.999714321893467 & 0.000571356213065193 & 0.000285678106532597 \tabularnewline
75 & 0.999863763476754 & 0.000272473046492344 & 0.000136236523246172 \tabularnewline
76 & 0.999936592723591 & 0.000126814552817498 & 6.3407276408749e-05 \tabularnewline
77 & 0.999970734486702 & 5.85310265958421e-05 & 2.92655132979211e-05 \tabularnewline
78 & 0.999986366888884 & 2.72662222328308e-05 & 1.36331111164154e-05 \tabularnewline
79 & 0.999993503042861 & 1.29939142769845e-05 & 6.49695713849224e-06 \tabularnewline
80 & 0.99999681815755 & 6.36368490067708e-06 & 3.18184245033854e-06 \tabularnewline
81 & 0.999998413278427 & 3.17344314578972e-06 & 1.58672157289486e-06 \tabularnewline
82 & 0.999999218693828 & 1.56261234312451e-06 & 7.81306171562256e-07 \tabularnewline
83 & 0.999999645867582 & 7.08264835810394e-07 & 3.54132417905197e-07 \tabularnewline
84 & 0.999999874049075 & 2.51901850405046e-07 & 1.25950925202523e-07 \tabularnewline
85 & 0.999999917297065 & 1.65405870185753e-07 & 8.27029350928766e-08 \tabularnewline
86 & 0.999999948632127 & 1.02735746397326e-07 & 5.13678731986631e-08 \tabularnewline
87 & 0.999999969640892 & 6.0718215318305e-08 & 3.03591076591525e-08 \tabularnewline
88 & 0.999999982458358 & 3.50832841471498e-08 & 1.75416420735749e-08 \tabularnewline
89 & 0.999999989716643 & 2.05667143185526e-08 & 1.02833571592763e-08 \tabularnewline
90 & 0.999999993664672 & 1.26706556777961e-08 & 6.33532783889803e-09 \tabularnewline
91 & 0.999999995802809 & 8.39438176772825e-09 & 4.19719088386412e-09 \tabularnewline
92 & 0.999999997000745 & 5.9985093644723e-09 & 2.99925468223615e-09 \tabularnewline
93 & 0.999999997743895 & 4.51220975125092e-09 & 2.25610487562546e-09 \tabularnewline
94 & 0.99999999832838 & 3.34323891086988e-09 & 1.67161945543494e-09 \tabularnewline
95 & 0.999999998954971 & 2.09005853533838e-09 & 1.04502926766919e-09 \tabularnewline
96 & 0.999999999641156 & 7.17688651535943e-10 & 3.58844325767971e-10 \tabularnewline
97 & 0.999999999412085 & 1.17583051428746e-09 & 5.8791525714373e-10 \tabularnewline
98 & 0.999999999140117 & 1.71976630364974e-09 & 8.59883151824868e-10 \tabularnewline
99 & 0.999999998868048 & 2.26390384568156e-09 & 1.13195192284078e-09 \tabularnewline
100 & 0.999999998603044 & 2.79391287853108e-09 & 1.39695643926554e-09 \tabularnewline
101 & 0.999999998276826 & 3.44634743496755e-09 & 1.72317371748378e-09 \tabularnewline
102 & 0.999999997723631 & 4.55273793722707e-09 & 2.27636896861353e-09 \tabularnewline
103 & 0.999999996606835 & 6.78632896952995e-09 & 3.39316448476498e-09 \tabularnewline
104 & 0.999999994198335 & 1.16033302223596e-08 & 5.80166511117978e-09 \tabularnewline
105 & 0.999999989042211 & 2.19155772291289e-08 & 1.09577886145645e-08 \tabularnewline
106 & 0.999999980085514 & 3.98289717327935e-08 & 1.99144858663968e-08 \tabularnewline
107 & 0.999999979024742 & 4.19505169333746e-08 & 2.09752584666873e-08 \tabularnewline
108 & 1 & 3.61227733493292e-112 & 1.80613866746646e-112 \tabularnewline
109 & 1 & 1.47364480526437e-93 & 7.36822402632186e-94 \tabularnewline
