Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 24 Nov 2011 15:54:35 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t1322168128taq2hiinlzg4y4f.htm/, Retrieved Fri, 01 Nov 2024 00:02:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=147205, Retrieved Fri, 01 Nov 2024 00:02:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact142
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
-   PD    [Multiple Regression] [WS7_trends] [2011-11-24 20:54:35] [de50302416ae5d0bdedd77e4c0468c33] [Current]
Feedback Forum

Post a new message
Dataseries X:
41	38	13	12	14	12	53	32
39	32	16	11	18	11	86	51
30	35	19	15	11	14	66	42
31	33	15	6	12	12	67	41
34	37	14	13	16	21	76	46
35	29	13	10	18	12	78	47
39	31	19	12	14	22	53	37
34	36	15	14	14	11	80	49
36	35	14	12	15	10	74	45
37	38	15	6	15	13	76	47
38	31	16	10	17	10	79	49
36	34	16	12	19	8	54	33
38	35	16	12	10	15	67	42
39	38	16	11	16	14	54	33
33	37	17	15	18	10	87	53
32	33	15	12	14	14	58	36
36	32	15	10	14	14	75	45
38	38	20	12	17	11	88	54
39	38	18	11	14	10	64	41
32	32	16	12	16	13	57	36
32	33	16	11	18	7	66	41
31	31	16	12	11	14	68	44
39	38	19	13	14	12	54	33
37	39	16	11	12	14	56	37
39	32	17	9	17	11	86	52
41	32	17	13	9	9	80	47
36	35	16	10	16	11	76	43
33	37	15	14	14	15	69	44
33	33	16	12	15	14	78	45
34	33	14	10	11	13	67	44
31	28	15	12	16	9	80	49
27	32	12	8	13	15	54	33
37	31	14	10	17	10	71	43
34	37	16	12	15	11	84	54
34	30	14	12	14	13	74	42
32	33	7	7	16	8	71	44
29	31	10	6	9	20	63	37
36	33	14	12	15	12	71	43
29	31	16	10	17	10	76	46
35	33	16	10	13	10	69	42
37	32	16	10	15	9	74	45
34	33	14	12	16	14	75	44
38	32	20	15	16	8	54	33
35	33	14	10	12	14	52	31
38	28	14	10	12	11	69	42
37	35	11	12	11	13	68	40
38	39	14	13	15	9	65	43
33	34	15	11	15	11	75	46
36	38	16	11	17	15	74	42
38	32	14	12	13	11	75	45
32	38	16	14	16	10	72	44
32	30	14	10	14	14	67	40
32	33	12	12	11	18	63	37
34	38	16	13	12	14	62	46
32	32	9	5	12	11	63	36
37	32	14	6	15	12	76	47
39	34	16	12	16	13	74	45
29	34	16	12	15	9	67	42
37	36	15	11	12	10	73	43
35	34	16	10	12	15	70	43
30	28	12	7	8	20	53	32
38	34	16	12	13	12	77	45
34	35	16	14	11	12	77	45
31	35	14	11	14	14	52	31
34	31	16	12	15	13	54	33
35	37	17	13	10	11	80	49
36	35	18	14	11	17	66	42
30	27	18	11	12	12	73	41
39	40	12	12	15	13	63	38
35	37	16	12	15	14	69	42
38	36	10	8	14	13	67	44
31	38	14	11	16	15	54	33
34	39	18	14	15	13	81	48
38	41	18	14	15	10	69	40
34	27	16	12	13	11	84	50
39	30	17	9	12	19	80	49
37	37	16	13	17	13	70	43
34	31	16	11	13	17	69	44
28	31	13	12	15	13	77	47
37	27	16	12	13	9	54	33
33	36	16	12	15	11	79	46
37	38	20	12	16	10	30	0
35	37	16	12	15	9	71	45
37	33	15	12	16	12	73	43
32	34	15	11	15	12	72	44
33	31	16	10	14	13	77	47
38	39	14	9	15	13	75	45
33	34	16	12	14	12	69	42
29	32	16	12	13	15	54	33
33	33	15	12	7	22	70	43
31	36	12	9	17	13	73	46
36	32	17	15	13	15	54	33
35	41	16	12	15	13	77	46
32	28	15	12	14	15	82	48
29	30	13	12	13	10	80	47
39	36	16	10	16	11	80	47
37	35	16	13	12	16	69	43
35	31	16	9	14	11	78	46
37	34	16	12	17	11	81	48
32	36	14	10	15	10	76	46
38	36	16	14	17	10	76	45
37	35	16	11	12	16	73	45
36	37	20	15	16	12	85	52
32	28	15	11	11	11	66	42
33	39	16	11	15	16	79	47
40	32	13	12	9	19	68	41
38	35	17	12	16	11	76	47
41	39	16	12	15	16	71	43
36	35	16	11	10	15	54	33
43	42	12	7	10	24	46	30
30	34	16	12	15	14	82	49
31	33	16	14	11	15	74	44
32	41	17	11	13	11	88	55
32	33	13	11	14	15	38	11
37	34	12	10	18	12	76	47
37	32	18	13	16	10	86	53
33	40	14	13	14	14	54	33
34	40	14	8	14	13	70	44
33	35	13	11	14	9	69	42
38	36	16	12	14	15	90	55
33	37	13	11	12	15	54	33
31	27	16	13	14	14	76	46
38	39	13	12	15	11	89	54
37	38	16	14	15	8	76	47
33	31	15	13	15	11	73	45
31	33	16	15	13	11	79	47
39	32	15	10	17	8	90	55
44	39	17	11	17	10	74	44
33	36	15	9	19	11	81	53
35	33	12	11	15	13	72	44
32	33	16	10	13	11	71	42
28	32	10	11	9	20	66	40
40	37	16	8	15	10	77	46
27	30	12	11	15	15	65	40
37	38	14	12	15	12	74	46
32	29	15	12	16	14	82	53
28	22	13	9	11	23	54	33
34	35	15	11	14	14	63	42
30	35	11	10	11	16	54	35
35	34	12	8	15	11	64	40
31	35	8	9	13	12	69	41
32	34	16	8	15	10	54	33
30	34	15	9	16	14	84	51
30	35	17	15	14	12	86	53
31	23	16	11	15	12	77	46
40	31	10	8	16	11	89	55
32	27	18	13	16	12	76	47
36	36	13	12	11	13	60	38
32	31	16	12	12	11	75	46
35	32	13	9	9	19	73	46
38	39	10	7	16	12	85	53
42	37	15	13	13	17	79	47
34	38	16	9	16	9	71	41
35	39	16	6	12	12	72	44
35	34	14	8	9	19	69	43
33	31	10	8	13	18	78	51
36	32	17	15	13	15	54	33
32	37	13	6	14	14	69	43
33	36	15	9	19	11	81	53
34	32	16	11	13	9	84	51
32	35	12	8	12	18	84	50
34	36	13	8	13	16	69	46




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Happiness[t] = + 13.5418192607468 + 0.0236875343095792Connected[t] + 0.0599170464092312Separate[t] + 0.100158690643845Learning[t] -0.0796049946788367Software[t] -0.34016858129956Depression[t] + 0.0523382523886976Belonging[t] -0.0402494950926348Belonging_Final[t] -1.04308022934069M1[t] -0.675853126651141M2[t] -0.00863759431825111M3[t] -1.12540140962164M4[t] -0.0047466453498684M5[t] -1.16617735315638M6[t] + 0.174722807443339M7[t] -0.796081789230753M8[t] + 0.228190847148109M9[t] -1.10780459080302M10[t] -1.1127438087348M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Happiness[t] =  +  13.5418192607468 +  0.0236875343095792Connected[t] +  0.0599170464092312Separate[t] +  0.100158690643845Learning[t] -0.0796049946788367Software[t] -0.34016858129956Depression[t] +  0.0523382523886976Belonging[t] -0.0402494950926348Belonging_Final[t] -1.04308022934069M1[t] -0.675853126651141M2[t] -0.00863759431825111M3[t] -1.12540140962164M4[t] -0.0047466453498684M5[t] -1.16617735315638M6[t] +  0.174722807443339M7[t] -0.796081789230753M8[t] +  0.228190847148109M9[t] -1.10780459080302M10[t] -1.1127438087348M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Happiness[t] =  +  13.5418192607468 +  0.0236875343095792Connected[t] +  0.0599170464092312Separate[t] +  0.100158690643845Learning[t] -0.0796049946788367Software[t] -0.34016858129956Depression[t] +  0.0523382523886976Belonging[t] -0.0402494950926348Belonging_Final[t] -1.04308022934069M1[t] -0.675853126651141M2[t] -0.00863759431825111M3[t] -1.12540140962164M4[t] -0.0047466453498684M5[t] -1.16617735315638M6[t] +  0.174722807443339M7[t] -0.796081789230753M8[t] +  0.228190847148109M9[t] -1.10780459080302M10[t] -1.1127438087348M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Happiness[t] = + 13.5418192607468 + 0.0236875343095792Connected[t] + 0.0599170464092312Separate[t] + 0.100158690643845Learning[t] -0.0796049946788367Software[t] -0.34016858129956Depression[t] + 0.0523382523886976Belonging[t] -0.0402494950926348Belonging_Final[t] -1.04308022934069M1[t] -0.675853126651141M2[t] -0.00863759431825111M3[t] -1.12540140962164M4[t] -0.0047466453498684M5[t] -1.16617735315638M6[t] + 0.174722807443339M7[t] -0.796081789230753M8[t] + 0.228190847148109M9[t] -1.10780459080302M10[t] -1.1127438087348M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)13.54181926074682.6881485.03761e-061e-06
Connected0.02368753430957920.0525770.45050.6530090.326504
Separate0.05991704640923120.048851.22660.2220050.111003
Learning0.1001586906438450.0859771.1650.2459780.122989
Software-0.07960499467883670.086997-0.9150.3617180.180859
Depression-0.340168581299560.05544-6.135800
Belonging0.05233825238869760.0479411.09170.2767920.138396
Belonging_Final-0.04024949509263480.068906-0.58410.560060.28003
M1-1.043080229340690.760201-1.37210.1721770.086089
M2-0.6758531266511410.760575-0.88860.3757060.187853
M3-0.008637594318251110.769145-0.01120.9910550.495528
M4-1.125401409621640.756017-1.48860.1387970.069398
M5-0.00474664534986840.759216-0.00630.995020.49751
M6-1.166177353156380.755106-1.54440.1247040.062352
M70.1747228074433390.7677090.22760.820290.410145
M8-0.7960817892307530.784562-1.01470.3119710.155985
M90.2281908471481090.7688820.29680.7670630.383531
M10-1.107804590803020.775446-1.42860.1552990.077649
M11-1.11274380873480.768804-1.44740.1499820.074991

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 13.5418192607468 & 2.688148 & 5.0376 & 1e-06 & 1e-06 \tabularnewline
Connected & 0.0236875343095792 & 0.052577 & 0.4505 & 0.653009 & 0.326504 \tabularnewline
Separate & 0.0599170464092312 & 0.04885 & 1.2266 & 0.222005 & 0.111003 \tabularnewline
Learning & 0.100158690643845 & 0.085977 & 1.165 & 0.245978 & 0.122989 \tabularnewline
Software & -0.0796049946788367 & 0.086997 & -0.915 & 0.361718 & 0.180859 \tabularnewline
Depression & -0.34016858129956 & 0.05544 & -6.1358 & 0 & 0 \tabularnewline
Belonging & 0.0523382523886976 & 0.047941 & 1.0917 & 0.276792 & 0.138396 \tabularnewline
Belonging_Final & -0.0402494950926348 & 0.068906 & -0.5841 & 0.56006 & 0.28003 \tabularnewline
M1 & -1.04308022934069 & 0.760201 & -1.3721 & 0.172177 & 0.086089 \tabularnewline
M2 & -0.675853126651141 & 0.760575 & -0.8886 & 0.375706 & 0.187853 \tabularnewline
M3 & -0.00863759431825111 & 0.769145 & -0.0112 & 0.991055 & 0.495528 \tabularnewline
M4 & -1.12540140962164 & 0.756017 & -1.4886 & 0.138797 & 0.069398 \tabularnewline
M5 & -0.0047466453498684 & 0.759216 & -0.0063 & 0.99502 & 0.49751 \tabularnewline
M6 & -1.16617735315638 & 0.755106 & -1.5444 & 0.124704 & 0.062352 \tabularnewline
M7 & 0.174722807443339 & 0.767709 & 0.2276 & 0.82029 & 0.410145 \tabularnewline
M8 & -0.796081789230753 & 0.784562 & -1.0147 & 0.311971 & 0.155985 \tabularnewline
M9 & 0.228190847148109 & 0.768882 & 0.2968 & 0.767063 & 0.383531 \tabularnewline
M10 & -1.10780459080302 & 0.775446 & -1.4286 & 0.155299 & 0.077649 \tabularnewline
M11 & -1.1127438087348 & 0.768804 & -1.4474 & 0.149982 & 0.074991 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]13.5418192607468[/C][C]2.688148[/C][C]5.0376[/C][C]1e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]Connected[/C][C]0.0236875343095792[/C][C]0.052577[/C][C]0.4505[/C][C]0.653009[/C][C]0.326504[/C][/ROW]
[ROW][C]Separate[/C][C]0.0599170464092312[/C][C]0.04885[/C][C]1.2266[/C][C]0.222005[/C][C]0.111003[/C][/ROW]
[ROW][C]Learning[/C][C]0.100158690643845[/C][C]0.085977[/C][C]1.165[/C][C]0.245978[/C][C]0.122989[/C][/ROW]
[ROW][C]Software[/C][C]-0.0796049946788367[/C][C]0.086997[/C][C]-0.915[/C][C]0.361718[/C][C]0.180859[/C][/ROW]
[ROW][C]Depression[/C][C]-0.34016858129956[/C][C]0.05544[/C][C]-6.1358[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Belonging[/C][C]0.0523382523886976[/C][C]0.047941[/C][C]1.0917[/C][C]0.276792[/C][C]0.138396[/C][/ROW]
[ROW][C]Belonging_Final[/C][C]-0.0402494950926348[/C][C]0.068906[/C][C]-0.5841[/C][C]0.56006[/C][C]0.28003[/C][/ROW]
[ROW][C]M1[/C][C]-1.04308022934069[/C][C]0.760201[/C][C]-1.3721[/C][C]0.172177[/C][C]0.086089[/C][/ROW]
[ROW][C]M2[/C][C]-0.675853126651141[/C][C]0.760575[/C][C]-0.8886[/C][C]0.375706[/C][C]0.187853[/C][/ROW]
[ROW][C]M3[/C][C]-0.00863759431825111[/C][C]0.769145[/C][C]-0.0112[/C][C]0.991055[/C][C]0.495528[/C][/ROW]