110 & 1 & 2.77982029460801e-79 & 1.389910147304e-79 \tabularnewline
111 & 1 & 1.84371194655685e-75 & 9.21855973278424e-76 \tabularnewline
112 & 1 & 1.68986968763595e-52 & 8.44934843817973e-53 \tabularnewline
113 & 1 & 3.20164342682304e-40 & 1.60082171341152e-40 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]1.08544971296092e-41[/C][C]2.17089942592183e-41[/C][C]1[/C][/ROW]
[ROW][C]6[/C][C]6.46926102267736e-54[/C][C]1.29385220453547e-53[/C][C]1[/C][/ROW]
[ROW][C]7[/C][C]1.7807836049797e-72[/C][C]3.56156720995941e-72[/C][C]1[/C][/ROW]
[ROW][C]8[/C][C]1.70543695575661e-78[/C][C]3.41087391151322e-78[/C][C]1[/C][/ROW]
[ROW][C]9[/C][C]6.94101626498145e-94[/C][C]1.38820325299629e-93[/C][C]1[/C][/ROW]
[ROW][C]10[/C][C]2.09560719567635e-107[/C][C]4.1912143913527e-107[/C][C]1[/C][/ROW]
[ROW][C]11[/C][C]1.06973959758728e-125[/C][C]2.13947919517456e-125[/C][C]1[/C][/ROW]
[ROW][C]12[/C][C]3.06628873872672e-129[/C][C]6.13257747745345e-129[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]7.53137751258725e-10[/C][C]1.50627550251745e-09[/C][C]0.999999999246862[/C][/ROW]
[ROW][C]14[/C][C]2.05176742160285e-09[/C][C]4.1035348432057e-09[/C][C]0.999999997948233[/C][/ROW]
[ROW][C]15[/C][C]2.16671038986965e-09[/C][C]4.3334207797393e-09[/C][C]0.99999999783329[/C][/ROW]
[ROW][C]16[/C][C]1.79586237681966e-09[/C][C]3.59172475363932e-09[/C][C]0.999999998204138[/C][/ROW]
[ROW][C]17[/C][C]1.40926069932433e-09[/C][C]2.81852139864866e-09[/C][C]0.999999998590739[/C][/ROW]
[ROW][C]18[/C][C]1.10694726531126e-09[/C][C]2.21389453062251e-09[/C][C]0.999999998893053[/C][/ROW]
[ROW][C]19[/C][C]8.70302908440382e-10[/C][C]1.74060581688076e-09[/C][C]0.999999999129697[/C][/ROW]
[ROW][C]20[/C][C]6.65892814352738e-10[/C][C]1.33178562870548e-09[/C][C]0.999999999334107[/C][/ROW]
[ROW][C]21[/C][C]4.77397320422452e-10[/C][C]9.54794640844904e-10[/C][C]0.999999999522603[/C][/ROW]
[ROW][C]22[/C][C]3.10650755824816e-10[/C][C]6.21301511649632e-10[/C][C]0.999999999689349[/C][/ROW]
[ROW][C]23[/C][C]1.80887044591199e-10[/C][C]3.61774089182398e-10[/C][C]0.999999999819113[/C][/ROW]
[ROW][C]24[/C][C]9.50853826575986e-11[/C][C]1.90170765315197e-10[/C][C]0.999999999904915[/C][/ROW]
[ROW][C]25[/C][C]5.91449135652089e-10[/C][C]1.18289827130418e-09[/C][C]0.999999999408551[/C][/ROW]
[ROW][C]26[/C][C]1.58592894584408e-09[/C][C]3.17185789168817e-09[/C][C]0.999999998414071[/C][/ROW]
[ROW][C]27[/C][C]3.12153102895315e-09[/C][C]6.2430620579063e-09[/C][C]0.999999996878469[/C][/ROW]
[ROW][C]28[/C][C]5.45945046213001e-09[/C][C]1.091890092426e-08[/C][C]0.99999999454055[/C][/ROW]
[ROW][C]29[/C][C]9.19017970226653e-09[/C][C]1.83803594045331e-08[/C][C]0.99999999080982[/C][/ROW]
[ROW][C]30[/C][C]1.53519014531822e-08[/C][C]3.07038029063644e-08[/C][C]0.999999984648099[/C][/ROW]
[ROW][C]31[/C][C]2.55332079182032e-08[/C][C]5.10664158364063e-08[/C][C]0.999999974466792[/C][/ROW]
[ROW][C]32[/C][C]4.17374523024071e-08[/C][C]8.34749046048143e-08[/C][C]0.999999958262548[/C][/ROW]
[ROW][C]33[/C][C]6.56763919158363e-08[/C][C]1.31352783831673e-07[/C][C]0.999999934323608[/C][/ROW]
[ROW][C]34[/C][C]9.75197527610636e-08[/C][C]1.95039505522127e-07[/C][C]0.999999902480247[/C][/ROW]
[ROW][C]35[/C][C]1.35221532363285e-07[/C][C]2.7044306472657e-07[/C][C]0.999999864778468[/C][/ROW]
[ROW][C]36[/C][C]1.76337443087263e-07[/C][C]3.52674886174526e-07[/C][C]0.999999823662557[/C][/ROW]
[ROW][C]37[/C][C]7.3559514716788e-07[/C][C]1.47119029433576e-06[/C][C]0.999999264404853[/C][/ROW]
[ROW][C]38[/C][C]2.1588359067089e-06[/C][C]4.3176718134178e-06[/C][C]0.999997841164093[/C][/ROW]
[ROW][C]39[/C][C]5.38673221470252e-06[/C][C]1.0773464429405e-05[/C][C]0.999994613267785[/C][/ROW]
[ROW][C]40[/C][C]1.24074256901842e-05[/C][C]2.48148513803685e-05[/C][C]0.99998759257431[/C][/ROW]
[ROW][C]41[/C][C]2.7353630530522e-05[/C][C]5.47072610610439e-05[/C][C]0.999972646369469[/C][/ROW]
[ROW][C]42[/C][C]5.84859656873818e-05[/C][C]0.000116971931374764[/C][C]0.999941514034313[/C][/ROW]
[ROW][C]43[/C][C]0.000121357491580786[/C][C]0.000242714983161573[/C][C]0.999878642508419[/C][/ROW]
[ROW][C]44[/C][C]0.000242940529607457[/C][C]0.000485881059214913[/C][C]0.999757059470393[/C][/ROW]
[ROW][C]45[/C][C]0.000465574707504958[/C][C]0.000931149415009916[/C][C]0.999534425292495[/C][/ROW]
[ROW][C]46[/C][C]0.000849827006492144[/C][C]0.00169965401298429[/C][C]0.999150172993508[/C][/ROW]
[ROW][C]47[/C][C]0.00148082254980333[/C][C]0.00296164509960666[/C][C]0.998519177450197[/C][/ROW]
[ROW][C]48[/C][C]0.00249948477078293[/C][C]0.00499896954156586[/C][C]0.997500515229217[/C][/ROW]
[ROW][C]49[/C][C]0.00613938212982988[/C][C]0.0122787642596598[/C][C]0.99386061787017[/C][/ROW]
[ROW][C]50[/C][C]0.0127395702560964[/C][C]0.0254791405121929[/C][C]0.987260429743904[/C][/ROW]
[ROW][C]51[/C][C]0.0239145604864447[/C][C]0.0478291209728894[/C][C]0.976085439513555[/C][/ROW]
[ROW][C]52[/C][C]0.0418034637868462[/C][C]0.0836069275736924[/C][C]0.958196536213154[/C][/ROW]
[ROW][C]53[/C][C]0.0688464685809812[/C][C]0.137692937161962[/C][C]0.931153531419019[/C][/ROW]
[ROW][C]54[/C][C]0.107289702121953[/C][C]0.214579404243906[/C][C]0.892710297878047[/C][/ROW]
[ROW][C]55[/C][C]0.158500582181225[/C][C]0.31700116436245[/C][C]0.841499417818775[/C][/ROW]
[ROW][C]56[/C][C]0.222363646596674[/C][C]0.444727293193349[/C][C]0.777636353403325[/C][/ROW]
[ROW][C]57[/C][C]0.297141639302177[/C][C]0.594283278604354[/C][C]0.702858360697823[/C][/ROW]
[ROW][C]58[/C][C]0.380078915631155[/C][C]0.760157831262309[/C][C]0.619921084368845[/C][/ROW]
[ROW][C]59[/C][C]0.468689368468826[/C][C]0.937378736937652[/C][C]0.531310631531174[/C][/ROW]
[ROW][C]60[/C][C]0.56232662100819[/C][C]0.87534675798362[/C][C]0.43767337899181[/C][/ROW]
[ROW][C]61[/C][C]0.670627060364007[/C][C]0.658745879271987[/C][C]0.329372939635993[/C][/ROW]
[ROW][C]62[/C][C]0.760825861381005[/C][C]0.47834827723799[/C][C]0.239174138618995[/C][/ROW]
[ROW][C]63[/C][C]0.833474932954888[/C][C]0.333050134090224[/C][C]0.166525067045112[/C][/ROW]
[ROW][C]64[/C][C]0.889056049837769[/C][C]0.221887900324461[/C][C]0.110943950162231[/C][/ROW]