[ROW][C]M4[/C][C]-1.12540140962164[/C][C]0.756017[/C][C]-1.4886[/C][C]0.138797[/C][C]0.069398[/C][/ROW]
[ROW][C]M5[/C][C]-0.0047466453498684[/C][C]0.759216[/C][C]-0.0063[/C][C]0.99502[/C][C]0.49751[/C][/ROW]
[ROW][C]M6[/C][C]-1.16617735315638[/C][C]0.755106[/C][C]-1.5444[/C][C]0.124704[/C][C]0.062352[/C][/ROW]
[ROW][C]M7[/C][C]0.174722807443339[/C][C]0.767709[/C][C]0.2276[/C][C]0.82029[/C][C]0.410145[/C][/ROW]
[ROW][C]M8[/C][C]-0.796081789230753[/C][C]0.784562[/C][C]-1.0147[/C][C]0.311971[/C][C]0.155985[/C][/ROW]
[ROW][C]M9[/C][C]0.228190847148109[/C][C]0.768882[/C][C]0.2968[/C][C]0.767063[/C][C]0.383531[/C][/ROW]
[ROW][C]M10[/C][C]-1.10780459080302[/C][C]0.775446[/C][C]-1.4286[/C][C]0.155299[/C][C]0.077649[/C][/ROW]
[ROW][C]M11[/C][C]-1.1127438087348[/C][C]0.768804[/C][C]-1.4474[/C][C]0.149982[/C][C]0.074991[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)13.54181926074682.6881485.03761e-061e-06
Connected0.02368753430957920.0525770.45050.6530090.326504
Separate0.05991704640923120.048851.22660.2220050.111003
Learning0.1001586906438450.0859771.1650.2459780.122989
Software-0.07960499467883670.086997-0.9150.3617180.180859
Depression-0.340168581299560.05544-6.135800
Belonging0.05233825238869760.0479411.09170.2767920.138396
Belonging_Final-0.04024949509263480.068906-0.58410.560060.28003
M1-1.043080229340690.760201-1.37210.1721770.086089
M2-0.6758531266511410.760575-0.88860.3757060.187853
M3-0.008637594318251110.769145-0.01120.9910550.495528
M4-1.125401409621640.756017-1.48860.1387970.069398
M5-0.00474664534986840.759216-0.00630.995020.49751
M6-1.166177353156380.755106-1.54440.1247040.062352
M70.1747228074433390.7677090.22760.820290.410145
M8-0.7960817892307530.784562-1.01470.3119710.155985
M90.2281908471481090.7688820.29680.7670630.383531
M10-1.107804590803020.775446-1.42860.1552990.077649
M11-1.11274380873480.768804-1.44740.1499820.074991







Multiple Linear Regression - Regression Statistics
Multiple R0.623835595610296
R-squared0.389170850350452
Adjusted R-squared0.31228326507988
F-TEST (value)5.06155641357359
F-TEST (DF numerator)18
F-TEST (DF denominator)143
p-value8.5893293588768e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.93855600480879
Sum Squared Residuals537.393911880569

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.623835595610296 \tabularnewline
R-squared & 0.389170850350452 \tabularnewline
Adjusted R-squared & 0.31228326507988 \tabularnewline
F-TEST (value) & 5.06155641357359 \tabularnewline
F-TEST (DF numerator) & 18 \tabularnewline
F-TEST (DF denominator) & 143 \tabularnewline
p-value & 8.5893293588768e-09 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.93855600480879 \tabularnewline
Sum Squared Residuals & 537.393911880569 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.623835595610296[/C][/ROW]
[ROW][C]R-squared[/C][C]0.389170850350452[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.31228326507988[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]5.06155641357359[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]18[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]143[/C][/ROW]
[ROW][C]p-value[/C][C]8.5893293588768e-09[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.93855600480879[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]537.393911880569[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.623835595610296
R-squared0.389170850350452
Adjusted R-squared0.31228326507988
F-TEST (value)5.06155641357359
F-TEST (DF numerator)18
F-TEST (DF denominator)143
p-value8.5893293588768e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.93855600480879
Sum Squared Residuals537.393911880569







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11413.49749930191560.502500698084415
21815.14052062750742.85947937249255
31114.0513302476591-3.05133024765908
41213.9271549734614-1.92715497346142
51611.90942643724224.09057356275779
61813.55694742724494.44305257275511
71411.24652680062012.7534731993799
81414.5690182801896-0.569018280189591
91515.8269372848301-0.826937284830122
101514.27584094982660.724159050173419
111714.75393016414782.24606983585224
121915.85571282849733.14428717150275
131012.8568964703074-2.85689647030739
141613.52918399729332.47081600270674
151816.05894274146051.9410572585395
161412.52307858106381.47692141893624
171414.3652812602964-0.365281260296428
181715.2909689325441.70903106745596
191416.1421382010196-2.14213820101956
201613.18047017460012.81952982539989
211816.65507313589951.34492686410049
221112.6986990265441-1.69869902654407
231413.91389656038260.0861034396174205
241214.1612576261413-2.16125762614132
251714.99241270972682.00758729027322
26915.6561500260502-6.65615002605025
271615.79464312767220.205356872327771
281412.54078054588761.45921945411238
291514.45209916222920.547900837770814
301113.0779458969188-2.07794589691875
311615.82897105461790.171028945382111
321312.26321428470490.736785715295122
331715.69365085587961.30634914412037
341514.58468673911970.415313260880307
351413.23928506966110.760714930338873
361615.64464824703820.355351752961835
37910.5717698595048-1.57176985950479
381514.04620628863250.953793711367533
391715.60858229788991.39141770211009
401314.5484079949121-1.54840799491211
411516.137632139359-1.13763213935895
421612.99727334537113.0027266546289
431616.1197963902802-0.11979639028016
441212.8697300642282-0.869730064228191
451215.1329916599772-3.13299165997719
461113.0808655264894-2.08086552648935
471514.6430641885110.356935811488987
481515.3194506496632-0.319450649663228
491713.43524530231563.56475469768436
501314.5026869115115-1.50268691151147
511615.65179022759840.348209772401606
521412.71242503167761.28757496832237
531112.2040247150566-1.2040247150566
541212.6566746927878-0.656674692787771
551215.0017655764505-3.00176557645045
561514.46807136359920.531928636400828
571615.01789447873860.982105521261361
581514.5600787414470.439921258553019
591214.7775316327853-2.77753163278528
601214.0449723017412-2.04497230174125
61810.2142835927717-2.21428359277173
621314.5873463090955-1.58734630909546
631115.0605187612416-4.06051876124159
641412.48588940473861.51411059526138
651513.92299706880271.07700293119726
661014.5624496729493-4.56244967294929
671113.3357564154145-2.33575641541446
681214.0897653939569-2.08976539395687
691514.68278768399140.317212316008584
701513.28578868481171.71421131518825
711413.16445594458860.835544055411354
721613.47505088688052.52494911311949
731514.21449763612110.785502363878908
741515.5107516448428-0.510751644842808
751315.2456812518827-2.24568125188269
761211.87562775717660.124372242823387
771714.70887404280082.29112595719916
781311.82282637028831.1771736297117
791514.30015211745010.699847882549907
801314.3237306674119-1.3237306674119
811515.8973822951496-0.897382295149599
821614.80367683834521.19632316165479
831514.96562039287730.0343796071227446
841614.95058214501441.04941785498557
851513.83599853773261.16400146226743
861414.0276999161927-0.0276999161927164
871515.1477995901464-0.147799590146373
881413.72140282074540.278597179254605
891313.184139281065-0.184139281064952
90710.130954084458-3.13095408445804
911714.64035273135552.3596472686445
921312.41996058395850.580039416041543
931515.4593289284384-0.459328928438398
941412.67404570275381.32595429724622
951314.1539764902371-1.15397649023708
961615.98261540051270.0173845994872993
971212.4778623697042-0.477862369704175
981414.9276048895712-0.927604889571163
991715.65964741269521.34035258730478
1001514.66214893627370.337851063726275
1011715.84707580406791.15292419593205
1021212.6428292546157-0.642829254615677
1031615.86907764579850.130922354201517
1041113.8301327565398-2.83013275653977
1051514.41564602746570.584353972534306
106911.0912333885881-2.09123338858809
1071614.51786270279051.48213729720953
1081514.03964242137630.960357578623659
1091012.5709745711477-2.57097457114771
1101010.0817441894812-0.0817441894811905
1111514.48541768592550.514582314074452
1121112.6155872442189-1.61558724421887
1131316.2289050013754-3.22890500137544
1141411.98089399916252.01910600083749
1151815.03997269308872.96002730691131
1161615.2736938793530.72630612064702
1171414.0514094874081-0.0514094874081292
1181413.87196273066050.128037269339494
1191414.5936121346874-0.593612134687446
1201414.6404301147931-0.640430114793107
1211212.3192699891059-0.319269989105903
1221413.14958433930450.850415660695499
1231515.8596531556732-0.859653155673191
1241515.4224057707189-0.422405770718911
1251514.91131586604320.0886841339567667
1261313.9968234078691-0.996823407869108
1271717.0394036387198-0.0394036387198468
1281715.65216367026781.34783632973218
1291915.85896862767123.14103137232879
1301513.14177507955871.85822492044134
1311314.2545109163481-1.25451091634805
132911.2893208994391-2.28932089943914
1331515.4057530604746-0.405753060474594
1341512.31876818105672.68123181894325
1351515.0729608592093-0.0729608592092801
1361612.85528703618083.14471296381922
137119.778271544371561.22172845562844
1381412.74931108503311.25068891496686
1391112.8047963720491-1.80479637204905
1401514.17485903543670.825140964563255
1411314.5653320092836-1.5653320092836
1421514.29124091657210.708759083427851
1431613.54414527949382.45585472050621
1441415.1440082250437-1.14400822504374
1451513.43457445532351.56542554467648
1461614.73817073237681.26182926762321
1471614.68089245474111.31910754525886
1481112.9616085721338-1.96160857213376
1491215.1318190267411-3.13181902674109
150911.2136817252037-2.21368172520365
1511615.63129036313570.368709636864285
1521312.88518984575350.114810154246494
1531616.7425975252669-0.742597525266862
1541214.6401056752832-2.64010567528317
155911.4781085234895-2.4781085234895
1561312.45230825385880.547691746141177
1571312.17296214384850.827037856151482
1581413.78358194708370.216418052916265
1591915.62214018620493.37785981379515
1601315.1481953308108-2.14819533081078
1611213.2181386505488-1.21813865054881
1621312.32042010555370.679579894446278

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 14 & 13.4974993019156 & 0.502500698084415 \tabularnewline
2 & 18 & 15.1405206275074 & 2.85947937249255 \tabularnewline
3 & 11 & 14.0513302476591 & -3.05133024765908 \tabularnewline
4 & 12 & 13.9271549734614 & -1.92715497346142 \tabularnewline
5 & 16 & 11.9094264372422 & 4.09057356275779 \tabularnewline
6 & 18 & 13.5569474272449 & 4.44305257275511 \tabularnewline
7 & 14 & 11.2465268006201 & 2.7534731993799 \tabularnewline
8 & 14 & 14.5690182801896 & -0.569018280189591 \tabularnewline
9 & 15 & 15.8269372848301 & -0.826937284830122 \tabularnewline
10 & 15 & 14.2758409498266 & 0.724159050173419 \tabularnewline
11 & 17 & 14.7539301641478 & 2.24606983585224 \tabularnewline
12 & 19 & 15.8557128284973 & 3.14428717150275 \tabularnewline
13 & 10 & 12.8568964703074 & -2.85689647030739 \tabularnewline
14 & 16 & 13.5291839972933 & 2.47081600270674 \tabularnewline
15 & 18 & 16.0589427414605 & 1.9410572585395 \tabularnewline
16 & 14 & 12.5230785810638 & 1.47692141893624 \tabularnewline
17 & 14 & 14.3652812602964 & -0.365281260296428 \tabularnewline
18 & 17 & 15.290968932544 & 1.70903106745596 \tabularnewline
19 & 14 & 16.1421382010196 & -2.14213820101956 \tabularnewline
20 & 16 & 13.1804701746001 & 2.81952982539989 \tabularnewline
21 & 18 & 16.6550731358995 & 1.34492686410049 \tabularnewline
22 & 11 & 12.6986990265441 & -1.69869902654407 \tabularnewline
23 & 14 & 13.9138965603826 & 0.0861034396174205 \tabularnewline
24 & 12 & 14.1612576261413 & -2.16125762614132 \tabularnewline
25 & 17 & 14.9924127097268 & 2.00758729027322 \tabularnewline
26 & 9 & 15.6561500260502 & -6.65615002605025 \tabularnewline
27 & 16 & 15.7946431276722 & 0.205356872327771 \tabularnewline
28 & 14 & 12.5407805458876 & 1.45921945411238 \tabularnewline
29 & 15 & 14.4520991622292 & 0.547900837770814 \tabularnewline
30 & 11 & 13.0779458969188 & -2.07794589691875 \tabularnewline
31 & 16 & 15.8289710546179 & 0.171028945382111 \tabularnewline
32 & 13 & 12.2632142847049 & 0.736785715295122 \tabularnewline
33 & 17 & 15.6936508558796 & 1.30634914412037 \tabularnewline
34 & 15 & 14.5846867391197 & 0.415313260880307 \tabularnewline
35 & 14 & 13.2392850696611 & 0.760714930338873 \tabularnewline
36 & 16 & 15.6446482470382 & 0.355351752961835 \tabularnewline
37 & 9 & 10.5717698595048 & -1.57176985950479 \tabularnewline
38 & 15 & 14.0462062886325 & 0.953793711367533 \tabularnewline
39 & 17 & 15.6085822978899 & 1.39141770211009 \tabularnewline
40 & 13 & 14.5484079949121 & -1.54840799491211 \tabularnewline
41 & 15 & 16.137632139359 & -1.13763213935895 \tabularnewline
42 & 16 & 12.9972733453711 & 3.0027266546289 \tabularnewline
43 & 16 & 16.1197963902802 & -0.11979639028016 \tabularnewline
44 & 12 & 12.8697300642282 & -0.869730064228191 \tabularnewline
45 & 12 & 15.1329916599772 & -3.13299165997719 \tabularnewline
46 & 11 & 13.0808655264894 & -2.08086552648935 \tabularnewline
47 & 15 & 14.643064188511 & 0.356935811488987 \tabularnewline
48 & 15 & 15.3194506496632 & -0.319450649663228 \tabularnewline
49 & 17 & 13.4352453023156 & 3.56475469768436 \tabularnewline
50 & 13 & 14.5026869115115 & -1.50268691151147 \tabularnewline
51 & 16 & 15.6517902275984 & 0.348209772401606 \tabularnewline
52 & 14 & 12.7124250316776 & 1.28757496832237 \tabularnewline
53 & 11 & 12.2040247150566 & -1.2040247150566 \tabularnewline
54 & 12 & 12.6566746927878 & -0.656674692787771 \tabularnewline
55 & 12 & 15.0017655764505 & -3.00176557645045 \tabularnewline
56 & 15 & 14.4680713635992 & 0.531928636400828 \tabularnewline
57 & 16 & 15.0178944787386 & 0.982105521261361 \tabularnewline
58 & 15 & 14.560078741447 & 0.439921258553019 \tabularnewline
59 & 12 & 14.7775316327853 & -2.77753163278528 \tabularnewline
60 & 12 & 14.0449723017412 & -2.04497230174125 \tabularnewline
61 & 8 & 10.2142835927717 & -2.21428359277173 \tabularnewline
62 & 13 & 14.5873463090955 & -1.58734630909546 \tabularnewline
63 & 11 & 15.0605187612416 & -4.06051876124159 \tabularnewline
64 & 14 & 12.4858894047386 & 1.51411059526138 \tabularnewline
65 & 15 & 13.9229970688027 & 1.07700293119726 \tabularnewline
66 & 10 & 14.5624496729493 & -4.56244967294929 \tabularnewline
67 & 11 & 13.3357564154145 & -2.33575641541446 \tabularnewline
68 & 12 & 14.0897653939569 & -2.08976539395687 \tabularnewline
69 & 15 & 14.6827876839914 & 0.317212316008584 \tabularnewline
70 & 15 & 13.2857886848117 & 1.71421131518825 \tabularnewline
71 & 14 & 13.1644559445886 & 0.835544055411354 \tabularnewline
72 & 16 & 13.4750508868805 & 2.52494911311949 \tabularnewline
73 & 15 & 14.2144976361211 & 0.785502363878908 \tabularnewline
74 & 15 & 15.5107516448428 & -0.510751644842808 \tabularnewline
75 & 13 & 15.2456812518827 & -2.24568125188269 \tabularnewline
76 & 12 & 11.8756277571766 & 0.124372242823387 \tabularnewline
77 & 17 & 14.7088740428008 & 2.29112595719916 \tabularnewline
78 & 13 & 11.8228263702883 & 1.1771736297117 \tabularnewline
79 & 15 & 14.3001521174501 & 0.699847882549907 \tabularnewline
80 & 13 & 14.3237306674119 & -1.3237306674119 \tabularnewline
81 & 15 & 15.8973822951496 & -0.897382295149599 \tabularnewline
82 & 16 & 14.8036768383452 & 1.19632316165479 \tabularnewline
83 & 15 & 14.9656203928773 & 0.0343796071227446 \tabularnewline
84 & 16 & 14.9505821450144 & 1.04941785498557 \tabularnewline
85 & 15 & 13.8359985377326 & 1.16400146226743 \tabularnewline
86 & 14 & 14.0276999161927 & -0.0276999161927164 \tabularnewline
87 & 15 & 15.1477995901464 & -0.147799590146373 \tabularnewline
88 & 14 & 13.7214028207454 & 0.278597179254605 \tabularnewline
89 & 13 & 13.184139281065 & -0.184139281064952 \tabularnewline
90 & 7 & 10.130954084458 & -3.13095408445804 \tabularnewline
91 & 17 & 14.6403527313555 & 2.3596472686445 \tabularnewline
92 & 13 & 12.4199605839585 & 0.580039416041543 \tabularnewline
93 & 15 & 15.4593289284384 & -0.459328928438398 \tabularnewline
94 & 14 & 12.6740457027538 & 1.32595429724622 \tabularnewline
95 & 13 & 14.1539764902371 & -1.15397649023708 \tabularnewline
96 & 16 & 15.9826154005127 & 0.0173845994872993 \tabularnewline
97 & 12 & 12.4778623697042 & -0.477862369704175 \tabularnewline
98 & 14 & 14.9276048895712 & -0.927604889571163 \tabularnewline
99 & 17 & 15.6596474126952 & 1.34035258730478 \tabularnewline
100 & 15 & 14.6621489362737 & 0.337851063726275 \tabularnewline
101 & 17 & 15.8470758040679 & 1.15292419593205 \tabularnewline
102 & 12 & 12.6428292546157 & -0.642829254615677 \tabularnewline
103 & 16 & 15.8690776457985 & 0.130922354201517 \tabularnewline
104 & 11 & 13.8301327565398 & -2.83013275653977 \tabularnewline
105 & 15 & 14.4156460274657 & 0.584353972534306 \tabularnewline
106 & 9 & 11.0912333885881 & -2.09123338858809 \tabularnewline
107 & 16 & 14.5178627027905 & 1.48213729720953 \tabularnewline
108 & 15 & 14.0396424213763 & 0.960357578623659 \tabularnewline
109 & 10 & 12.5709745711477 & -2.57097457114771 \tabularnewline
110 & 10 & 10.0817441894812 & -0.0817441894811905 \tabularnewline
111 & 15 & 14.4854176859255 & 0.514582314074452 \tabularnewline
112 & 11 & 12.6155872442189 & -1.61558724421887 \tabularnewline
113 & 13 & 16.2289050013754 & -3.22890500137544 \tabularnewline
114 & 14 & 11.9808939991625 & 2.01910600083749 \tabularnewline
115 & 18 & 15.0399726930887 & 2.96002730691131 \tabularnewline
116 & 16 & 15.273693879353 & 0.72630612064702 \tabularnewline
117 & 14 & 14.0514094874081 & -0.0514094874081292 \tabularnewline
118 & 14 & 13.8719627306605 & 0.128037269339494 \tabularnewline
119 & 14 & 14.5936121346874 & -0.593612134687446 \tabularnewline
120 & 14 & 14.6404301147931 & -0.640430114793107 \tabularnewline
121 & 12 & 12.3192699891059 & -0.319269989105903 \tabularnewline
122 & 14 & 13.1495843393045 & 0.850415660695499 \tabularnewline
123 & 15 & 15.8596531556732 & -0.859653155673191 \tabularnewline
124 & 15 & 15.4224057707189 & -0.422405770718911 \tabularnewline
125 & 15 & 14.9113158660432 & 0.0886841339567667 \tabularnewline
126 & 13 & 13.9968234078691 & -0.996823407869108 \tabularnewline
127 & 17 & 17.0394036387198 & -0.0394036387198468 \tabularnewline
128 & 17 & 15.6521636702678 & 1.34783632973218 \tabularnewline
129 & 19 & 15.8589686276712 & 3.14103137232879 \tabularnewline
130 & 15 & 13.1417750795587 & 1.85822492044134 \tabularnewline
131 & 13 & 14.2545109163481 & -1.25451091634805 \tabularnewline
132 & 9 & 11.2893208994391 & -2.28932089943914 \tabularnewline
133 & 15 & 15.4057530604746 & -0.405753060474594 \tabularnewline
134 & 15 & 12.3187681810567 & 2.68123181894325 \tabularnewline
135 & 15 & 15.0729608592093 & -0.0729608592092801 \tabularnewline
136 & 16 & 12.8552870361808 & 3.14471296381922 \tabularnewline
137 & 11 & 9.77827154437156 & 1.22172845562844 \tabularnewline
138 & 14 & 12.7493110850331 & 1.25068891496686 \tabularnewline
139 & 11 & 12.8047963720491 & -1.80479637204905 \tabularnewline
140 & 15 & 14.1748590354367 & 0.825140964563255 \tabularnewline
141 & 13 & 14.5653320092836 & -1.5653320092836 \tabularnewline
142 & 15 & 14.2912409165721 & 0.708759083427851 \tabularnewline
143 & 16 & 13.5441452794938 & 2.45585472050621 \tabularnewline
144 & 14 & 15.1440082250437 & -1.14400822504374 \tabularnewline
145 & 15 & 13.4345744553235 & 1.56542554467648 \tabularnewline
146 & 16 & 14.7381707323768 & 1.26182926762321 \tabularnewline
147 & 16 & 14.6808924547411 & 1.31910754525886 \tabularnewline
148 & 11 & 12.9616085721338 & -1.96160857213376 \tabularnewline
149 & 12 & 15.1318190267411 & -3.13181902674109 \tabularnewline
150 & 9 & 11.2136817252037 & -2.21368172520365 \tabularnewline
151 & 16 & 15.6312903631357 & 0.368709636864285 \tabularnewline
152 & 13 & 12.8851898457535 & 0.114810154246494 \tabularnewline
153 & 16 & 16.7425975252669 & -0.742597525266862 \tabularnewline
154 & 12 & 14.6401056752832 & -2.64010567528317 \tabularnewline
155 & 9 & 11.4781085234895 & -2.4781085234895 \tabularnewline
156 & 13 & 12.4523082538588 & 0.547691746141177 \tabularnewline
157 & 13 & 12.1729621438485 & 0.827037856151482 \tabularnewline
158 & 14 & 13.7835819470837 & 0.216418052916265 \tabularnewline
159 & 19 & 15.6221401862049 & 3.37785981379515 \tabularnewline
160 & 13 & 15.1481953308108 & -2.14819533081078 \tabularnewline
161 & 12 & 13.2181386505488 & -1.21813865054881 \tabularnewline
162 & 13 & 12.3204201055537 & 0.679579894446278 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]14[/C][C]13.4974993019156[/C][C]0.502500698084415[/C][/ROW]
[ROW][C]2[/C][C]18[/C][C]15.1405206275074[/C][C]2.85947937249255[/C][/ROW]
[ROW][C]3[/C][C]11[/C][C]14.0513302476591[/C][C]-3.05133024765908[/C][/ROW]
[ROW][C]4[/C][C]12[/C][C]13.9271549734614[/C][C]-1.92715497346142[/C][/ROW]
[ROW][C]5[/C][C]16[/C][C]11.9094264372422[/C][C]4.09057356275779[/C][/ROW]
[ROW][C]6[/C][C]18[/C][C]13.5569474272449[/C][C]4.44305257275511[/C][/ROW]
[ROW][C]7[/C][C]14[/C][C]11.2465268006201[/C][C]2.7534731993799[/C][/ROW]
[ROW][C]8[/C][C]14[/C][C]14.5690182801896[/C][C]-0.569018280189591[/C][/ROW]
[ROW][C]9[/C][C]15[/C][C]15.8269372848301[/C][C]-0.826937284830122[/C][/ROW]
[ROW][C]10[/C][C]15[/C][C]14.2758409498266[/C][C]0.724159050173419[/C][/ROW]
[ROW][C]11[/C][C]17[/C][C]14.7539301641478[/C][C]2.24606983585224[/C][/ROW]
[ROW][C]12[/C][C]19[/C][C]15.8557128284973[/C][C]3.14428717150275[/C][/ROW]
[ROW][C]13[/C][C]10[/C][C]12.8568964703074[/C][C]-2.85689647030739[/C][/ROW]
[ROW][C]14[/C][C]16[/C][C]13.5291839972933[/C][C]2.47081600270674[/C][/ROW]
[ROW][C]15[/C][C]18[/C][C]16.0589427414605[/C][C]1.9410572585395[/C][/ROW]