[ROW][C]65[/C][C]0.929127174653564[/C][C]0.141745650692873[/C][C]0.0708728253464365[/C][/ROW]
[ROW][C]66[/C][C]0.956370577949379[/C][C]0.0872588441012411[/C][C]0.0436294220506206[/C][/ROW]
[ROW][C]67[/C][C]0.973956506563203[/C][C]0.0520869868735935[/C][C]0.0260434934367968[/C][/ROW]
[ROW][C]68[/C][C]0.984846388239635[/C][C]0.0303072235207306[/C][C]0.0151536117603653[/C][/ROW]
[ROW][C]69[/C][C]0.991393121181899[/C][C]0.0172137576362025[/C][C]0.00860687881810125[/C][/ROW]
[ROW][C]70[/C][C]0.995260903049889[/C][C]0.00947819390022128[/C][C]0.00473909695011064[/C][/ROW]
[ROW][C]71[/C][C]0.997529393713777[/C][C]0.00494121257244509[/C][C]0.00247060628622255[/C][/ROW]
[ROW][C]72[/C][C]0.998850490949278[/C][C]0.00229901810144363[/C][C]0.00114950905072182[/C][/ROW]
[ROW][C]73[/C][C]0.999419865572716[/C][C]0.00116026885456735[/C][C]0.000580134427283677[/C][/ROW]
[ROW][C]74[/C][C]0.999714321893467[/C][C]0.000571356213065193[/C][C]0.000285678106532597[/C][/ROW]
[ROW][C]75[/C][C]0.999863763476754[/C][C]0.000272473046492344[/C][C]0.000136236523246172[/C][/ROW]
[ROW][C]76[/C][C]0.999936592723591[/C][C]0.000126814552817498[/C][C]6.3407276408749e-05[/C][/ROW]
[ROW][C]77[/C][C]0.999970734486702[/C][C]5.85310265958421e-05[/C][C]2.92655132979211e-05[/C][/ROW]
[ROW][C]78[/C][C]0.999986366888884[/C][C]2.72662222328308e-05[/C][C]1.36331111164154e-05[/C][/ROW]
[ROW][C]79[/C][C]0.999993503042861[/C][C]1.29939142769845e-05[/C][C]6.49695713849224e-06[/C][/ROW]
[ROW][C]80[/C][C]0.99999681815755[/C][C]6.36368490067708e-06[/C][C]3.18184245033854e-06[/C][/ROW]
[ROW][C]81[/C][C]0.999998413278427[/C][C]3.17344314578972e-06[/C][C]1.58672157289486e-06[/C][/ROW]
[ROW][C]82[/C][C]0.999999218693828[/C][C]1.56261234312451e-06[/C][C]7.81306171562256e-07[/C][/ROW]
[ROW][C]83[/C][C]0.999999645867582[/C][C]7.08264835810394e-07[/C][C]3.54132417905197e-07[/C][/ROW]
[ROW][C]84[/C][C]0.999999874049075[/C][C]2.51901850405046e-07[/C][C]1.25950925202523e-07[/C][/ROW]
[ROW][C]85[/C][C]0.999999917297065[/C][C]1.65405870185753e-07[/C][C]8.27029350928766e-08[/C][/ROW]
[ROW][C]86[/C][C]0.999999948632127[/C][C]1.02735746397326e-07[/C][C]5.13678731986631e-08[/C][/ROW]
[ROW][C]87[/C][C]0.999999969640892[/C][C]6.0718215318305e-08[/C][C]3.03591076591525e-08[/C][/ROW]
[ROW][C]88[/C][C]0.999999982458358[/C][C]3.50832841471498e-08[/C][C]1.75416420735749e-08[/C][/ROW]
[ROW][C]89[/C][C]0.999999989716643[/C][C]2.05667143185526e-08[/C][C]1.02833571592763e-08[/C][/ROW]
[ROW][C]90[/C][C]0.999999993664672[/C][C]1.26706556777961e-08[/C][C]6.33532783889803e-09[/C][/ROW]
[ROW][C]91[/C][C]0.999999995802809[/C][C]8.39438176772825e-09[/C][C]4.19719088386412e-09[/C][/ROW]
[ROW][C]92[/C][C]0.999999997000745[/C][C]5.9985093644723e-09[/C][C]2.99925468223615e-09[/C][/ROW]
[ROW][C]93[/C][C]0.999999997743895[/C][C]4.51220975125092e-09[/C][C]2.25610487562546e-09[/C][/ROW]
[ROW][C]94[/C][C]0.99999999832838[/C][C]3.34323891086988e-09[/C][C]1.67161945543494e-09[/C][/ROW]
[ROW][C]95[/C][C]0.999999998954971[/C][C]2.09005853533838e-09[/C][C]1.04502926766919e-09[/C][/ROW]
[ROW][C]96[/C][C]0.999999999641156[/C][C]7.17688651535943e-10[/C][C]3.58844325767971e-10[/C][/ROW]
[ROW][C]97[/C][C]0.999999999412085[/C][C]1.17583051428746e-09[/C][C]5.8791525714373e-10[/C][/ROW]
[ROW][C]98[/C][C]0.999999999140117[/C][C]1.71976630364974e-09[/C][C]8.59883151824868e-10[/C][/ROW]
[ROW][C]99[/C][C]0.999999998868048[/C][C]2.26390384568156e-09[/C][C]1.13195192284078e-09[/C][/ROW]
[ROW][C]100[/C][C]0.999999998603044[/C][C]2.79391287853108e-09[/C][C]1.39695643926554e-09[/C][/ROW]
[ROW][C]101[/C][C]0.999999998276826[/C][C]3.44634743496755e-09[/C][C]1.72317371748378e-09[/C][/ROW]
[ROW][C]102[/C][C]0.999999997723631[/C][C]4.55273793722707e-09[/C][C]2.27636896861353e-09[/C][/ROW]
[ROW][C]103[/C][C]0.999999996606835[/C][C]6.78632896952995e-09[/C][C]3.39316448476498e-09[/C][/ROW]
[ROW][C]104[/C][C]0.999999994198335[/C][C]1.16033302223596e-08[/C][C]5.80166511117978e-09[/C][/ROW]
[ROW][C]105[/C][C]0.999999989042211[/C][C]2.19155772291289e-08[/C][C]1.09577886145645e-08[/C][/ROW]
[ROW][C]106[/C][C]0.999999980085514[/C][C]3.98289717327935e-08[/C][C]1.99144858663968e-08[/C][/ROW]
[ROW][C]107[/C][C]0.999999979024742[/C][C]4.19505169333746e-08[/C][C]2.09752584666873e-08[/C][/ROW]
[ROW][C]108[/C][C]1[/C][C]3.61227733493292e-112[/C][C]1.80613866746646e-112[/C][/ROW]
[ROW][C]109[/C][C]1[/C][C]1.47364480526437e-93[/C][C]7.36822402632186e-94[/C][/ROW]
[ROW][C]110[/C][C]1[/C][C]2.77982029460801e-79[/C][C]1.389910147304e-79[/C][/ROW]
[ROW][C]111[/C][C]1[/C][C]1.84371194655685e-75[/C][C]9.21855973278424e-76[/C][/ROW]
[ROW][C]112[/C][C]1[/C][C]1.68986968763595e-52[/C][C]8.44934843817973e-53[/C][/ROW]
[ROW][C]113[/C][C]1[/C][C]3.20164342682304e-40[/C][C]1.60082171341152e-40[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
51.08544971296092e-412.17089942592183e-411
66.46926102267736e-541.29385220453547e-531
71.7807836049797e-723.56156720995941e-721
81.70543695575661e-783.41087391151322e-781
96.94101626498145e-941.38820325299629e-931
102.09560719567635e-1074.1912143913527e-1071
111.06973959758728e-1252.13947919517456e-1251
123.06628873872672e-1296.13257747745345e-1291
137.53137751258725e-101.50627550251745e-090.999999999246862
142.05176742160285e-094.1035348432057e-090.999999997948233
152.16671038986965e-094.3334207797393e-090.99999999783329
161.79586237681966e-093.59172475363932e-090.999999998204138
171.40926069932433e-092.81852139864866e-090.999999998590739
181.10694726531126e-092.21389453062251e-090.999999998893053
198.70302908440382e-101.74060581688076e-090.999999999129697
206.65892814352738e-101.33178562870548e-090.999999999334107
214.77397320422452e-109.54794640844904e-100.999999999522603
223.10650755824816e-106.21301511649632e-100.999999999689349
231.80887044591199e-103.61774089182398e-100.999999999819113
249.50853826575986e-111.90170765315197e-100.999999999904915
255.91449135652089e-101.18289827130418e-090.999999999408551
261.58592894584408e-093.17185789168817e-090.999999998414071