[ROW][C]16[/C][C]14[/C][C]12.5230785810638[/C][C]1.47692141893624[/C][/ROW]
[ROW][C]17[/C][C]14[/C][C]14.3652812602964[/C][C]-0.365281260296428[/C][/ROW]
[ROW][C]18[/C][C]17[/C][C]15.290968932544[/C][C]1.70903106745596[/C][/ROW]
[ROW][C]19[/C][C]14[/C][C]16.1421382010196[/C][C]-2.14213820101956[/C][/ROW]
[ROW][C]20[/C][C]16[/C][C]13.1804701746001[/C][C]2.81952982539989[/C][/ROW]
[ROW][C]21[/C][C]18[/C][C]16.6550731358995[/C][C]1.34492686410049[/C][/ROW]
[ROW][C]22[/C][C]11[/C][C]12.6986990265441[/C][C]-1.69869902654407[/C][/ROW]
[ROW][C]23[/C][C]14[/C][C]13.9138965603826[/C][C]0.0861034396174205[/C][/ROW]
[ROW][C]24[/C][C]12[/C][C]14.1612576261413[/C][C]-2.16125762614132[/C][/ROW]
[ROW][C]25[/C][C]17[/C][C]14.9924127097268[/C][C]2.00758729027322[/C][/ROW]
[ROW][C]26[/C][C]9[/C][C]15.6561500260502[/C][C]-6.65615002605025[/C][/ROW]
[ROW][C]27[/C][C]16[/C][C]15.7946431276722[/C][C]0.205356872327771[/C][/ROW]
[ROW][C]28[/C][C]14[/C][C]12.5407805458876[/C][C]1.45921945411238[/C][/ROW]
[ROW][C]29[/C][C]15[/C][C]14.4520991622292[/C][C]0.547900837770814[/C][/ROW]
[ROW][C]30[/C][C]11[/C][C]13.0779458969188[/C][C]-2.07794589691875[/C][/ROW]
[ROW][C]31[/C][C]16[/C][C]15.8289710546179[/C][C]0.171028945382111[/C][/ROW]
[ROW][C]32[/C][C]13[/C][C]12.2632142847049[/C][C]0.736785715295122[/C][/ROW]
[ROW][C]33[/C][C]17[/C][C]15.6936508558796[/C][C]1.30634914412037[/C][/ROW]
[ROW][C]34[/C][C]15[/C][C]14.5846867391197[/C][C]0.415313260880307[/C][/ROW]
[ROW][C]35[/C][C]14[/C][C]13.2392850696611[/C][C]0.760714930338873[/C][/ROW]
[ROW][C]36[/C][C]16[/C][C]15.6446482470382[/C][C]0.355351752961835[/C][/ROW]
[ROW][C]37[/C][C]9[/C][C]10.5717698595048[/C][C]-1.57176985950479[/C][/ROW]
[ROW][C]38[/C][C]15[/C][C]14.0462062886325[/C][C]0.953793711367533[/C][/ROW]
[ROW][C]39[/C][C]17[/C][C]15.6085822978899[/C][C]1.39141770211009[/C][/ROW]
[ROW][C]40[/C][C]13[/C][C]14.5484079949121[/C][C]-1.54840799491211[/C][/ROW]
[ROW][C]41[/C][C]15[/C][C]16.137632139359[/C][C]-1.13763213935895[/C][/ROW]
[ROW][C]42[/C][C]16[/C][C]12.9972733453711[/C][C]3.0027266546289[/C][/ROW]
[ROW][C]43[/C][C]16[/C][C]16.1197963902802[/C][C]-0.11979639028016[/C][/ROW]
[ROW][C]44[/C][C]12[/C][C]12.8697300642282[/C][C]-0.869730064228191[/C][/ROW]
[ROW][C]45[/C][C]12[/C][C]15.1329916599772[/C][C]-3.13299165997719[/C][/ROW]
[ROW][C]46[/C][C]11[/C][C]13.0808655264894[/C][C]-2.08086552648935[/C][/ROW]
[ROW][C]47[/C][C]15[/C][C]14.643064188511[/C][C]0.356935811488987[/C][/ROW]
[ROW][C]48[/C][C]15[/C][C]15.3194506496632[/C][C]-0.319450649663228[/C][/ROW]
[ROW][C]49[/C][C]17[/C][C]13.4352453023156[/C][C]3.56475469768436[/C][/ROW]
[ROW][C]50[/C][C]13[/C][C]14.5026869115115[/C][C]-1.50268691151147[/C][/ROW]
[ROW][C]51[/C][C]16[/C][C]15.6517902275984[/C][C]0.348209772401606[/C][/ROW]
[ROW][C]52[/C][C]14[/C][C]12.7124250316776[/C][C]1.28757496832237[/C][/ROW]
[ROW][C]53[/C][C]11[/C][C]12.2040247150566[/C][C]-1.2040247150566[/C][/ROW]
[ROW][C]54[/C][C]12[/C][C]12.6566746927878[/C][C]-0.656674692787771[/C][/ROW]
[ROW][C]55[/C][C]12[/C][C]15.0017655764505[/C][C]-3.00176557645045[/C][/ROW]
[ROW][C]56[/C][C]15[/C][C]14.4680713635992[/C][C]0.531928636400828[/C][/ROW]
[ROW][C]57[/C][C]16[/C][C]15.0178944787386[/C][C]0.982105521261361[/C][/ROW]
[ROW][C]58[/C][C]15[/C][C]14.560078741447[/C][C]0.439921258553019[/C][/ROW]
[ROW][C]59[/C][C]12[/C][C]14.7775316327853[/C][C]-2.77753163278528[/C][/ROW]
[ROW][C]60[/C][C]12[/C][C]14.0449723017412[/C][C]-2.04497230174125[/C][/ROW]
[ROW][C]61[/C][C]8[/C][C]10.2142835927717[/C][C]-2.21428359277173[/C][/ROW]
[ROW][C]62[/C][C]13[/C][C]14.5873463090955[/C][C]-1.58734630909546[/C][/ROW]
[ROW][C]63[/C][C]11[/C][C]15.0605187612416[/C][C]-4.06051876124159[/C][/ROW]
[ROW][C]64[/C][C]14[/C][C]12.4858894047386[/C][C]1.51411059526138[/C][/ROW]
[ROW][C]65[/C][C]15[/C][C]13.9229970688027[/C][C]1.07700293119726[/C][/ROW]
[ROW][C]66[/C][C]10[/C][C]14.5624496729493[/C][C]-4.56244967294929[/C][/ROW]
[ROW][C]67[/C][C]11[/C][C]13.3357564154145[/C][C]-2.33575641541446[/C][/ROW]
[ROW][C]68[/C][C]12[/C][C]14.0897653939569[/C][C]-2.08976539395687[/C][/ROW]
[ROW][C]69[/C][C]15[/C][C]14.6827876839914[/C][C]0.317212316008584[/C][/ROW]
[ROW][C]70[/C][C]15[/C][C]13.2857886848117[/C][C]1.71421131518825[/C][/ROW]
[ROW][C]71[/C][C]14[/C][C]13.1644559445886[/C][C]0.835544055411354[/C][/ROW]
[ROW][C]72[/C][C]16[/C][C]13.4750508868805[/C][C]2.52494911311949[/C][/ROW]
[ROW][C]73[/C][C]15[/C][C]14.2144976361211[/C][C]0.785502363878908[/C][/ROW]
[ROW][C]74[/C][C]15[/C][C]15.5107516448428[/C][C]-0.510751644842808[/C][/ROW]
[ROW][C]75[/C][C]13[/C][C]15.2456812518827[/C][C]-2.24568125188269[/C][/ROW]
[ROW][C]76[/C][C]12[/C][C]11.8756277571766[/C][C]0.124372242823387[/C][/ROW]
[ROW][C]77[/C][C]17[/C][C]14.7088740428008[/C][C]2.29112595719916[/C][/ROW]
[ROW][C]78[/C][C]13[/C][C]11.8228263702883[/C][C]1.1771736297117[/C][/ROW]
[ROW][C]79[/C][C]15[/C][C]14.3001521174501[/C][C]0.699847882549907[/C][/ROW]
[ROW][C]80[/C][C]13[/C][C]14.3237306674119[/C][C]-1.3237306674119[/C][/ROW]
[ROW][C]81[/C][C]15[/C][C]15.8973822951496[/C][C]-0.897382295149599[/C][/ROW]
[ROW][C]82[/C][C]16[/C][C]14.8036768383452[/C][C]1.19632316165479[/C][/ROW]
[ROW][C]83[/C][C]15[/C][C]14.9656203928773[/C][C]0.0343796071227446[/C][/ROW]
[ROW][C]84[/C][C]16[/C][C]14.9505821450144[/C][C]1.04941785498557[/C][/ROW]
[ROW][C]85[/C][C]15[/C][C]13.8359985377326[/C][C]1.16400146226743[/C][/ROW]
[ROW][C]86[/C][C]14[/C][C]14.0276999161927[/C][C]-0.0276999161927164[/C][/ROW]
[ROW][C]87[/C][C]15[/C][C]15.1477995901464[/C][C]-0.147799590146373[/C][/ROW]
[ROW][C]88[/C][C]14[/C][C]13.7214028207454[/C][C]0.278597179254605[/C][/ROW]
[ROW][C]89[/C][C]13[/C][C]13.184139281065[/C][C]-0.184139281064952[/C][/ROW]
[ROW][C]90[/C][C]7[/C][C]10.130954084458[/C][C]-3.13095408445804[/C][/ROW]
[ROW][C]91[/C][C]17[/C][C]14.6403527313555[/C][C]2.3596472686445[/C][/ROW]
[ROW][C]92[/C][C]13[/C][C]12.4199605839585[/C][C]0.580039416041543[/C][/ROW]
[ROW][C]93[/C][C]15[/C][C]15.4593289284384[/C][C]-0.459328928438398[/C][/ROW]
[ROW][C]94[/C][C]14[/C][C]12.6740457027538[/C][C]1.32595429724622[/C][/ROW]
[ROW][C]95[/C][C]13[/C][C]14.1539764902371[/C][C]-1.15397649023708[/C][/ROW]
[ROW][C]96[/C][C]16[/C][C]15.9826154005127[/C][C]0.0173845994872993[/C][/ROW]
[ROW][C]97[/C][C]12[/C][C]12.4778623697042[/C][C]-0.477862369704175[/C][/ROW]
[ROW][C]98[/C][C]14[/C][C]14.9276048895712[/C][C]-0.927604889571163[/C][/ROW]
[ROW][C]99[/C][C]17[/C][C]15.6596474126952[/C][C]1.34035258730478[/C][/ROW]
[ROW][C]100[/C][C]15[/C][C]14.6621489362737[/C][C]0.337851063726275[/C][/ROW]
[ROW][C]101[/C][C]17[/C][C]15.8470758040679[/C][C]1.15292419593205[/C][/ROW]
[ROW][C]102[/C][C]12[/C][C]12.6428292546157[/C][C]-0.642829254615677[/C][/ROW]
[ROW][C]103[/C][C]16[/C][C]15.8690776457985[/C][C]0.130922354201517[/C][/ROW]
[ROW][C]104[/C][C]11[/C][C]13.8301327565398[/C][C]-2.83013275653977[/C][/ROW]
[ROW][C]105[/C][C]15[/C][C]14.4156460274657[/C][C]0.584353972534306[/C][/ROW]
[ROW][C]106[/C][C]9[/C][C]11.0912333885881[/C][C]-2.09123338858809[/C][/ROW]
[ROW][C]107[/C][C]16[/C][C]14.5178627027905[/C][C]1.48213729720953[/C][/ROW]
[ROW][C]108[/C][C]15[/C][C]14.0396424213763[/C][C]0.960357578623659[/C][/ROW]
[ROW][C]109[/C][C]10[/C][C]12.5709745711477[/C][C]-2.57097457114771[/C][/ROW]
[ROW][C]110[/C][C]10[/C][C]10.0817441894812[/C][C]-0.0817441894811905[/C][/ROW]
[ROW][C]111[/C][C]15[/C][C]14.4854176859255[/C][C]0.514582314074452[/C][/ROW]
[ROW][C]112[/C][C]11[/C][C]12.6155872442189[/C][C]-1.61558724421887[/C][/ROW]
[ROW][C]113[/C][C]13[/C][C]16.2289050013754[/C][C]-3.22890500137544[/C][/ROW]
[ROW][C]114[/C][C]14[/C][C]11.9808939991625[/C][C]2.01910600083749[/C][/ROW]
[ROW][C]115[/C][C]18[/C][C]15.0399726930887[/C][C]2.96002730691131[/C][/ROW]
[ROW][C]116[/C][C]16[/C][C]15.273693879353[/C][C]0.72630612064702[/C][/ROW]
[ROW][C]117[/C][C]14[/C][C]14.0514094874081[/C][C]-0.0514094874081292[/C][/ROW]
[ROW][C]118[/C][C]14[/C][C]13.8719627306605[/C][C]0.128037269339494[/C][/ROW]
[ROW][C]119[/C][C]14[/C][C]14.5936121346874[/C][C]-0.593612134687446[/C][/ROW]
[ROW][C]120[/C][C]14[/C][C]14.6404301147931[/C][C]-0.640430114793107[/C][/ROW]
[ROW][C]121[/C][C]12[/C][C]12.3192699891059[/C][C]-0.319269989105903[/C][/ROW]
[ROW][C]122[/C][C]14[/C][C]13.1495843393045[/C][C]0.850415660695499[/C][/ROW]
[ROW][C]123[/C][C]15[/C][C]15.8596531556732[/C][C]-0.859653155673191[/C][/ROW]
[ROW][C]124[/C][C]15[/C][C]15.4224057707189[/C][C]-0.422405770718911[/C][/ROW]
[ROW][C]125[/C][C]15[/C][C]14.9113158660432[/C][C]0.0886841339567667[/C][/ROW]
[ROW][C]126[/C][C]13[/C][C]13.9968234078691[/C][C]-0.996823407869108[/C][/ROW]
[ROW][C]127[/C][C]17[/C][C]17.0394036387198[/C][C]-0.0394036387198468[/C][/ROW]
[ROW][C]128[/C][C]17[/C][C]15.6521636702678[/C][C]1.34783632973218[/C][/ROW]
[ROW][C]129[/C][C]19[/C][C]15.8589686276712[/C][C]3.14103137232879[/C][/ROW]
[ROW][C]130[/C][C]15[/C][C]13.1417750795587[/C][C]1.85822492044134[/C][/ROW]
[ROW][C]131[/C][C]13[/C][C]14.2545109163481[/C][C]-1.25451091634805[/C][/ROW]
[ROW][C]132[/C][C]9[/C][C]11.2893208994391[/C][C]-2.28932089943914[/C][/ROW]
[ROW][C]133[/C][C]15[/C][C]15.4057530604746[/C][C]-0.405753060474594[/C][/ROW]
[ROW][C]134[/C][C]15[/C][C]12.3187681810567[/C][C]2.68123181894325[/C][/ROW]
[ROW][C]135[/C][C]15[/C][C]15.0729608592093[/C][C]-0.0729608592092801[/C][/ROW]
[ROW][C]136[/C][C]16[/C][C]12.8552870361808[/C][C]3.14471296381922[/C][/ROW]
[ROW][C]137[/C][C]11[/C][C]9.77827154437156[/C][C]1.22172845562844[/C][/ROW]
[ROW][C]138[/C][C]14[/C][C]12.7493110850331[/C][C]1.25068891496686[/C][/ROW]
[ROW][C]139[/C][C]11[/C][C]12.8047963720491[/C][C]-1.80479637204905[/C][/ROW]
[ROW][C]140[/C][C]15[/C][C]14.1748590354367[/C][C]0.825140964563255[/C][/ROW]
[ROW][C]141[/C][C]13[/C][C]14.5653320092836[/C][C]-1.5653320092836[/C][/ROW]
[ROW][C]142[/C][C]15[/C][C]14.2912409165721[/C][C]0.708759083427851[/C][/ROW]
[ROW][C]143[/C][C]16[/C][C]13.5441452794938[/C][C]2.45585472050621[/C][/ROW]
[ROW][C]144[/C][C]14[/C][C]15.1440082250437[/C][C]-1.14400822504374[/C][/ROW]
[ROW][C]145[/C][C]15[/C][C]13.4345744553235[/C][C]1.56542554467648[/C][/ROW]
[ROW][C]146[/C][C]16[/C][C]14.7381707323768[/C][C]1.26182926762321[/C][/ROW]
[ROW][C]147[/C][C]16[/C][C]14.6808924547411[/C][C]1.31910754525886[/C][/ROW]
[ROW][C]148[/C][C]11[/C][C]12.9616085721338[/C][C]-1.96160857213376[/C][/ROW]
[ROW][C]149[/C][C]12[/C][C]15.1318190267411[/C][C]-3.13181902674109[/C][/ROW]
[ROW][C]150[/C][C]9[/C][C]11.2136817252037[/C][C]-2.21368172520365[/C][/ROW]
[ROW][C]151[/C][C]16[/C][C]15.6312903631357[/C][C]0.368709636864285[/C][/ROW]
[ROW][C]152[/C][C]13[/C][C]12.8851898457535[/C][C]0.114810154246494[/C][/ROW]
[ROW][C]153[/C][C]16[/C][C]16.7425975252669[/C][C]-0.742597525266862[/C][/ROW]
[ROW][C]154[/C][C]12[/C][C]14.6401056752832[/C][C]-2.64010567528317[/C][/ROW]
[ROW][C]155[/C][C]9[/C][C]11.4781085234895[/C][C]-2.4781085234895[/C][/ROW]
[ROW][C]156[/C][C]13[/C][C]12.4523082538588[/C][C]0.547691746141177[/C][/ROW]
[ROW][C]157[/C][C]13[/C][C]12.1729621438485[/C][C]0.827037856151482[/C][/ROW]
[ROW][C]158[/C][C]14[/C][C]13.7835819470837[/C][C]0.216418052916265[/C][/ROW]
[ROW][C]159[/C][C]19[/C][C]15.6221401862049[/C][C]3.37785981379515[/C][/ROW]
[ROW][C]160[/C][C]13[/C][C]15.1481953308108[/C][C]-2.14819533081078[/C][/ROW]
[ROW][C]161[/C][C]12[/C][C]13.2181386505488[/C][C]-1.21813865054881[/C][/ROW]
[ROW][C]162[/C][C]13[/C][C]12.3204201055537[/C][C]0.679579894446278[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11413.49749930191560.502500698084415
21815.14052062750742.85947937249255
31114.0513302476591-3.05133024765908
41213.9271549734614-1.92715497346142
51611.90942643724224.09057356275779
61813.55694742724494.44305257275511
71411.24652680062012.7534731993799
81414.5690182801896-0.569018280189591
91515.8269372848301-0.826937284830122
101514.27584094982660.724159050173419
111714.75393016414782.24606983585224
121915.85571282849733.14428717150275
131012.8568964703074-2.85689647030739
141613.52918399729332.47081600270674
151816.05894274146051.9410572585395
161412.52307858106381.47692141893624
171414.3652812602964-0.365281260296428
181715.2909689325441.70903106745596
191416.1421382010196-2.14213820101956
201613.18047017460012.81952982539989
211816.65507313589951.34492686410049
221112.6986990265441-1.69869902654407
231413.91389656038260.0861034396174205
241214.1612576261413-2.16125762614132
251714.99241270972682.00758729027322
26915.6561500260502-6.65615002605025
271615.79464312767220.205356872327771
281412.54078054588761.45921945411238
291514.45209916222920.547900837770814
301113.0779458969188-2.07794589691875
311615.82897105461790.171028945382111
321312.26321428470490.736785715295122
331715.69365085587961.30634914412037
341514.58468673911970.415313260880307
351413.23928506966110.760714930338873
361615.64464824703820.355351752961835
37910.5717698595048-1.57176985950479
381514.04620628863250.953793711367533
391715.60858229788991.39141770211009
401314.5484079949121-1.54840799491211
411516.137632139359-1.13763213935895
421612.99727334537113.0027266546289
431616.1197963902802-0.11979639028016
441212.8697300642282-0.869730064228191
451215.1329916599772-3.13299165997719
461113.0808655264894-2.08086552648935
471514.6430641885110.356935811488987
481515.3194506496632-0.319450649663228
491713.43524530231563.56475469768436
501314.5026869115115-1.50268691151147
511615.65179022759840.348209772401606
521412.71242503167761.28757496832237
531112.2040247150566-1.2040247150566
541212.6566746927878-0.656674692787771
551215.0017655764505-3.00176557645045
561514.46807136359920.531928636400828
571615.01789447873860.982105521261361
581514.5600787414470.439921258553019
591214.7775316327853-2.77753163278528
601214.0449723017412-2.04497230174125
61810.2142835927717-2.21428359277173
621314.5873463090955-1.58734630909546
631115.0605187612416-4.06051876124159
641412.48588940473861.51411059526138
651513.92299706880271.07700293119726
661014.5624496729493-4.56244967294929
671113.3357564154145-2.33575641541446
681214.0897653939569-2.08976539395687
691514.68278768399140.317212316008584
701513.28578868481171.71421131518825
711413.16445594458860.835544055411354
721613.47505088688052.52494911311949
731514.21449763612110.785502363878908
741515.5107516448428-0.510751644842808
751315.2456812518827-2.24568125188269
761211.87562775717660.124372242823387
771714.70887404280082.29112595719916
781311.82282637028831.1771736297117
791514.30015211745010.699847882549907
801314.3237306674119-1.3237306674119
811515.8973822951496-0.897382295149599
821614.80367683834521.19632316165479
831514.96562039287730.0343796071227446
841614.95058214501441.04941785498557
851513.83599853773261.16400146226743
861414.0276999161927-0.0276999161927164
871515.1477995901464-0.147799590146373
881413.72140282074540.278597179254605
891313.184139281065-0.184139281064952
90710.130954084458-3.13095408445804
911714.64035273135552.3596472686445
921312.41996058395850.580039416041543
931515.4593289284384-0.459328928438398
941412.67404570275381.32595429724622
951314.1539764902371-1.15397649023708
961615.98261540051270.0173845994872993
971212.4778623697042-0.477862369704175
981414.9276048895712-0.927604889571163
991715.65964741269521.34035258730478
1001514.66214893627370.337851063726275
1011715.84707580406791.15292419593205
1021212.6428292546157-0.642829254615677
1031615.86907764579850.130922354201517
1041113.8301327565398-2.83013275653977
1051514.41564602746570.584353972534306
106911.0912333885881-2.09123338858809
1071614.51786270279051.48213729720953
1081514.03964242137630.960357578623659
1091012.5709745711477-2.57097457114771
1101010.0817441894812-0.0817441894811905
1111514.48541768592550.514582314074452
1121112.6155872442189-1.61558724421887
1131316.2289050013754-3.22890500137544
1141411.98089399916252.01910600083749
1151815.03997269308872.96002730691131
1161615.2736938793530.72630612064702
1171414.0514094874081-0.0514094874081292
1181413.87196273066050.128037269339494
1191414.5936121346874-0.593612134687446
1201414.6404301147931-0.640430114793107
1211212.3192699891059-0.319269989105903
1221413.14958433930450.850415660695499
1231515.8596531556732-0.859653155673191
1241515.4224057707189-0.422405770718911
1251514.91131586604320.0886841339567667
1261313.9968234078691-0.996823407869108
1271717.0394036387198-0.0394036387198468
1281715.65216367026781.34783632973218
1291915.85896862767123.14103137232879
1301513.14177507955871.85822492044134
1311314.2545109163481-1.25451091634805
132911.2893208994391-2.28932089943914
1331515.4057530604746-0.405753060474594
1341512.31876818105672.68123181894325
1351515.0729608592093-0.0729608592092801
1361612.85528703618083.14471296381922
137119.778271544371561.22172845562844
1381412.74931108503311.25068891496686
1391112.8047963720491-1.80479637204905
1401514.17485903543670.825140964563255
1411314.5653320092836-1.5653320092836
1421514.29124091657210.708759083427851
1431613.54414527949382.45585472050621
1441415.1440082250437-1.14400822504374
1451513.43457445532351.56542554467648
1461614.73817073237681.26182926762321
1471614.68089245474111.31910754525886
1481112.9616085721338-1.96160857213376
1491215.1318190267411-3.13181902674109
150911.2136817252037-2.21368172520365
1511615.63129036313570.368709636864285
1521312.88518984575350.114810154246494
1531616.7425975252669-0.742597525266862
1541214.6401056752832-2.64010567528317
155911.4781085234895-2.4781085234895
1561312.45230825385880.547691746141177
1571312.17296214384850.827037856151482
1581413.78358194708370.216418052916265
1591915.62214018620493.37785981379515
1601315.1481953308108-2.14819533081078
1611213.2181386505488-1.21813865054881
1621312.32042010555370.679579894446278







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
220.9846745037510120.03065099249797670.0153254962489884
230.9801336907030590.03973261859388260.0198663092969413
240.9847560782391960.03048784352160830.0152439217608041
250.9823523290357220.03529534192855560.0176476709642778
260.9999334410000110.0001331179999789316.65589999894656e-05
270.9999244985179480.0001510029641035357.55014820517675e-05
280.9999205224886370.000158955022726537.94775113632648e-05
290.9998439791408670.0003120417182664820.000156020859133241
300.9999117228066680.0001765543866642578.82771933321285e-05
310.9998625433720480.0002749132559037050.000137456627951853
320.9998191196949920.0003617606100158950.000180880305007948
330.9996724514842820.0006550970314368290.000327548515718415
340.9995382416228930.0009235167542132930.000461758377106646
350.999530190386110.0009396192277796850.000469809613889843
360.9991638366393570.001672326721286120.000836163360643058
370.9990007545661830.001998490867633640.000999245433816821
380.9986035958218950.002792808356210650.00139640417810532
390.9983307618426720.003338476314656160.00166923815732808
400.9978819616674440.004236076665112760.00211803833255638
410.9968698321410090.00626033571798230.00313016785899115
420.9968251391472210.006349721705558110.00317486085277905
430.9950557655071670.009888468985665140.00494423449283257
440.9942053133631220.01158937327375650.00579468663687825
450.997031492757290.005937014485420490.00296850724271024
460.9968501859416570.006299628116686020.00314981405834301
470.9951902061906310.00961958761873760.0048097938093688
480.9934892171209610.01302156575807870.00651078287903934
490.9960406677398450.007918664520310140.00395933226015507
500.9950216690581310.009956661883737850.00497833094186893
510.9926800818671590.0146398362656820.00731991813284098
520.9905529218903530.01889415621929430.00944707810964716
530.9889600375265770.02207992494684590.011039962473423
540.9847979109876810.03040417802463830.0152020890123192
550.9897926214305660.02041475713886850.0102073785694342
560.9857842443130180.02843151137396440.0142157556869822
570.980510968807880.03897806238423980.0194890311921199
580.9750010418328880.04999791633422360.0249989581671118
590.9838284630159310.03234307396813840.0161715369840692
600.9876602695384510.02467946092309710.0123397304615485
610.9880916782824930.0238166434350140.011908321717507
620.98664493498730.02671013002540060.0133550650127003
630.9954154798031890.00916904039362260.0045845201968113
640.9944303365157010.01113932696859710.00556966348429856
650.9927557524590260.01448849508194840.00724424754097421
660.9989493910869210.002101217826158350.00105060891307917
670.999183565868450.001632868263099740.000816434131549871
680.9992339158255330.001532168348934940.000766084174467471
690.9988207647421170.002358470515765630.00117923525788281
700.9986831692179370.002633661564125990.001316830782063
710.9981454274132860.003709145173427970.00185457258671398
720.9984695356369730.003060928726054150.00153046436302707
730.9979226459181150.004154708163769750.00207735408188487
740.9970762700128680.005847459974263550.00292372998713177
750.9979837651043780.004032469791244770.00201623489562238
760.9970237991199860.005952401760027150.00297620088001358
770.9977161300411620.004567739917675370.00228386995883768
780.9970477600280490.00590447994390110.00295223997195055
790.99585703255720.008285934885599240.00414296744279962
800.9958700169818870.008259966036226570.00412998301811329
810.9948568267033980.01028634659320350.00514317329660177
820.9931584699587290.01368306008254220.00684153004127109
830.9903105994271330.01937880114573390.00968940057286696
840.9871840401013460.02563191979730730.0128159598986537
850.9850282256258710.02994354874825760.0149717743741288