273.12153102895315e-096.2430620579063e-090.999999996878469
285.45945046213001e-091.091890092426e-080.99999999454055
299.19017970226653e-091.83803594045331e-080.99999999080982
301.53519014531822e-083.07038029063644e-080.999999984648099
312.55332079182032e-085.10664158364063e-080.999999974466792
324.17374523024071e-088.34749046048143e-080.999999958262548
336.56763919158363e-081.31352783831673e-070.999999934323608
349.75197527610636e-081.95039505522127e-070.999999902480247
351.35221532363285e-072.7044306472657e-070.999999864778468
361.76337443087263e-073.52674886174526e-070.999999823662557
377.3559514716788e-071.47119029433576e-060.999999264404853
382.1588359067089e-064.3176718134178e-060.999997841164093
395.38673221470252e-061.0773464429405e-050.999994613267785
401.24074256901842e-052.48148513803685e-050.99998759257431
412.7353630530522e-055.47072610610439e-050.999972646369469
425.84859656873818e-050.0001169719313747640.999941514034313
430.0001213574915807860.0002427149831615730.999878642508419
440.0002429405296074570.0004858810592149130.999757059470393
450.0004655747075049580.0009311494150099160.999534425292495
460.0008498270064921440.001699654012984290.999150172993508
470.001480822549803330.002961645099606660.998519177450197
480.002499484770782930.004998969541565860.997500515229217
490.006139382129829880.01227876425965980.99386061787017
500.01273957025609640.02547914051219290.987260429743904
510.02391456048644470.04782912097288940.976085439513555
520.04180346378684620.08360692757369240.958196536213154
530.06884646858098120.1376929371619620.931153531419019
540.1072897021219530.2145794042439060.892710297878047
550.1585005821812250.317001164362450.841499417818775
560.2223636465966740.4447272931933490.777636353403325
570.2971416393021770.5942832786043540.702858360697823
580.3800789156311550.7601578312623090.619921084368845
590.4686893684688260.9373787369376520.531310631531174
600.562326621008190.875346757983620.43767337899181
610.6706270603640070.6587458792719870.329372939635993
620.7608258613810050.478348277237990.239174138618995
630.8334749329548880.3330501340902240.166525067045112
640.8890560498377690.2218879003244610.110943950162231
650.9291271746535640.1417456506928730.0708728253464365
660.9563705779493790.08725884410124110.0436294220506206
670.9739565065632030.05208698687359350.0260434934367968
680.9848463882396350.03030722352073060.0151536117603653
690.9913931211818990.01721375763620250.00860687881810125
700.9952609030498890.009478193900221280.00473909695011064
710.9975293937137770.004941212572445090.00247060628622255
720.9988504909492780.002299018101443630.00114950905072182
730.9994198655727160.001160268854567350.000580134427283677
740.9997143218934670.0005713562130651930.000285678106532597
750.9998637634767540.0002724730464923440.000136236523246172
760.9999365927235910.0001268145528174986.3407276408749e-05
770.9999707344867025.85310265958421e-052.92655132979211e-05
780.9999863668888842.72662222328308e-051.36331111164154e-05
790.9999935030428611.29939142769845e-056.49695713849224e-06