860.9803289377978510.0393421244042980.019671062202149
870.9741255226420010.05174895471599830.0258744773579991
880.9659963200807440.06800735983851160.0340036799192558
890.9563730623060660.08725387538786750.0436269376939338
900.9707821328754680.05843573424906350.0292178671245317
910.9738897428755210.05222051424895820.0261102571244791
920.9655972245968120.06880555080637660.0344027754031883
930.9556971811032150.08860563779357060.0443028188967853
940.9485403369471370.1029193261057270.0514596630528634
950.9385359713554320.1229280572891360.0614640286445682
960.9209082332787360.1581835334425280.0790917667212638
970.899865555856320.200268888287360.10013444414368
980.8991779400038470.2016441199923060.100822059996153
990.8814945221038260.2370109557923480.118505477896174
1000.8603046016408090.2793907967183830.139695398359191
1010.8581851720534560.2836296558930880.141814827946544
1020.8309920637480990.3380158725038020.169007936251901
1030.7938286845349250.412342630930150.206171315465075
1040.885536446351480.228927107297040.11446355364852
1050.8629885339339390.2740229321321210.137011466066061
1060.870941600287170.258116799425660.12905839971283
1070.8578638488582580.2842723022834840.142136151141742
1080.860782463921480.2784350721570390.13921753607852
1090.8781834276586190.2436331446827610.121816572341381
1100.8458809221221690.3082381557556630.154119077877831
1110.8094829144566360.3810341710867290.190517085543364
1120.7844323556236440.4311352887527120.215567644376356
1130.7907772911221690.4184454177556620.209222708877831
1140.9692585918436280.06148281631274420.0307414081563721
1150.9868055732451430.0263888535097150.0131944267548575
1160.9890139098506150.02197218029876980.0109860901493849
1170.9838085617146960.03238287657060720.0161914382853036
1180.9758451889241360.04830962215172740.0241548110758637
1190.9645662727107310.07086745457853710.0354337272892686
1200.9565152513277350.08696949734452910.0434847486722646
1210.9375784311158130.1248431377683730.0624215688841867
1220.9266317144931930.1467365710136140.0733682855068072
1230.9011395116541530.1977209766916940.0988604883458468
1240.875068921861880.249862156276240.12493107813812
1250.8354763869221780.3290472261556430.164523613077822
1260.7862436009501170.4275127980997660.213756399049883
1270.726223692077430.547552615845140.27377630792257
1280.7556589195663190.4886821608673630.244341080433681
1290.7111542727831430.5776914544337140.288845727216857
1300.6800407323328750.639918535334250.319959267667125
1310.604861932455470.7902761350890610.39513806754453
1320.5265597999955740.9468804000088520.473440200004426
1330.4422659391413950.8845318782827890.557734060858605
1340.3762874594650750.7525749189301490.623712540534925
1350.2896907670002160.5793815340004310.710309232999784
1360.2537543889851070.5075087779702150.746245611014893
1370.4532066095231810.9064132190463610.546793390476819
1380.3889964597428790.7779929194857570.611003540257121
1390.2683286998454350.536657399690870.731671300154565
1400.6604705402216290.6790589195567420.339529459778371

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
22 & 0.984674503751012 & 0.0306509924979767 & 0.0153254962489884 \tabularnewline
23 & 0.980133690703059 & 0.0397326185938826 & 0.0198663092969413 \tabularnewline
24 & 0.984756078239196 & 0.0304878435216083 & 0.0152439217608041 \tabularnewline
25 & 0.982352329035722 & 0.0352953419285556 & 0.0176476709642778 \tabularnewline
26 & 0.999933441000011 & 0.000133117999978931 & 6.65589999894656e-05 \tabularnewline
27 & 0.999924498517948 & 0.000151002964103535 & 7.55014820517675e-05 \tabularnewline
28 & 0.999920522488637 & 0.00015895502272653 & 7.94775113632648e-05 \tabularnewline
29 & 0.999843979140867 & 0.000312041718266482 & 0.000156020859133241 \tabularnewline
30 & 0.999911722806668 & 0.000176554386664257 & 8.82771933321285e-05 \tabularnewline
31 & 0.999862543372048 & 0.000274913255903705 & 0.000137456627951853 \tabularnewline
32 & 0.999819119694992 & 0.000361760610015895 & 0.000180880305007948 \tabularnewline
33 & 0.999672451484282 & 0.000655097031436829 & 0.000327548515718415 \tabularnewline
34 & 0.999538241622893 & 0.000923516754213293 & 0.000461758377106646 \tabularnewline
35 & 0.99953019038611 & 0.000939619227779685 & 0.000469809613889843 \tabularnewline
36 & 0.999163836639357 & 0.00167232672128612 & 0.000836163360643058 \tabularnewline
37 & 0.999000754566183 & 0.00199849086763364 & 0.000999245433816821 \tabularnewline
38 & 0.998603595821895 & 0.00279280835621065 & 0.00139640417810532 \tabularnewline
39 & 0.998330761842672 & 0.00333847631465616 & 0.00166923815732808 \tabularnewline
40 & 0.997881961667444 & 0.00423607666511276 & 0.00211803833255638 \tabularnewline
41 & 0.996869832141009 & 0.0062603357179823 & 0.00313016785899115 \tabularnewline
42 & 0.996825139147221 & 0.00634972170555811 & 0.00317486085277905 \tabularnewline
43 & 0.995055765507167 & 0.00988846898566514 & 0.00494423449283257 \tabularnewline
44 & 0.994205313363122 & 0.0115893732737565 & 0.00579468663687825 \tabularnewline
45 & 0.99703149275729 & 0.00593701448542049 & 0.00296850724271024 \tabularnewline
46 & 0.996850185941657 & 0.00629962811668602 & 0.00314981405834301 \tabularnewline
47 & 0.995190206190631 & 0.0096195876187376 & 0.0048097938093688 \tabularnewline
48 & 0.993489217120961 & 0.0130215657580787 & 0.00651078287903934 \tabularnewline
49 & 0.996040667739845 & 0.00791866452031014 & 0.00395933226015507 \tabularnewline
50 & 0.995021669058131 & 0.00995666188373785 & 0.00497833094186893 \tabularnewline
51 & 0.992680081867159 & 0.014639836265682 & 0.00731991813284098 \tabularnewline
52 & 0.990552921890353 & 0.0188941562192943 & 0.00944707810964716 \tabularnewline
53 & 0.988960037526577 & 0.0220799249468459 & 0.011039962473423 \tabularnewline
54 & 0.984797910987681 & 0.0304041780246383 & 0.0152020890123192 \tabularnewline
55 & 0.989792621430566 & 0.0204147571388685 & 0.0102073785694342 \tabularnewline
56 & 0.985784244313018 & 0.0284315113739644 & 0.0142157556869822 \tabularnewline
57 & 0.98051096880788 & 0.0389780623842398 & 0.0194890311921199 \tabularnewline
58 & 0.975001041832888 & 0.0499979163342236 & 0.0249989581671118 \tabularnewline
59 & 0.983828463015931 & 0.0323430739681384 & 0.0161715369840692 \tabularnewline
60 & 0.987660269538451 & 0.0246794609230971 & 0.0123397304615485 \tabularnewline
61 & 0.988091678282493 & 0.023816643435014 & 0.011908321717507 \tabularnewline
62 & 0.9866449349873 & 0.0267101300254006 & 0.0133550650127003 \tabularnewline
63 & 0.995415479803189 & 0.0091690403936226 & 0.0045845201968113 \tabularnewline
64 & 0.994430336515701 & 0.0111393269685971 & 0.00556966348429856 \tabularnewline
65 & 0.992755752459026 & 0.0144884950819484 & 0.00724424754097421 \tabularnewline
66 & 0.998949391086921 & 0.00210121782615835 & 0.00105060891307917 \tabularnewline
67 & 0.99918356586845 & 0.00163286826309974 & 0.000816434131549871 \tabularnewline
68 & 0.999233915825533 & 0.00153216834893494 & 0.000766084174467471 \tabularnewline
69 & 0.998820764742117 & 0.00235847051576563 & 0.00117923525788281 \tabularnewline
70 & 0.998683169217937 & 0.00263366156412599 & 0.001316830782063 \tabularnewline
71 & 0.998145427413286 & 0.00370914517342797 & 0.00185457258671398 \tabularnewline
72 & 0.998469535636973 & 0.00306092872605415 & 0.00153046436302707 \tabularnewline
73 & 0.997922645918115 & 0.00415470816376975 & 0.00207735408188487 \tabularnewline
74 & 0.997076270012868 & 0.00584745997426355 & 0.00292372998713177 \tabularnewline
75 & 0.997983765104378 & 0.00403246979124477 & 0.00201623489562238 \tabularnewline
76 & 0.997023799119986 & 0.00595240176002715 & 0.00297620088001358 \tabularnewline
77 & 0.997716130041162 & 0.00456773991767537 & 0.00228386995883768 \tabularnewline
78 & 0.997047760028049 & 0.0059044799439011 & 0.00295223997195055 \tabularnewline
79 & 0.9958570325572 & 0.00828593488559924 & 0.00414296744279962 \tabularnewline
80 & 0.995870016981887 & 0.00825996603622657 & 0.00412998301811329 \tabularnewline
81 & 0.994856826703398 & 0.0102863465932035 & 0.00514317329660177 \tabularnewline
82 & 0.993158469958729 & 0.0136830600825422 & 0.00684153004127109 \tabularnewline
83 & 0.990310599427133 & 0.0193788011457339 & 0.00968940057286696 \tabularnewline
84 & 0.987184040101346 & 0.0256319197973073 & 0.0128159598986537 \tabularnewline
85 & 0.985028225625871 & 0.0299435487482576 & 0.0149717743741288 \tabularnewline
86 & 0.980328937797851 & 0.039342124404298 & 0.019671062202149 \tabularnewline
87 & 0.974125522642001 & 0.0517489547159983 & 0.0258744773579991 \tabularnewline
88 & 0.965996320080744 & 0.0680073598385116 & 0.0340036799192558 \tabularnewline
89 & 0.956373062306066 & 0.0872538753878675 & 0.0436269376939338 \tabularnewline
90 & 0.970782132875468 & 0.0584357342490635 & 0.0292178671245317 \tabularnewline
91 & 0.973889742875521 & 0.0522205142489582 & 0.0261102571244791 \tabularnewline
92 & 0.965597224596812 & 0.0688055508063766 & 0.0344027754031883 \tabularnewline
93 & 0.955697181103215 & 0.0886056377935706 & 0.0443028188967853 \tabularnewline
94 & 0.948540336947137 & 0.102919326105727 & 0.0514596630528634 \tabularnewline
95 & 0.938535971355432 & 0.122928057289136 & 0.0614640286445682 \tabularnewline
96 & 0.920908233278736 & 0.158183533442528 & 0.0790917667212638 \tabularnewline
97 & 0.89986555585632 & 0.20026888828736 & 0.10013444414368 \tabularnewline
98 & 0.899177940003847 & 0.201644119992306 & 0.100822059996153 \tabularnewline
99 & 0.881494522103826 & 0.237010955792348 & 0.118505477896174 \tabularnewline
100 & 0.860304601640809 & 0.279390796718383 & 0.139695398359191 \tabularnewline
101 & 0.858185172053456 & 0.283629655893088 & 0.141814827946544 \tabularnewline
102 & 0.830992063748099 & 0.338015872503802 & 0.169007936251901 \tabularnewline
103 & 0.793828684534925 & 0.41234263093015 & 0.206171315465075 \tabularnewline
104 & 0.88553644635148 & 0.22892710729704 & 0.11446355364852 \tabularnewline
105 & 0.862988533933939 & 0.274022932132121 & 0.137011466066061 \tabularnewline
106 & 0.87094160028717 & 0.25811679942566 & 0.12905839971283 \tabularnewline
107 & 0.857863848858258 & 0.284272302283484 & 0.142136151141742 \tabularnewline
108 & 0.86078246392148 & 0.278435072157039 & 0.13921753607852 \tabularnewline
109 & 0.878183427658619 & 0.243633144682761 & 0.121816572341381 \tabularnewline
110 & 0.845880922122169 & 0.308238155755663 & 0.154119077877831 \tabularnewline
111 & 0.809482914456636 & 0.381034171086729 & 0.190517085543364 \tabularnewline
112 & 0.784432355623644 & 0.431135288752712 & 0.215567644376356 \tabularnewline
113 & 0.790777291122169 & 0.418445417755662 & 0.209222708877831 \tabularnewline
114 & 0.969258591843628 & 0.0614828163127442 & 0.0307414081563721 \tabularnewline
115 & 0.986805573245143 & 0.026388853509715 & 0.0131944267548575 \tabularnewline
116 & 0.989013909850615 & 0.0219721802987698 & 0.0109860901493849 \tabularnewline
117 & 0.983808561714696 & 0.0323828765706072 & 0.0161914382853036 \tabularnewline
118 & 0.975845188924136 & 0.0483096221517274 & 0.0241548110758637 \tabularnewline
119 & 0.964566272710731 & 0.0708674545785371 & 0.0354337272892686 \tabularnewline
120 & 0.956515251327735 & 0.0869694973445291 & 0.0434847486722646 \tabularnewline
121 & 0.937578431115813 & 0.124843137768373 & 0.0624215688841867 \tabularnewline
122 & 0.926631714493193 & 0.146736571013614 & 0.0733682855068072 \tabularnewline
123 & 0.901139511654153 & 0.197720976691694 & 0.0988604883458468 \tabularnewline
124 & 0.87506892186188 & 0.24986215627624 & 0.12493107813812 \tabularnewline
125 & 0.835476386922178 & 0.329047226155643 & 0.164523613077822 \tabularnewline
126 & 0.786243600950117 & 0.427512798099766 & 0.213756399049883 \tabularnewline
127 & 0.72622369207743 & 0.54755261584514 & 0.27377630792257 \tabularnewline
128 & 0.755658919566319 & 0.488682160867363 & 0.244341080433681 \tabularnewline
129 & 0.711154272783143 & 0.577691454433714 & 0.288845727216857 \tabularnewline
130 & 0.680040732332875 & 0.63991853533425 & 0.319959267667125 \tabularnewline
131 & 0.60486193245547 & 0.790276135089061 & 0.39513806754453 \tabularnewline
132 & 0.526559799995574 & 0.946880400008852 & 0.473440200004426 \tabularnewline
133 & 0.442265939141395 & 0.884531878282789 & 0.557734060858605 \tabularnewline
134 & 0.376287459465075 & 0.752574918930149 & 0.623712540534925 \tabularnewline
135 & 0.289690767000216 & 0.579381534000431 & 0.710309232999784 \tabularnewline
136 & 0.253754388985107 & 0.507508777970215 & 0.746245611014893 \tabularnewline
137 & 0.453206609523181 & 0.906413219046361 & 0.546793390476819 \tabularnewline
138 & 0.388996459742879 & 0.777992919485757 & 0.611003540257121 \tabularnewline
139 & 0.268328699845435 & 0.53665739969087 & 0.731671300154565 \tabularnewline
140 & 0.660470540221629 & 0.679058919556742 & 0.339529459778371 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]22[/C][C]0.984674503751012[/C][C]0.0306509924979767[/C][C]0.0153254962489884[/C][/ROW]
[ROW][C]23[/C][C]0.980133690703059[/C][C]0.0397326185938826[/C][C]0.0198663092969413[/C][/ROW]
[ROW][C]24[/C][C]0.984756078239196[/C][C]0.0304878435216083[/C][C]0.0152439217608041[/C][/ROW]
[ROW][C]25[/C][C]0.982352329035722[/C][C]0.0352953419285556[/C][C]0.0176476709642778[/C][/ROW]
[ROW][C]26[/C][C]0.999933441000011[/C][C]0.000133117999978931[/C][C]6.65589999894656e-05[/C][/ROW]
[ROW][C]27[/C][C]0.999924498517948[/C][C]0.000151002964103535[/C][C]7.55014820517675e-05[/C][/ROW]
[ROW][C]28[/C][C]0.999920522488637[/C][C]0.00015895502272653[/C][C]7.94775113632648e-05[/C][/ROW]
[ROW][C]29[/C][C]0.999843979140867[/C][C]0.000312041718266482[/C][C]0.000156020859133241[/C][/ROW]
[ROW][C]30[/C][C]0.999911722806668[/C][C]0.000176554386664257[/C][C]8.82771933321285e-05[/C][/ROW]
[ROW][C]31[/C][C]0.999862543372048[/C][C]0.000274913255903705[/C][C]0.000137456627951853[/C][/ROW]
[ROW][C]32[/C][C]0.999819119694992[/C][C]0.000361760610015895[/C][C]0.000180880305007948[/C][/ROW]
[ROW][C]33[/C][C]0.999672451484282[/C][C]0.000655097031436829[/C][C]0.000327548515718415[/C][/ROW]
[ROW][C]34[/C][C]0.999538241622893[/C][C]0.000923516754213293[/C][C]0.000461758377106646[/C][/ROW]
[ROW][C]35[/C][C]0.99953019038611[/C][C]0.000939619227779685[/C][C]0.000469809613889843[/C][/ROW]
[ROW][C]36[/C][C]0.999163836639357[/C][C]0.00167232672128612[/C][C]0.000836163360643058[/C][/ROW]
[ROW][C]37[/C][C]0.999000754566183[/C][C]0.00199849086763364[/C][C]0.000999245433816821[/C][/ROW]
[ROW][C]38[/C][C]0.998603595821895[/C][C]0.00279280835621065[/C][C]0.00139640417810532[/C][/ROW]
[ROW][C]39[/C][C]0.998330761842672[/C][C]0.00333847631465616[/C][C]0.00166923815732808[/C][/ROW]
[ROW][C]40[/C][C]0.997881961667444[/C][C]0.00423607666511276[/C][C]0.00211803833255638[/C][/ROW]
[ROW][C]41[/C][C]0.996869832141009[/C][C]0.0062603357179823[/C][C]0.00313016785899115[/C][/ROW]
[ROW][C]42[/C][C]0.996825139147221[/C][C]0.00634972170555811[/C][C]0.00317486085277905[/C][/ROW]
[ROW][C]43[/C][C]0.995055765507167[/C][C]0.00988846898566514[/C][C]0.00494423449283257[/C][/ROW]
[ROW][C]44[/C][C]0.994205313363122[/C][C]0.0115893732737565[/C][C]0.00579468663687825[/C][/ROW]
[ROW][C]45[/C][C]0.99703149275729[/C][C]0.00593701448542049[/C][C]0.00296850724271024[/C][/ROW]
[ROW][C]46[/C][C]0.996850185941657[/C][C]0.00629962811668602[/C][C]0.00314981405834301[/C][/ROW]
[ROW][C]47[/C][C]0.995190206190631[/C][C]0.0096195876187376[/C][C]0.0048097938093688[/C][/ROW]
[ROW][C]48[/C][C]0.993489217120961[/C][C]0.0130215657580787[/C][C]0.00651078287903934[/C][/ROW]
[ROW][C]49[/C][C]0.996040667739845[/C][C]0.00791866452031014[/C][C]0.00395933226015507[/C][/ROW]
[ROW][C]50[/C][C]0.995021669058131[/C][C]0.00995666188373785[/C][C]0.00497833094186893[/C][/ROW]
[ROW][C]51[/C][C]0.992680081867159[/C][C]0.014639836265682[/C][C]0.00731991813284098[/C][/ROW]
[ROW][C]52[/C][C]0.990552921890353[/C][C]0.0188941562192943[/C][C]0.00944707810964716[/C][/ROW]
[ROW][C]53[/C][C]0.988960037526577[/C][C]0.0220799249468459[/C][C]0.011039962473423[/C][/ROW]
[ROW][C]54[/C][C]0.984797910987681[/C][C]0.0304041780246383[/C][C]0.0152020890123192[/C][/ROW]
[ROW][C]55[/C][C]0.989792621430566[/C][C]0.0204147571388685[/C][C]0.0102073785694342[/C][/ROW]
[ROW][C]56[/C][C]0.985784244313018[/C][C]0.0284315113739644[/C][C]0.0142157556869822[/C][/ROW]
[ROW][C]57[/C][C]0.98051096880788[/C][C]0.0389780623842398[/C][C]0.0194890311921199[/C][/ROW]
[ROW][C]58[/C][C]0.975001041832888[/C][C]0.0499979163342236[/C][C]0.0249989581671118[/C][/ROW]
[ROW][C]59[/C][C]0.983828463015931[/C][C]0.0323430739681384[/C][C]0.0161715369840692[/C][/ROW]
[ROW][C]60[/C][C]0.987660269538451[/C][C]0.0246794609230971[/C][C]0.0123397304615485[/C][/ROW]
[ROW][C]61[/C][C]0.988091678282493[/C][C]0.023816643435014[/C][C]0.011908321717507[/C][/ROW]
[ROW][C]62[/C][C]0.9866449349873[/C][C]0.0267101300254006[/C][C]0.0133550650127003[/C][/ROW]
[ROW][C]63[/C][C]0.995415479803189[/C][C]0.0091690403936226[/C][C]0.0045845201968113[/C][/ROW]
[ROW][C]64[/C][C]0.994430336515701[/C][C]0.0111393269685971[/C][C]0.00556966348429856[/C][/ROW]
[ROW][C]65[/C][C]0.992755752459026[/C][C]0.0144884950819484[/C][C]0.00724424754097421[/C][/ROW]
[ROW][C]66[/C][C]0.998949391086921[/C][C]0.00210121782615835[/C][C]0.00105060891307917[/C][/ROW]
[ROW][C]67[/C][C]0.99918356586845[/C][C]0.00163286826309974[/C][C]0.000816434131549871[/C][/ROW]
[ROW][C]68[/C][C]0.999233915825533[/C][C]0.00153216834893494[/C][C]0.000766084174467471[/C][/ROW]
[ROW][C]69[/C][C]0.998820764742117[/C][C]0.00235847051576563[/C][C]0.00117923525788281[/C][/ROW]
[ROW][C]70[/C][C]0.998683169217937[/C][C]0.00263366156412599[/C][C]0.001316830782063[/C][/ROW]
[ROW][C]71[/C][C]0.998145427413286[/C][C]0.00370914517342797[/C][C]0.00185457258671398[/C][/ROW]
[ROW][C]72[/C][C]0.998469535636973[/C][C]0.00306092872605415[/C][C]0.00153046436302707[/C][/ROW]
[ROW][C]73[/C][C]0.997922645918115[/C][C]0.00415470816376975[/C][C]0.00207735408188487[/C][/ROW]
[ROW][C]74[/C][C]0.997076270012868[/C][C]0.00584745997426355[/C][C]0.00292372998713177[/C][/ROW]
[ROW][C]75[/C][C]0.997983765104378[/C][C]0.00403246979124477[/C][C]0.00201623489562238[/C][/ROW]
[ROW][C]76[/C][C]0.997023799119986[/C][C]0.00595240176002715[/C][C]0.00297620088001358[/C][/ROW]
[ROW][C]77[/C][C]0.997716130041162[/C][C]0.00456773991767537[/C][C]0.00228386995883768[/C][/ROW]
[ROW][C]78[/C][C]0.997047760028049[/C][C]0.0059044799439011[/C][C]0.00295223997195055[/C][/ROW]
[ROW][C]79[/C][C]0.9958570325572[/C][C]0.00828593488559924[/C][C]0.00414296744279962[/C][/ROW]
[ROW][C]80[/C][C]0.995870016981887[/C][C]0.00825996603622657[/C][C]0.00412998301811329[/C][/ROW]
[ROW][C]81[/C][C]0.994856826703398[/C][C]0.0102863465932035[/C][C]0.00514317329660177[/C][/ROW]
[ROW][C]82[/C][C]0.993158469958729[/C][C]0.0136830600825422[/C][C]0.00684153004127109[/C][/ROW]
[ROW][C]83[/C][C]0.990310599427133[/C][C]0.0193788011457339[/C][C]0.00968940057286696[/C][/ROW]
[ROW][C]84[/C][C]0.987184040101346[/C][C]0.0256319197973073[/C][C]0.0128159598986537[/C][/ROW]
[ROW][C]85[/C][C]0.985028225625871[/C][C]0.0299435487482576[/C][C]0.0149717743741288[/C][/ROW]
[ROW][C]86[/C][C]0.980328937797851[/C][C]0.039342124404298[/C][C]0.019671062202149[/C][/ROW]
[ROW][C]87[/C][C]0.974125522642001[/C][C]0.0517489547159983[/C][C]0.0258744773579991[/C][/ROW]
[ROW][C]88[/C][C]0.965996320080744[/C][C]0.0680073598385116[/C][C]0.0340036799192558[/C][/ROW]
[ROW][C]89[/C][C]0.956373062306066[/C][C]0.0872538753878675[/C][C]0.0436269376939338[/C][/ROW]
[ROW][C]90[/C][C]0.970782132875468[/C][C]0.0584357342490635[/C][C]0.0292178671245317[/C][/ROW]
[ROW][C]91[/C][C]0.973889742875521[/C][C]0.0522205142489582[/C][C]0.0261102571244791[/C][/ROW]
[ROW][C]92[/C][C]0.965597224596812[/C][C]0.0688055508063766[/C][C]0.0344027754031883[/C][/ROW]
[ROW][C]93[/C][C]0.955697181103215[/C][C]0.0886056377935706[/C][C]0.0443028188967853[/C][/ROW]
[ROW][C]94[/C][C]0.948540336947137[/C][C]0.102919326105727[/C][C]0.0514596630528634[/C][/ROW]
[ROW][C]95[/C][C]0.938535971355432[/C][C]0.122928057289136[/C][C]0.0614640286445682[/C][/ROW]
[ROW][C]96[/C][C]0.920908233278736[/C][C]0.158183533442528[/C][C]0.0790917667212638[/C][/ROW]
[ROW][C]97[/C][C]0.89986555585632[/C][C]0.20026888828736[/C][C]0.10013444414368[/C][/ROW]
[ROW][C]98[/C][C]0.899177940003847[/C][C]0.201644119992306[/C][C]0.100822059996153[/C][/ROW]
[ROW][C]99[/C][C]0.881494522103826[/C][C]0.237010955792348[/C][C]0.118505477896174[/C][/ROW]
[ROW][C]100[/C][C]0.860304601640809[/C][C]0.279390796718383[/C][C]0.139695398359191[/C][/ROW]
[ROW][C]101[/C][C]0.858185172053456[/C][C]0.283629655893088[/C][C]0.141814827946544[/C][/ROW]
[ROW][C]102[/C][C]0.830992063748099[/C][C]0.338015872503802[/C][C]0.169007936251901[/C][/ROW]
[ROW][C]103[/C][C]0.793828684534925[/C][C]0.41234263093015[/C][C]0.206171315465075[/C][/ROW]
[ROW][C]104[/C][C]0.88553644635148[/C][C]0.22892710729704[/C][C]0.11446355364852[/C][/ROW]
[ROW][C]105[/C][C]0.862988533933939[/C][C]0.274022932132121[/C][C]0.137011466066061[/C][/ROW]
[ROW][C]106[/C][C]0.87094160028717[/C][C]0.25811679942566[/C][C]0.12905839971283[/C][/ROW]
[ROW][C]107[/C][C]0.857863848858258[/C][C]0.284272302283484[/C][C]0.142136151141742[/C][/ROW]
[ROW][C]108[/C][C]0.86078246392148[/C][C]0.278435072157039[/C][C]0.13921753607852[/C][/ROW]
[ROW][C]109[/C][C]0.878183427658619[/C][C]0.243633144682761[/C][C]0.121816572341381[/C][/ROW]
[ROW][C]110[/C][C]0.845880922122169[/C][C]0.308238155755663[/C][C]0.154119077877831[/C][/ROW]