800.999996818157556.36368490067708e-063.18184245033854e-06
810.9999984132784273.17344314578972e-061.58672157289486e-06
820.9999992186938281.56261234312451e-067.81306171562256e-07
830.9999996458675827.08264835810394e-073.54132417905197e-07
840.9999998740490752.51901850405046e-071.25950925202523e-07
850.9999999172970651.65405870185753e-078.27029350928766e-08
860.9999999486321271.02735746397326e-075.13678731986631e-08
870.9999999696408926.0718215318305e-083.03591076591525e-08
880.9999999824583583.50832841471498e-081.75416420735749e-08
890.9999999897166432.05667143185526e-081.02833571592763e-08
900.9999999936646721.26706556777961e-086.33532783889803e-09
910.9999999958028098.39438176772825e-094.19719088386412e-09
920.9999999970007455.9985093644723e-092.99925468223615e-09
930.9999999977438954.51220975125092e-092.25610487562546e-09
940.999999998328383.34323891086988e-091.67161945543494e-09
950.9999999989549712.09005853533838e-091.04502926766919e-09
960.9999999996411567.17688651535943e-103.58844325767971e-10
970.9999999994120851.17583051428746e-095.8791525714373e-10
980.9999999991401171.71976630364974e-098.59883151824868e-10
990.9999999988680482.26390384568156e-091.13195192284078e-09
1000.9999999986030442.79391287853108e-091.39695643926554e-09
1010.9999999982768263.44634743496755e-091.72317371748378e-09
1020.9999999977236314.55273793722707e-092.27636896861353e-09
1030.9999999966068356.78632896952995e-093.39316448476498e-09
1040.9999999941983351.16033302223596e-085.80166511117978e-09
1050.9999999890422112.19155772291289e-081.09577886145645e-08
1060.9999999800855143.98289717327935e-081.99144858663968e-08
1070.9999999790247424.19505169333746e-082.09752584666873e-08
10813.61227733493292e-1121.80613866746646e-112
10911.47364480526437e-937.36822402632186e-94
11012.77982029460801e-791.389910147304e-79
11111.84371194655685e-759.21855973278424e-76
11211.68986968763595e-528.44934843817973e-53
11313.20164342682304e-401.60082171341152e-40







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level880.807339449541284NOK
5% type I error level930.853211009174312NOK
10% type I error level960.880733944954128NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 88 & 0.807339449541284 & NOK \tabularnewline
5% type I error level & 93 & 0.853211009174312 & NOK \tabularnewline
10% type I error level & 96 & 0.880733944954128 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147098&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]88[/C][C]0.807339449541284[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]93[/C][C]0.853211009174312[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]96[/C][C]0.880733944954128[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147098&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147098&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level880.807339449541284NOK
5% type I error level930.853211009174312NOK
10% type I error level960.880733944954128NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}