[ROW][C]111[/C][C]0.809482914456636[/C][C]0.381034171086729[/C][C]0.190517085543364[/C][/ROW]
[ROW][C]112[/C][C]0.784432355623644[/C][C]0.431135288752712[/C][C]0.215567644376356[/C][/ROW]
[ROW][C]113[/C][C]0.790777291122169[/C][C]0.418445417755662[/C][C]0.209222708877831[/C][/ROW]
[ROW][C]114[/C][C]0.969258591843628[/C][C]0.0614828163127442[/C][C]0.0307414081563721[/C][/ROW]
[ROW][C]115[/C][C]0.986805573245143[/C][C]0.026388853509715[/C][C]0.0131944267548575[/C][/ROW]
[ROW][C]116[/C][C]0.989013909850615[/C][C]0.0219721802987698[/C][C]0.0109860901493849[/C][/ROW]
[ROW][C]117[/C][C]0.983808561714696[/C][C]0.0323828765706072[/C][C]0.0161914382853036[/C][/ROW]
[ROW][C]118[/C][C]0.975845188924136[/C][C]0.0483096221517274[/C][C]0.0241548110758637[/C][/ROW]
[ROW][C]119[/C][C]0.964566272710731[/C][C]0.0708674545785371[/C][C]0.0354337272892686[/C][/ROW]
[ROW][C]120[/C][C]0.956515251327735[/C][C]0.0869694973445291[/C][C]0.0434847486722646[/C][/ROW]
[ROW][C]121[/C][C]0.937578431115813[/C][C]0.124843137768373[/C][C]0.0624215688841867[/C][/ROW]
[ROW][C]122[/C][C]0.926631714493193[/C][C]0.146736571013614[/C][C]0.0733682855068072[/C][/ROW]
[ROW][C]123[/C][C]0.901139511654153[/C][C]0.197720976691694[/C][C]0.0988604883458468[/C][/ROW]
[ROW][C]124[/C][C]0.87506892186188[/C][C]0.24986215627624[/C][C]0.12493107813812[/C][/ROW]
[ROW][C]125[/C][C]0.835476386922178[/C][C]0.329047226155643[/C][C]0.164523613077822[/C][/ROW]
[ROW][C]126[/C][C]0.786243600950117[/C][C]0.427512798099766[/C][C]0.213756399049883[/C][/ROW]
[ROW][C]127[/C][C]0.72622369207743[/C][C]0.54755261584514[/C][C]0.27377630792257[/C][/ROW]
[ROW][C]128[/C][C]0.755658919566319[/C][C]0.488682160867363[/C][C]0.244341080433681[/C][/ROW]
[ROW][C]129[/C][C]0.711154272783143[/C][C]0.577691454433714[/C][C]0.288845727216857[/C][/ROW]
[ROW][C]130[/C][C]0.680040732332875[/C][C]0.63991853533425[/C][C]0.319959267667125[/C][/ROW]
[ROW][C]131[/C][C]0.60486193245547[/C][C]0.790276135089061[/C][C]0.39513806754453[/C][/ROW]
[ROW][C]132[/C][C]0.526559799995574[/C][C]0.946880400008852[/C][C]0.473440200004426[/C][/ROW]
[ROW][C]133[/C][C]0.442265939141395[/C][C]0.884531878282789[/C][C]0.557734060858605[/C][/ROW]
[ROW][C]134[/C][C]0.376287459465075[/C][C]0.752574918930149[/C][C]0.623712540534925[/C][/ROW]
[ROW][C]135[/C][C]0.289690767000216[/C][C]0.579381534000431[/C][C]0.710309232999784[/C][/ROW]
[ROW][C]136[/C][C]0.253754388985107[/C][C]0.507508777970215[/C][C]0.746245611014893[/C][/ROW]
[ROW][C]137[/C][C]0.453206609523181[/C][C]0.906413219046361[/C][C]0.546793390476819[/C][/ROW]
[ROW][C]138[/C][C]0.388996459742879[/C][C]0.777992919485757[/C][C]0.611003540257121[/C][/ROW]
[ROW][C]139[/C][C]0.268328699845435[/C][C]0.53665739969087[/C][C]0.731671300154565[/C][/ROW]
[ROW][C]140[/C][C]0.660470540221629[/C][C]0.679058919556742[/C][C]0.339529459778371[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
220.9846745037510120.03065099249797670.0153254962489884
230.9801336907030590.03973261859388260.0198663092969413
240.9847560782391960.03048784352160830.0152439217608041
250.9823523290357220.03529534192855560.0176476709642778
260.9999334410000110.0001331179999789316.65589999894656e-05
270.9999244985179480.0001510029641035357.55014820517675e-05
280.9999205224886370.000158955022726537.94775113632648e-05
290.9998439791408670.0003120417182664820.000156020859133241
300.9999117228066680.0001765543866642578.82771933321285e-05
310.9998625433720480.0002749132559037050.000137456627951853
320.9998191196949920.0003617606100158950.000180880305007948
330.9996724514842820.0006550970314368290.000327548515718415
340.9995382416228930.0009235167542132930.000461758377106646
350.999530190386110.0009396192277796850.000469809613889843
360.9991638366393570.001672326721286120.000836163360643058
370.9990007545661830.001998490867633640.000999245433816821
380.9986035958218950.002792808356210650.00139640417810532
390.9983307618426720.003338476314656160.00166923815732808
400.9978819616674440.004236076665112760.00211803833255638
410.9968698321410090.00626033571798230.00313016785899115
420.9968251391472210.006349721705558110.00317486085277905
430.9950557655071670.009888468985665140.00494423449283257
440.9942053133631220.01158937327375650.00579468663687825
450.997031492757290.005937014485420490.00296850724271024
460.9968501859416570.006299628116686020.00314981405834301
470.9951902061906310.00961958761873760.0048097938093688
480.9934892171209610.01302156575807870.00651078287903934
490.9960406677398450.007918664520310140.00395933226015507
500.9950216690581310.009956661883737850.00497833094186893
510.9926800818671590.0146398362656820.00731991813284098
520.9905529218903530.01889415621929430.00944707810964716
530.9889600375265770.02207992494684590.011039962473423
540.9847979109876810.03040417802463830.0152020890123192
550.9897926214305660.02041475713886850.0102073785694342
560.9857842443130180.02843151137396440.0142157556869822
570.980510968807880.03897806238423980.0194890311921199
580.9750010418328880.04999791633422360.0249989581671118
590.9838284630159310.03234307396813840.0161715369840692
600.9876602695384510.02467946092309710.0123397304615485
610.9880916782824930.0238166434350140.011908321717507
620.98664493498730.02671013002540060.0133550650127003
630.9954154798031890.00916904039362260.0045845201968113
640.9944303365157010.01113932696859710.00556966348429856
650.9927557524590260.01448849508194840.00724424754097421
660.9989493910869210.002101217826158350.00105060891307917
670.999183565868450.001632868263099740.000816434131549871
680.9992339158255330.001532168348934940.000766084174467471
690.9988207647421170.002358470515765630.00117923525788281
700.9986831692179370.002633661564125990.001316830782063
710.9981454274132860.003709145173427970.00185457258671398
720.9984695356369730.003060928726054150.00153046436302707
730.9979226459181150.004154708163769750.00207735408188487
740.9970762700128680.005847459974263550.00292372998713177
750.9979837651043780.004032469791244770.00201623489562238
760.9970237991199860.005952401760027150.00297620088001358
770.9977161300411620.004567739917675370.00228386995883768
780.9970477600280490.00590447994390110.00295223997195055
790.99585703255720.008285934885599240.00414296744279962
800.9958700169818870.008259966036226570.00412998301811329
810.9948568267033980.01028634659320350.00514317329660177
820.9931584699587290.01368306008254220.00684153004127109
830.9903105994271330.01937880114573390.00968940057286696
840.9871840401013460.02563191979730730.0128159598986537
850.9850282256258710.02994354874825760.0149717743741288
860.9803289377978510.0393421244042980.019671062202149
870.9741255226420010.05174895471599830.0258744773579991
880.9659963200807440.06800735983851160.0340036799192558
890.9563730623060660.08725387538786750.0436269376939338
900.9707821328754680.05843573424906350.0292178671245317
910.9738897428755210.05222051424895820.0261102571244791
920.9655972245968120.06880555080637660.0344027754031883
930.9556971811032150.08860563779357060.0443028188967853
940.9485403369471370.1029193261057270.0514596630528634
950.9385359713554320.1229280572891360.0614640286445682
960.9209082332787360.1581835334425280.0790917667212638
970.899865555856320.200268888287360.10013444414368
980.8991779400038470.2016441199923060.100822059996153
990.8814945221038260.2370109557923480.118505477896174
1000.8603046016408090.2793907967183830.139695398359191
1010.8581851720534560.2836296558930880.141814827946544
1020.8309920637480990.3380158725038020.169007936251901
1030.7938286845349250.412342630930150.206171315465075
1040.885536446351480.228927107297040.11446355364852
1050.8629885339339390.2740229321321210.137011466066061
1060.870941600287170.258116799425660.12905839971283
1070.8578638488582580.2842723022834840.142136151141742
1080.860782463921480.2784350721570390.13921753607852
1090.8781834276586190.2436331446827610.121816572341381
1100.8458809221221690.3082381557556630.154119077877831
1110.8094829144566360.3810341710867290.190517085543364
1120.7844323556236440.4311352887527120.215567644376356
1130.7907772911221690.4184454177556620.209222708877831
1140.9692585918436280.06148281631274420.0307414081563721
1150.9868055732451430.0263888535097150.0131944267548575
1160.9890139098506150.02197218029876980.0109860901493849
1170.9838085617146960.03238287657060720.0161914382853036
1180.9758451889241360.04830962215172740.0241548110758637
1190.9645662727107310.07086745457853710.0354337272892686
1200.9565152513277350.08696949734452910.0434847486722646
1210.9375784311158130.1248431377683730.0624215688841867
1220.9266317144931930.1467365710136140.0733682855068072
1230.9011395116541530.1977209766916940.0988604883458468
1240.875068921861880.249862156276240.12493107813812
1250.8354763869221780.3290472261556430.164523613077822
1260.7862436009501170.4275127980997660.213756399049883
1270.726223692077430.547552615845140.27377630792257
1280.7556589195663190.4886821608673630.244341080433681
1290.7111542727831430.5776914544337140.288845727216857
1300.6800407323328750.639918535334250.319959267667125
1310.604861932455470.7902761350890610.39513806754453
1320.5265597999955740.9468804000088520.473440200004426
1330.4422659391413950.8845318782827890.557734060858605
1340.3762874594650750.7525749189301490.623712540534925
1350.2896907670002160.5793815340004310.710309232999784
1360.2537543889851070.5075087779702150.746245611014893
1370.4532066095231810.9064132190463610.546793390476819
1380.3889964597428790.7779929194857570.611003540257121
1390.2683286998454350.536657399690870.731671300154565
1400.6604705402216290.6790589195567420.339529459778371







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level390.327731092436975NOK
5% type I error level690.579831932773109NOK
10% type I error level790.663865546218487NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 39 & 0.327731092436975 & NOK \tabularnewline
5% type I error level & 69 & 0.579831932773109 & NOK \tabularnewline
10% type I error level & 79 & 0.663865546218487 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147205&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]39[/C][C]0.327731092436975[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]69[/C][C]0.579831932773109[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]79[/C][C]0.663865546218487[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147205&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147205&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level390.327731092436975NOK
5% type I error level690.579831932773109NOK
10% type I error level790.663865546218487NOK



Parameters (Session):
par1 = 5 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 5 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}